Exam I - Feb 21

Coverage will be Sections 1.4 - 1.6, Chap 2.

\[f(x) \]

\[f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \]

1. Derivative is the limit of the difference quotient.
2. Instantaneous rate of change of \(f \) with respect to \(x \).
3. Slope of tangent line to graph of \(f(x) \) at \(x \).
2.3. Product and Quotient Rules; Higher-Order Derivatives

The Product Rule
If \(f(x) \) and \(g(x) \) are differentiable at \(x \), then so is their product and
\[
\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]
\]
or equivalently
\[
(fg)' = fg' + gf'
\]

Example
Differentiate \(f(x) = (2x - 5)(1 - x) \).

\[
\frac{df}{dx} = \frac{d}{dx} \left((2x - 5)(1 - x) \right)
\]
\[
= (2x - 5)\frac{d}{dx}(1 - x) + (1 - x)\frac{d}{dx}(2x - 5)
\]
\[
= (2x - 5)(-1) + (1 - x)(2)
\]
\[
= -2x + 5 + 2 - 2x
\]
\[
= -4x + 7
\]
Another way:

\[f(x) = (2x-5)(1-x) = -2x^2 + 7x - 5 \]

\[f'(x) = (-2)(2x) + 7(1) = -4x + 7 \]
The Product Rule

Example
Differentiate \(f(x) = (x^3 - 2x^2 + 5)(\sqrt{x} + 2x) \).

\[
\begin{align*}
 f'(x) &= (x^3 - 2x^2 + 5) \frac{d}{dx} (\sqrt{x} + 2x) + (\sqrt{x} + 2x) \frac{d}{dx} (x^3 - 2x^2 + 5) \\
 &= (x^3 - 2x^2 + 5) \left(\frac{1}{2} x^{-1/2} + 2 \right) + (\sqrt{x} + 2x) (3x^2 - 4x) \\
 &= \frac{1}{2} x^{5/2} + 2x^3 - x^{3/2} - 4x^2 + \frac{5}{2} x^{-1/2} + 10 + 3\sqrt{x} - 4x \sqrt{x} + 6x^2 - 8x \\
 &= \frac{7}{2} x^{5/2} + 8x^3 - 5x^{3/2} - 12x^2 + \frac{5}{2} x^{-1/2} + 10
\end{align*}
\]
The Quotient Rule

If \(f(x) \) and \(g(x) \) are differentiable functions, then so is the quotient \(Q(x) = \frac{f(x)}{g(x)} \) and

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{g^2(x)}
\]

or equivalently

\[
\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}
\]

Example

Differentiate \(y = \frac{1 + x^2}{1 - x^2} \).

\[
\frac{dy}{dx} = \frac{(1-x^2) \frac{d}{dx}(1+x^2) - (1+x^2) \frac{d}{dx}(1-x^2)}{(1-x^2)^2} = \frac{(1-x^2)(2x) - (1+x^2)(-2x)}{(1-x^2)^2} = \frac{2x - 2x^3 - (-2x - 2x^3)}{(1-x^2)^2} = \frac{2x - 2x^3 + 2x + 2x^3}{(1-x^2)^2} = \frac{4x}{(1-x^2)^2}
\]
The Quotient Rule

Example

Find all points on the graph of \(f(x) = \frac{x^2 + x - 1}{x^2 - x + 1} \) where the tangent line is horizontal.

Strategy: Tangent line horizontal means slope = 0, look for \(x \) where \(f'(x) = 0 \).

Find \(f'(x) \). Then solve \(f'(x) = 0 \).

\[
f'(x) = \frac{(x^2-x+1) \frac{d}{dx}(x^2+x-1) - (x^2+x-1) \frac{d}{dx}(x^2-x+1)}{(x^2-x+1)^2}
\]

\[
= \frac{(x^2-x+1)(2x+1) - (x^2+x-1)(2x-1)}{(x^2-x+1)^2}
\]

\[
= \frac{(2x^3-x^2+x+1) - (2x^3+x^2-3x+1)}{(x^2-x+1)^2}
\]

\[
= \frac{2x^3-x^2+x+1-2x^3-x^2+3x-1}{(x^2-x+1)^2}
\]

\[
= \frac{-2x^2+4x}{(x^2-x+1)^2}
\]
Set \(f'(x) = 0 \) and solve

\[
\frac{-2x^2 + 4x}{(x^2 - x + 1)^2} = 0
\]

\[-2x^2 + 4x = 0
\]

\[-2x(x - 2) = 0
\]

\[x = 0 \quad x = 2 \]

\[f(0) = -1 \]

\[f(2) = \frac{4 + 2 - 1}{4 - 2 + 1} = \frac{5}{3} \]

