Exam | - Feb 2|

Coverage will be Sections 1.4-1.6, Chap 2.

f(x)

Derivative is the limit

of the difference quotient

f'(x) = lim f(x+h)-f(x)

h = 0 h

Change of f with respect

to x.

| Slope = 3 slope of fangent lime to

graph of f(x) at x.

2.3. Product and Quotient Rules; Higher-Order **Derivatives**

The Product Rule

If f(x) and g(x) are differentiable at x, then so is their product and

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$$

or equivalently

$$(fg)' = fg' + gf'$$
 Know:

$$\frac{d}{dx}(f+g) = \frac{d}{dx}f + \frac{d}{dx}g$$

Example

Differentiate f(x) = (2x - 5)(1 - x).

Example
Differentiate
$$f(x) = (2x - 5)(1 - x)$$
.

$$\frac{df}{dx} = \frac{d}{dx}((2x - 5)(1 - x))$$

$$= (2x - 5)\frac{d}{dx}(1 - x) + (1 - x)\frac{d}{dx}(2x - 5)$$

$$= (2x - 5)(-1) + (1 - x)(2)$$

$$= -2x + 5 + 2 - 2x$$

$$= -4x + 7$$

Another way:

$$f(x) = (2x-5)(1-x) = -2x^2 + 7x - 5$$
$$f'(x) = (-2)(2x) + 7(1) = -4x + 7$$

The Product Rule

Example

Differentiate
$$f(x) = (x^3 - 2x^2 + 5)(\sqrt{x} + 2x)$$
.

$$f'(x) = (x^3 - 2x^2 + 5) \frac{1}{2x}(x^{1/2} + 2x) + (x^{1/2} + 2x) \frac{1}{2x}(x^3 - 2x^2 + 5)$$

$$= (x^3 - 2x^2 + 5)(\frac{1}{2}x^{-1/2} + 2) + (x^{1/2} + 2x)(3x^2 - 4x)$$

$$= \frac{1}{2}x^{5/2} + 2x^3 - x^{3/2} - 4x^2 + \frac{5}{2}x^{-1/2} + 10 + 3x^{5/2} - 4x^{3/2} + 6x^{3/2}$$

$$= \frac{7}{2}x^{5/2} + 8x^3 - 5x^{3/2} - 12x^2 + \frac{5}{2}x^{-1/2} + 10$$

用人名撒人名英巴克莱尔 基一约成为

The Quotient Rule

If f(x) and g(x) are differentiable functions, then so is the quotient Q(x) = f(x)/g(x) and

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{g^2(x)}$$

or equivalently

$$\left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}$$

Example

Differentiate
$$y = \frac{1 + x^2}{1 - x^2}$$
.

$$\frac{dy}{dx} = \frac{(1-x^2)\frac{1}{4x}(1+x^2) - (1+x^2)\frac{1}{4x}(1-x^2)}{(1-x^2)^2}$$

$$= \frac{(1-x^2)(2x) - (1+x^2)(-2x)}{(1-x^2)^2}$$

$$= \frac{(2x-2x^3) - (-2x-2x^3)}{(1-x^2)^2}$$

$$= \frac{2x-2x^3+2x+2x^3}{(1-x^2)^2} = \frac{4x}{(1-x^2)^2}$$

The Quotient Rule

Example

Find all points on the graph of $f(x) = \frac{x^2 + x - 1}{x^2 - x + 1}$ where the tangent line is horizontal.

Strategy: tangent line horizontal means slope = 0, Look for x where f'(x) = 0. Find f'(x). Then solve f'(x) = 0,

$$f'(x) = \frac{(x^2 - x + 1) f_x(x^2 + x - 1) - (x^2 + x - 1) f_x(x^2 - x + 1)}{(x^2 - x + 1)^2}$$

$$= \frac{(x^2 - x + 1) (2x + 1) - (x^2 + x - 1)(2x - 1)}{(x^2 - x + 1)^2}$$

$$= \frac{(2x^3 - x^2 + x + 1) - (2x^3 + x^2 - 3x + 1)}{(x^2 - x + 1)^2}$$

$$= \frac{2x^{2}-x^{2}+x+x-2x^{2}-x^{2}+3x-x^{2}}{(x^{2}-x+1)^{2}}$$

$$= \frac{2x^{3}-x^{2}+x+x-2x^{3}-x^{2}+3x-x^{2}}{(x^{2}-x+1)^{2}}$$

$$= \frac{-2x^2 + 4x}{(x^2 - x + 1)^2}$$

$$\frac{-2x^{2}+4x}{(x^{2}-x+1)^{2}} = 0$$

$$-2x^{2}+4x = 0$$

$$-2x(x-2) = 0$$

$$X=0$$
 $X=2$

$$f(2) = \frac{4+2-1}{4-2+1} = \frac{5}{3}$$

Product rule and Quotient Rule

Example
Differentiate
$$g(x) = \frac{(x^2 + x + 1)(4 - x)}{2x - 1}$$
.

