### 2.1 The Derivative

The derivative of a function
The derivative of the function $f(x)$ with respect to $x$ is the function $f^{\prime}(x)$ given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

The process of computing the derivative is called differentiation, and we say that $f(x)$ is differentiable at $x=c$ if $f^{\prime}(c)$ exists.

## Example

Find the derivative of the function $f(x)=x^{2}-2 x$.

## Slope as a Derivative

The slope of the tangent line to the curve $y=f(x)$ at the point $(c, f(c))$ is $m_{t a n}=f^{\prime}(c)$.

## Example

Find the equation of the tangent line to the curve $y=x^{2}-2 x$ at the point where $x=-1$.

## Instantaneous Rate of Change as a Derivative

The rate of change of $f(x)$ with respect to $x$ when $x=c$ is given by $f^{\prime}(c)$.

## Example

A toy rocket rises vertically in such a way that $t$ seconds after lift-off, it is

$$
h(t)=-\frac{1}{2} t^{2}+20 t
$$

feet above ground.
a. What is the (instantaneous) velocity of the rocket at lift-off?
b. What is its velocity after 10 seconds?

## Significance of the sign of $f^{\prime}(x)$

If the function $f$ is differentiable at $x=c$, then
$f$ is increasing at $x=c$ if $f^{\prime}(c)>0$
and
$f$ is decreasing at $x=c$ if $f^{\prime}(c)<0$
Example
c. At lift-off, is the rocket rising?
d. Is the rocket rising after 30 seconds?

## Derivative Notation

The derivative $f^{\prime}(x)$ of $y=f(x)$ is sometimes written as

$$
\frac{d y}{d x} \text { or } \frac{d f}{d x}
$$

In this notation, $f^{\prime}(c)$ is written as

$$
\left.\frac{d y}{d x}\right|_{x=c} \text { or }\left.\frac{d f}{d x}\right|_{x=c}
$$

## Example

Find the rate of change $\frac{d y}{d x}$ of $y=5-x^{2}$ at the point where $x=2$.

## Differentiability and Continuity

Continuity of a differentiable function
If the function $f(x)$ is differentiable at $x=c$, then it is also continuous at $x=c$. This means that for $f(x)$ to be differentiable at $x=c$ it must at least be continuous there, but more is required. There are functions that are continuous at a point but not differentiable there.

## Examples of nondifferentiability

Each of the functions below is continuous at $x=0$ but not differentiable at $x=0$.

- Vertical tangent: $f(x)=x^{1 / 3}$
- Cusp: $f(x)=x^{2 / 3}$
- Corner: $f(x)=|x|$

