### 1.3. Linear Functions

## Definition

A linear function is a function that changes at a constant rate with respect to its independent variable.

- The graph of a linear function is a straight line.
- The equation of a linear function can be written as

$$
y=m x+b
$$

where $m$ and $b$ are constants.

## Linear Functions

## Definition

The slope of the nonvertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the ratio

$$
\text { Slope }=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

Example
Find the slope of the line that passes through $(5,-1)$ and $(3,3)$.

## The Slope-Intercept Form

Definition (The Slope-Intercept Form)
The equation

$$
y=m x+b
$$

is the equation of the line whose slope is $m$ and whose $y$-intercept is $(0, b)$.

## Example

Find the equation of the line that passes through $(5,-1)$ and $(3,3)$.

## The Slope-Intercept Form

## Example

Find the slope and $y$ intercept of the line $5 y-3 x=4$.

## Horizontal and Vertical Lines

## Example

Find the equation of the line that passes through $(5,-1)$ and $(3,-1)$.

## Example

Find the equation of the line that passes through $(5,-1)$ and
$(5,1)$.

## The Point-Slope Form

## Definition (The Point-Slope Form)

The equation

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

is the equation of the line that passes through the point $\left(x_{0}, y_{0}\right)$ and that has slope equal to $m$.

## Example

Find the equation of the line that passes through $(1,2)$ with
slope $\frac{2}{3}$.

## The Point-Slope Form

## Example

Find the equation of the line that passes through $(2,5)$ and $(1,-2)$.

## Practical Applications

## Example

A certain car rental agency charges $\$ 30$ per day plus 55 cents per mile.
a. Express the cost of renting a car from this agency for 1 day as a function of the number of miles driven and draw the graph.
b. How much does it cost to rent a car for a 1-day trip of 250 miles?
c. How many miles were driven if the daily rental cost was $\$ 74$ ?

## Parallel and Perpendicular lines

Let $m_{1}$ and $m_{2}$ be the slopes of the nonvertical lines $L_{1}$ and $L_{2}$. Then

- $L_{1}$ and $L_{2}$ are parallel if and only if $m_{1}=m_{2}$.
- $L_{1}$ and $L_{2}$ are perpendicular if and only if $m_{2}=\frac{-1}{m_{1}}$.


## Example

Find the equation of the line that passes through $(-3,2)$ and parallel to the line $x+3 y=5$.

## Parallel and Perpendicular lines

## Example

Find the equation of the line that passes through $(1,2)$ and perpendicular to the line $x+3 y=5$.

