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2.3. Product and Quotient Rules; Higher-Order
Derivatives

The Product Rule

If f(x) and g(x) are differentiable at x, then so is their product
and

d d d
(X)) = f(x) 4 [90x)] + g(x)—[f(x)]

or equivalently ,
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Example o

Differentiate f(x) = (2x — 5)(1 — X). ai = At o
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ArotHun way
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S0 =ED@N+T(1) = ~4x+7




The Product Rule

Example
Differentiate f(x) = (x® — 2x2 + 5)(v/X + 2x).

M) = (B-ax2+5) j'gz (%™ £2,)+ (X425 ff)z (320245)
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The Quotient Rule

If f(x) and g(x) are differentiable functions, then so is the
quotient Q(x) = f(x)/g(x) and

J { () } 90100 - 100 L [g(x)

ax [g()] ~ P2 (x)
or equivalently
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The Quotient Rule

Example
Find all points on the graph of f(x) = X x 1 where the
o drap X2 — x4 1

tangent line is horizontal.
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~ Product rule and Quotient Rule

Example - S
Differentiate g(x) = (X +’;)‘:_1)1(4 X)
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The Second Derivative

The second derivative of a function is the derivative of its
derivative. If y = f(x), the second derivative is denoted by

N,y
) () -

The second derivative gives the rate of change of the rate of
change of the original function.

Example »
Find the second derivative of f(x) = x'0 — 4x6 — 27x + 4.

P = 10xT~24x°-27
o0 = ?Oxg — \2—0%//




The Second Derivative

Example

Find the second derivative of y = (x? — 2x) (x — %)




2.4. The Chain Rule |
F(965) = L9069

If y = f(u)4s a differentiable function of u and u = g(x)isin
turn a differentiable function of x, then the composite function
is a differentiable function of x whose derivative is given

Ny .

y proguct
dy _dyar| U=9(x)
dx  gudx 3 =0 (U\}
or, equivalently, by Ny

=0(909
Y ropgy, 0TI

A
i %




The Chain Rule

Example

Compute the derivative % and simplify the answer if

y=u —3u+4; U—1——x
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The Chain Rule

Example

Compute the derivative 9y if

adx 1
XZE

y:u2—2u+2;




The Chain Rule

Sometimes when dealing with a composite function y = f(g(x))
it may help to think of f as the “outer” function and g as the
“inner” function. Then the chain rule says that the derivative of
y = f(9(x)) with respect to x is given by the derivative of the
outer function evaluated at the inner function times the
derivative of the inner function.

Ay [
—  Example 6_{)% =t (%039 ()0

Differentiate the following function and simplify the answer.

h(x) = v/x6 — 3x2 O = U\




The General Power Rule

For any real number n and differentiable function h,

ST
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Example
. Differentiate the following function and simplify the answer.

RO = (1* — 412 + 4)°

T0)= 6 (o) (10-39)




