2.3. Product and Quotient Rules; Higher-Order

 DerivativesThe Product Rule
If $f(x)$ and $g(x)$ are differentiable at x, then so is their product and

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

or equivalently

$$
(f g)^{\prime}=f g^{\prime}+g f^{\prime}
$$

Example
Differentiate $f(x)=(2 x-5)(1-x)$.

The Product Rule

Example
Differentiate $f(x)=\left(x^{3}-2 x^{2}+5\right)(\sqrt{x}+2 x)$.

The Quotient Rule

If $f(x)$ and $g(x)$ are differentiable functions, then so is the quotient $Q(x)=f(x) / g(x)$ and

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{g^{2}(x)}
$$

or equivalently

$$
\left(\frac{f}{g}\right)=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

Example
Differentiate $y=\frac{1+x^{2}}{1-x^{2}}$.

The Quotient Rule

Example
Find all points on the graph of $f(x)=\frac{x^{2}+x-1}{x^{2}-x+1}$ where the tangent line is horizontal.

Product rule and Quotient Rule

Example
Differentiate $g(x)=\frac{\left(x^{2}+x+1\right)(4-x)}{2 x-1}$.

The Second Derivative

The second derivative of a function is the derivative of its derivative. If $y=f(x)$, the second derivative is denoted by

$$
\frac{d^{2} y}{d x^{2}} \text { or } f^{\prime \prime}(x)
$$

The second derivative gives the rate of change of the rate of change of the original function.
Example
Find the second derivative of $f(x)=x^{10}-4 x^{6}-27 x+4$.

The Second Derivative

Example
Find the second derivative of $y=\left(x^{2}-2 x\right)\left(x-\frac{1}{x}\right)$.

