1.6. One-sided Limits and Continuity

One-sided Limit
If $f(x)$ approaches L as x tends toward c from the left ($x<c$), we write

$$
\lim _{x \rightarrow c^{-}} f(x)=L .
$$

Likewise, if $f(x)$ approaches M as x tends toward c from the right ($x>c$), then

$$
\lim _{x \rightarrow c^{+}} f(x)=M .
$$

Example
Find $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$ for the function

$$
f(x)=\frac{x^{2}+3}{x-2}
$$

One-sided Limit

Example

Find $\lim _{x \rightarrow-1^{-}} f(x)$ and $\lim _{x \rightarrow-1^{+}} f(x)$ for the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{2}{x-1} & \text { if } x<-1 \\
x^{2}-x & \text { if } x \geq-1
\end{array}\right.
$$

Existence of a Limit

Theorem

The two-sided limit $\lim _{x \rightarrow c} f(x)$ exists if and only if the two one-sided limits $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ both exist and are equal, and then

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)
$$

Example
Determine whether $\lim _{x \rightarrow 1} f(x)$ exists, where

$$
f(x)= \begin{cases}2 x+1 & \text { if } x<1 \\ -x^{2}+2 x+2 & \text { if } x \geq 1\end{cases}
$$

Continuity

Continuity

A function f is continuous at c if all three of these conditions are satisfied:
a. $f(c)$ is defined
b. $\lim _{x \rightarrow c} f(x)$ exists
c. $\lim _{x \rightarrow c} f(x)=f(c)$

If $f(x)$ is not continuous at c, it is said to have a discontinuity there.

Example
Decide if $f(x)=x^{3}-x^{2}+x-4$ is continuous at $x=0$.

Continuity

Example
Decide if $f(x)=\frac{2 x+5}{2 x-4}$ is continuous at $x=2$.

Continuity

Continuity of Polynomials and Rational Functions
A polynomial or a rational function is continuous wherever it is defined.

Example

List all values of x for which $f(x)$ is not continuous

$$
f(x)=\frac{x^{2}-2 x+1}{x^{2}-x-2}
$$

Continuity

Example
Decide if $f(x)=\left\{\begin{array}{ll}x+1 & \text { if } x<0 \\ x-1 & \text { if } x \geq 0\end{array}\right.$ is continuous at $x=0$.

Continuity

Example

Find the value of the constant A such that the function

$$
f(x)= \begin{cases}1-2 x & \text { if } x<2 \\ A x^{2}+2 x-3 & \text { if } x \geq 2\end{cases}
$$

will be continuous for all x.

Intermediate Value Property

The intermediate value property
If $f(x)$ is continuous on the interval $a \leq x \leq b$ and L is a number between $f(a)$ and $f(b)$, the $f(c)=L$ for some number c between a and b. In other words, a continuous function attains all values between any two of its values.

Example

Show that the equation $\sqrt[3]{x}=x^{2}+2 x-1$ must have at least one solution on the interval $0 \leq x \leq 1$.

