1.1. Functions

Definition

- ➤ A function is a rule that assigns to each object in a set A exactly one object in a set B.
- ▶ The set *A* is called the *domain* of the function.
- ► The set of assigned objects in B is called the range of the function.

For the purposes of this class, the following will always be true.

- ▶ A and B will always be subsets of the real numbers \mathbb{R} .
- A function will be denoted by f(x), and f(x) will be given by a formula such as f(x) = x² + 3. Sometimes we write y = f(x) where x is the independent variable and y is the dependent variable.
- ▶ The domain of f(x) will be given explicitly (rarely) or will be the largest set of real numbers for which the formula for f(x) makes sense (usually).

Example

Find
$$f(2)$$
 if $f(x) = x^2 + 3$.

Example

If
$$g(u) = (u+1)^{3/2}$$
, find $g(0), g(-1)$, and $g(8)$.

Piecewise-defined function

Example Find h(2), h(1), h(-2) if $h(x) = \begin{cases} -2x + 4 & \text{if } x \leq 1 \\ x^2 + 1 & \text{if } x > 1 \end{cases}$

Examples: Finding the Domain

a.
$$f(t) = \frac{t+3}{t^2-t-2}$$

b.
$$h(x) = \sqrt{x^2 - 4}$$

Composition of functions

Definition

Given functions f(u) and g(x), the composition f(g(x)) is the function of x formed by substituting u = g(x) for u in the formula for f(u).

Example

Find the composite function f(g(x)), where $f(u) = u^2 + 3$ and g(x) = x - 1.

Composition of functions

Example

Find the composite functions f(g(x)) and g(f(x)), where $f(x) = x^2 + 3x + 1$ and g(x) = 1 + x. Note that $f(g(x)) \neq g(f(x))$.

Composition of functions

Example

At a certain factory, the total cost of manufacturing q units during the daily production run is $C(q)=q^2+q+900$ dollars. On a typical workday, q(t)=25t units are manufactured during the first t hours of a production run.

- a. Express the total manufacturing cost as a function of t.
- b. How much will have been spent on production by the end of the third hour?
- c. When will the total manufacturing cost reach \$11,000?

Difference quotient

Definition

A difference quotient is an expression of the general form

$$\frac{f(x+h)-f(x)}{h}$$

where *f* is a function of *x* and *h* is a number.

Example

Find the difference quotient for $f(x) = 2x - x^2$.