1.2. The Graph of a Function

Definition
The graph of a function f consists of all points (x, y) where x is in the domain of f and $y=f(x)$; that is, all points of the form $(x, f(x))$.

Example
Graph the function $f(x)=x^{2}$.

x and y intercepts

Definition
The points (if any) where a graph crosses the x axis are called x intercepts, and a y intercept is a point where the graph crosses the y axis.

Example
Graph the function $f(x)=x^{2}-2 x-8$. Include all x and y intercepts.

x and y intercepts

Example

Graph the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x<2 \\ x+1 & \text { if } x \geq 2\end{cases}
$$

Include all x and y intercept.

Graphing parabolas

The graph of $y=A x^{2}+B x+C$ is a parabola if $A \neq 0$.

- All parabolas have a U shape.
- The parabola $y=A x^{2}+B x+C$ opens up if $A>0$ and down if $A<0$.
- The "peak" or "valley" of the parabola is called its vertex, and it occurs where $x=\frac{-B}{2 A}$.
To get a reasonable sketch of the parabola, you need to determine
- The location of the vertex
- Whether the parabola opens up or down
- Any intercepts

Graphing parabolas

Example
Graph the function $f(x)=x^{2}-2 x-8$.

Manufacturing cost

Example

A bookstore can obtain an atlas from the publisher at a cost of $\$ 10$ per copy and estimates that if it sells the atlas for x dollars per copy, approximately 20(22-x) copies will be sold each month. Express the bookstore's monthly profit from the sale of the atlas as a function of price, graph this function, and use the graph to estimate the optimal selling price.

Solution

- Let $x=$ price per atlas.
- Revenue generated each month will be

$$
\begin{aligned}
R(x) & =(\text { number of atlases sold }) \times(\text { price per atlas }) \\
& =[20(22-x)][x]
\end{aligned}
$$

- Cost per month will be

$$
\begin{aligned}
C(x) & =(\text { number of atlases sold }) \times(\text { cost per atlas }) \\
& =[20(22-x)][10]
\end{aligned}
$$

- Profit per month will be

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =20(22-x)(x-10)=-20 x^{2}+640 x-4400
\end{aligned}
$$

- By finding the vertex of this parabola, we see that $x=-B / 2 A=-640 /-40=16$ maximizes profit.

Intersection of Graphs

Example

Find the points of intersection of the graphs of $y=x^{2}-1$ and $y=3 x+3$.

Types of functions

Definition

A power function is a function of the form $f(x)=x^{n}$.
Example
$x^{2}, x^{-3}, x^{1 / 2}, \frac{1}{x^{2}}, \sqrt[3]{x}$
Definition
A polynomial is a function of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

Example

$p(x)=3 x^{2}+4 x+2, q(x)=x^{5}+2$
Definition
A quotient $\frac{p(x)}{q(x)}$ of two polynomials $p(x)$ and $q(x)$ is called a rational function.

Types of functions

Example

Classify the following functions.
a. $f(x)=-2+4 x^{2}+3 x^{4}$
b. $f(x)=\sqrt{x}+5 x$
c. $f(x)=\frac{(x-3)(x+7)}{-x^{3}-2 x^{2}+3}$
d. $f(x)=\left(\frac{2 x+7}{x^{3}-3}\right)^{3}$