$$g'(x) = \frac{(2x - 1) \frac{1}{2x} (x^2 + x + 1)(4 - x)}{(2x - 1)^2} - \frac{(x^2 + x + 1)(4 - x)(2)}{(2x - 1)^2}$$

$$= \frac{(2x - 1) [(x^2 + x + 1)(-1) + (4 - x)(2x + 1)] - (x^2 + x + 1)(4 - x)(2)}{(2x - 1)^2}$$

$$= \frac{(2x - 1) [-x^2 - x - 1 - 2x^2 + 7x + 4] - (x^2 + x + 1)(8 - 2x)}{(2x - 1)^2}$$

$$= \frac{(2x - 1) (-3x^2 + 6x + 3) - (-2x^3 + 6x^2 + 6x + 8)}{(2x - 1)^2}$$

$$= \frac{-6x^3 + [5x^2 - 3 + 2x^3 - 6x^2 - 6x - 8]}{(2x - 1)^2}$$

$$= \frac{-4x^3 + 9x^2 - 6x - 1}{(2x - 1)^2}$$

The Second Derivative

The second derivative of a function is the derivative of its derivative. If y = f(x), the second derivative is denoted by

$$\frac{d^2y}{dx^2} \text{ or } f''(x) \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

医雄多甾瓣医多类医多类医三基

The second derivative gives the rate of change of the rate of change of the original function.

Example

Find the second derivative of $f(x) = x^{10} - 4x^6 - 27x + 4$.

$$f'(x) = 10x^9 - 24x^5 - 27$$
$$f''(x) = 90x^8 - 120x^4$$

The Second Derivative

Example

Find the second derivative of
$$y = (x^2 - 2x) \left(x - \frac{1}{x}\right)$$
.

2.4. The Chain Rule

If y = f(u) is a differentiable function of u and u = g(x) is in turn a differentiable function of x, then the composite function f(g(x)) is a differentiable function of x whose derivative is given

by the product

or, equivalently, by

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$\frac{dy}{dx} = \underbrace{f'(g(x))g'(x)}_{dy}$$

$$A = f(n)$$

$$A = f(n)$$

$$A = f(x)$$

$$\lambda = t(\partial M)$$

The Chain Rule

Example

Compute the derivative $\frac{dy}{dx}$ and simplify the answer if

$$y = u^{2} - 3u + 4; \quad u = 1 - x^{2}$$

$$y = (1 - x^{2})^{2} - 3(1 - x^{2}) + 4$$

$$= (1 - 2x^{2} + x^{4}) - 3 + 3x^{2} + 4$$

$$= x^{4} + x^{2} + 2$$

$$\frac{dy}{dx} = 4x^{3} + 2x$$

$$= (2u - 3)(-2x)$$

$$= (2(1 - x^{2}) - 3)(-2x)$$

$$= (2-2x^{2} - 3)(-2x)$$

$$= (-2x^{2} - 1)(-2x)$$

$$= 4x^{3} + 2x$$

The Chain Rule

Example

Compute the derivative
$$\frac{dy}{dx}\Big|_{x=\frac{1}{2}}$$
 if

$$y = u^2 - 2u + 2;$$
 $u = \frac{1}{x}$

The Chain Rule

Sometimes when dealing with a composite function y = f(g(x))it may help to think of f as the "outer" function and g as the "inner" function. Then the chain rule says that the derivative of y = f(g(x)) with respect to x is given by the derivative of the outer function evaluated at the inner function times the derivative of the inner function. $\frac{dx}{dx} = t_1(\lambda(x)) \lambda_1(x)$

Example

Differentiate the following function and simplify the answer.

$$h(x) = \sqrt{x^6 - 3x^2} \qquad f(u) = u^{1/2}$$

$$h(x) = (x^6 - 3x^2)^{1/2} \qquad (9(x) = x^6 - 3x^2)$$

$$= \frac{1}{2} (x^6 - 3x^2)^{-1/2} (6x^5 - 6x) \qquad (5x^5 - 6x = 9^{1/2})$$

$$6x^5 - 6x = 9^{1/2}$$

The General Power Rule

For any real number n and differentiable function h,

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \frac{d}{dx}[h(x)]$$

Example

Differentiate the following function and simplify the answer.

$$f(t) = (t^4 - 4t^2 + 4)^6$$

$$f'(t) = 6(t^4 - 4t^2 + 4)^5(4t^3 - 8t)$$