2.4. The Chain Rule

If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is in turn a differentiable function of x, then the composite function $f(g(x))$ is a differentiable function of x whose derivative is given by the product

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

or, equivalently, by

$$
\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)
$$

The Chain Rule

Example

Compute the derivative $\frac{d y}{d x}$ and simplify the answer if

$$
y=u^{2}-3 u+4 ; \quad u=1-x^{2}
$$

The Chain Rule

Example
Compute the derivative $\left.\frac{d y}{d x}\right|_{x=\frac{1}{2}}$ if

$$
y=u^{2}-2 u+2 ; \quad u=\frac{1}{x}
$$

The Chain Rule

Sometimes when dealing with a composite function $y=f(g(x))$ it may help to think of f as the "outer" function and g as the "inner" function. Then the chain rule says that the derivative of $y=f(g(x))$ with respect to x is given by the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

Example

Differentiate the following function and simplify the answer.

$$
h(x)=\sqrt{x^{6}-3 x^{2}}
$$

The General Power Rule

For any real number n and differentiable function h,

$$
\frac{d}{d x}[h(x)]^{n}=n[h(x)]^{n-1} \frac{d}{d x}[h(x)]
$$

Example

Differentiate the following function and simplify the answer.

$$
f(x)=\left(t^{4}-4 t^{2}+4\right)^{6}
$$

Combination with other rules

Example

Differentiate the following function and simplify the answer.

$$
f(x)=(2 x+1)^{4}(3 x-5)^{2}
$$

Combination with other rules

Example

Differentiate the following function and simplify the answer.

$$
F(x)=\frac{(1-2 x)^{3}}{(3 x+1)^{2}}
$$

Higher derivatives

Example

Find the second derivative of the given function

$$
y=\left(1-x^{2}\right)^{3}
$$

