1.1. Functions

Definition

- A function is a rule that assigns to each object in a set A exactly one object in a set B.
- The set A is called the domain of the function.
- The set of assigned objects in B is called the range of the function.

For the purposes of this class, the following will always be true.

- A and B will always be subsets of the real numbers \mathbb{R}.
- A function will be denoted by $f(x)$, and $f(x)$ will be given by a formula such as $f(x)=x^{2}+3$. Sometimes we write $y=f(x)$ where x is the independent variable and y is the dependent variable.
- The domain of $f(x)$ will be given explicitly (rarely) or will be the largest set of real numbers for which the formula for $f(x)$ makes sense (usually).

Example

Find $f(2)$ if $f(x)=x^{2}+3$.

Example

If $g(u)=(u+1)^{3 / 2}$, find $g(0), g(-1)$, and $g(8)$.

Piecewise-defined function

Example
Find $h(2), h(1), h(-2)$ if

$$
h(x)= \begin{cases}-2 x+4 & \text { if } x \leq 1 \\ x^{2}+1 & \text { if } x>1\end{cases}
$$

Examples: Finding the Domain

a. $f(t)=\frac{t+3}{t^{2}-t-2}$
b. $h(x)=\sqrt{x^{2}-4}$

Composition of functions

Definition

Given functions $f(u)$ and $g(x)$, the composition $f(g(x))$ is the function of x formed by substituting $u=g(x)$ for u in the formula for $f(u)$.

Example

Find the composite function $f(g(x))$, where $f(u)=u^{2}+3$ and $g(x)=x-1$.

Composition of functions

Example

Find the composite functions $f(g(x))$ and $g(f(x))$, where $f(x)=x^{2}+3 x+1$ and $g(x)=1+x$. Note that $f(g(x)) \neq g(f(x))$.

Composition of functions

Example

At a certain factory, the total cost of manufacturing q units during the daily production run is $C(q)=q^{2}+q+900$ dollars. On a typical workday, $q(t)=25 t$ units are manufactured during the first t hours of a production run.
a. Express the total manufacturing cost as a function of t.
b. How much will have been spent on production by the end of the third hour?
c. When will the total manufacturing cost reach $\$ 11,000$?

Difference quotient

Definition
A difference quotient is an expression of the general form

$$
\frac{f(x+h)-f(x)}{h}
$$

where f is a function of x and h is a number.
Example
Find the difference quotient for $f(x)=2 x-x^{2}$.

