1.5. Limits

- In this section we will learn how to evaluate and understand expressions of the form

$$
\lim _{x \rightarrow c} f(x)=L
$$

- The basic idea behind the notion of limit is this: We want to understand the behavior of a mathematical expression $f(x)$ near but not at the point $x=c$.
- The most practical use of this idea for this course is that limits can (sometimes) allow us to give meaning to mathematical expressions that evaluate to the meaningless form 0/0.
- We will take three main approaches to understanding limits: (a) numerical, (b) graphical, and (c) algebraic. We will use the third approach most but the others should be understood.

Example: Numerical Approach.

Behavior of $f(x)$ for x near c
Consider the behavior of $f(x)=\frac{x^{2}-3 x+2}{x-1}$ as x approaches 1.

x	0.8	0.9	0.99	1	1.01	1.1	1.2
$f(x)$	-1.2	-1.1	-1.01	undefined	-0.99	-0.9	-0.8

As x approaches $1, f(x)$ approaches -1 .

Definition

If $f(x)$ gets closer and closer to a number L as x gets closer and closer to c from both sides, then L is the limit of $f(x)$ as x approaches c. The behavior is expressed by

$$
\lim _{x \rightarrow c} f(x)=L
$$

Example: Graphical Approach.

It is important to remember that limits describes the behavior of a function near a particular point, not necessarily at the point itself. Note that the limit in each case is the same and is independent of the value of the function at $x=c$ or even if the function is defined at $x=c$.

Three functions for which $\lim _{x \rightarrow c} f(x)=L$

Example: Algebraic Approach.

We are looking at $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}$

- Note that as long as $x \neq 1$,

$$
\frac{x^{2}-3 x+2}{x-1}=\frac{(x-1)(x-2)}{x-1}=(x-2)
$$

. Of course, if $x=1$ then $\frac{x^{2}-3 x+2}{x-1}$ is undefined.

- Therefore, $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}=\lim _{x \rightarrow 1}(x-2)=1-2=-1$ as we shall see.

Functions for which the limit does not exist

It is possible that the limit $\lim _{x \rightarrow c} f(x)$ does not exist.

Properties of Limits

If $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist, then

$$
\begin{aligned}
\lim _{x \rightarrow c}[f(x)+g(x)] & =\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) \\
\lim _{x \rightarrow c}[f(x)-g(x)] & =\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x) \\
\lim _{x \rightarrow c}[k f(x)] & =k \lim _{x \rightarrow c} f(x) \\
\lim _{x \rightarrow c}[f(x) g(x)] & =\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right] \\
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)} \text { if } \lim _{x \rightarrow c} g(x) \neq 0
\end{aligned}
$$

$$
\lim _{x \rightarrow c}[f(x)]^{p}=\left[\lim _{x \rightarrow c} f(x)\right]^{p} \quad \text { if }\left[\lim _{x \rightarrow c} f(x)\right]^{p} \text { exists }
$$

Computation of Limits

Limits of Polynomials and Rational functions
If $p(x)$ and $q(x)$ are polynomials, then

$$
\lim _{x \rightarrow c} p(x)=p(c) \quad \text { and } \quad \lim _{x \rightarrow c} \frac{p(x)}{q(x)}=\frac{p(c)}{q(c)} \quad \text { if } q(c) \neq 0
$$

Example
Find $\lim _{x \rightarrow 2}\left(x^{2}-4 x+7\right)$.

Example
Find $\lim _{x \rightarrow 1} \frac{x+3}{2 x+1}$.

Computation of Limits

Example
Find $\lim _{x \rightarrow 2} \frac{2 x+3}{x-2}$.

Example
Find $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}$.

Limits involving Infinity

Limits at infinity

If the values of $f(x)$ approach the number L as x gets larger and larger,

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

If the values of $f(x)$ approach the number L as x gets larger and larger negatively,

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

Graphically, $\lim _{x \rightarrow \pm \infty} f(x)=L$ means that $f(x)$ has a horizontal asymptote at the line $y=L$.

Limits involving Infinity

Example

If $k>0$ and x^{k} is defined for all x, then for any constant A,

$$
\lim _{x \rightarrow \pm \infty} \frac{A}{x^{k}}=0 .
$$

Example
Find $\lim _{x \rightarrow+\infty} \frac{1-2 x^{3}}{2 x^{3}-5 x+4}$.

Example
Find $\lim _{x \rightarrow-\infty} \frac{x^{2}+2 x-3}{1-3 x-x^{3}}$.

Limits involving Infinity

Infinite Limits
If $f(x)$ increases without bound as $x \rightarrow c$, we write

$$
\lim _{x \rightarrow c} f(x)=+\infty .
$$

If $f(x)$ decreases without bound as $x \rightarrow c$, then

$$
\lim _{x \rightarrow c} f(x)=-\infty .
$$

Graphically, $\lim _{x \rightarrow c} f(x)= \pm \infty$ means that $f(x)$ has a vertical asymptote at the line $x=c$.
Example
Find $\lim _{x \rightarrow-1 / 2} \frac{1-3 x^{3}}{2 x+1}$.

