2.2. Techniques of Differentiation

The Constant Rule
For any constant $c, \quad \frac{d}{d x}[c]=0$
The Power Rule
For any real number $n, \quad \frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
Example Differentiate the function $y=\sqrt{x^{5}}$.

The Constant Multiple Rule

If c is a constant and $f(x)$ is differentiable, then so is $c f(x)$ and

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

Example
Differentiate the function $y=2 \sqrt[3]{x^{4}}$.

The Sum Rule

If $f(x)$ and $g(x)$ are differentiable, then so is their sum and

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

Example
Differentiate the function $y=\frac{2}{x}-\frac{2}{x^{2}}+\frac{1}{3 x^{3}}$.

Differentiation of polynomials

Example

Differentiate the function $y=x^{3}\left(x^{2}-5 x+7\right)$.

Equation of tangent lines

Example

Find the equation of the line that is tangent to the graph of the
function $y=\sqrt{x^{3}}-x^{2}+\frac{16}{x^{2}}$ at the point $(4,-9)$.

Relative and Percentage Rate of Change

The relative rate of change of a quantity $Q(x)$ with respect to x is

$$
\frac{Q^{\prime}(x)}{Q(x)}
$$

The corresponding percentage rate of change of $Q(x)$ with respect to x is

$$
\frac{100 Q^{\prime}(x)}{Q(x)}
$$

Relative and Percentage Rate of Change

Example

It is estimated that t years from now, the population of a certain town will be $P(t)=t^{2}+100 t+8,000$.
a. Express the percentage rate of change of the population as a function of t.
b. What will happen to the percentage rate of change of the population in the long run?

Rectilinear Motion

Motion of an object along a line is called rectilinear motion. If the position at time t of an object moving along a straight line is give by $s(t)$, the the object has

$$
\text { velocity } \quad v(t)=s^{\prime}(t)=\frac{d x}{d t}
$$

and

$$
\text { acceleration } \quad a(t)=v^{\prime}(t)=\frac{d v}{d t}
$$

The object is moving to the right moving to the left when $v(t)<0$, and stationary

Rectilinear Motion

Example

The position at time t of an object moving along a line is given by $s(t)=t^{3}-9 t^{2}+15 t+25$.
a. Find the velocity of the object.
b. Find the total distance traveled by the object between $t=0$ and $t=6$.
c. Find the acceleration of the object and determine when the object is accelerating and decelerating between $t=0$ and $t=6$.