Points: \((0, -1)\)

\((2, \frac{5}{3})\)
Product rule and Quotient Rule

Example

Differentiate $g(x) = \frac{(x^2 + x + 1)(4 - x)}{2x - 1}$.

\[
\begin{align*}
\frac{d}{dx} g(x) &= \frac{(2x-1)\frac{d}{dx}[(x^2+x+1)(4-x)] - (x^2+x+1)(4-x)(2)}{(2x-1)^2} \\
&= \frac{(2x-1)[(x^2+x+1)(-1) + (4-x)(2x+1)] - (x^2+x+1)(4-x)(2)}{(2x-1)^2} \\
&= \frac{(2x-1)[-(x^2-x-1) - 2x^2 + 7x + 4] - (x^2+x+1)(8-2x)}{(2x-1)^2} \\
&= \frac{(2x-1) (-3x^2 + 6x + 3) - (-2x^3 + 6x^2 + 6x + 8)}{(2x-1)^2} \\
&= \frac{-6x^3 + 15x^2 - 3 + 2x^3 - 6x^2 - 6x - 8}{(2x-1)^2} \\
&= \frac{-4x^3 + 9x^2 - 6x - 11}{(2x-1)^2}
\end{align*}
\]
The Second Derivative

The second derivative of a function is the derivative of its derivative. If \(y = f(x) \), the second derivative is denoted by

\[
\frac{d^2 y}{dx^2} \quad \text{or} \quad f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2 y}{dx^2}
\]

The second derivative gives the rate of change of the rate of change of the original function.

Example

Find the second derivative of \(f(x) = x^{10} - 4x^6 - 27x + 4 \).

\[
f'(x) = 10x^9 - 24x^5 - 27
\]

\[
f''(x) = 90x^8 - 120x^4
\]
The Second Derivative

Example

Find the second derivative of \(y = (x^2 - 2x) \left(x - \frac{1}{x} \right) \).
2.4. The Chain Rule

If \(y = f(u) \) is a differentiable function of \(u \) and \(u = g(x) \) is in turn a differentiable function of \(x \), then the composite function \(f(g(x)) \) is a differentiable function of \(x \) whose derivative is given by the product

\[
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
\]

or, equivalently, by

\[
\frac{dy}{dx} = f'(g(x))g'(x)
\]

\[
\frac{du}{dx}
\]

\[
\frac{du}{dx}
\]
The Chain Rule

Example

Compute the derivative \(\frac{dy}{dx} \) and simplify the answer if

\[
y = u^2 - 3u + 4; \quad u = 1 - x^2
\]

\[
y = (1-x^2)^2 - 3(1-x^2) + 4
\]

\[
= (1-2x^2+x^4) - 3 + 3x^2 + 4
\]

\[
= x^4 + x^2 + 2
\]

\[
\frac{dy}{dx} = 4x^3 + 2x
\]
The Chain Rule

Example
Compute the derivative \(\frac{dy}{dx} \Big|_{x=\frac{1}{2}} \) if

\[y = u^2 - 2u + 2; \quad u = \frac{1}{x} \]
The Chain Rule

Sometimes when dealing with a composite function $y = f(g(x))$ it may help to think of f as the “outer” function and g as the “inner” function. Then the chain rule says that the derivative of $y = f(g(x))$ with respect to x is given by the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

$$\frac{dy}{dx} = f'(g(x))g'(x)$$

Example

Differentiate the following function and simplify the answer.

$$h(x) = \sqrt{x^6 - 3x^2}$$

$$h(x) = (x^6 - 3x^2)^{\frac{1}{2}}$$

$$= \frac{1}{2} (x^6 - 3x^2)^{-\frac{1}{2}} (6x^5 - 6x)$$

$$f(u) = u^{\frac{1}{2}}$$

$$g(x) = x^6 - 3x^2$$

$$f'(u) = \frac{1}{2} u^{-\frac{1}{2}}$$

$$g'(x) = 6x^5 - 6x = g'(x)$$
The General Power Rule

For any real number n and differentiable function h,

$$
\frac{d}{dx} [h(x)]^n = n[h(x)]^{n-1} \frac{d}{dx} [h(x)]
$$

Example

Differentiate the following function and simplify the answer.

$$
f(t) = (t^4 - 4t^2 + 4)^6
$$

$$
f'(t) = 6(t^4 - 4t^2 + 4)^5(4t^3 - 8t)
$$