Exam Monday 2-21
Coverage TBA
Wednesday 2-16 (Review)
Quiz 2
\#14p. 57

Surface area $=120 \pi$

$$
V=\pi r^{2} h
$$

$A=$ surface one of can

$$
\begin{aligned}
& A=2 \pi r h \\
& 120 \not X=2 \times h r h \\
& 60=r h \\
& h=\frac{60}{r}
\end{aligned}
$$

Area of top
Correct way: $f^{\text {Area or bot p }}$ and bor

$$
\begin{array}{rlrl}
A=2 \pi r h+2 \pi r^{2} & V & =\pi r^{2} h \\
120 \pi=2 \pi r h+2 \pi r^{2} & =\pi r^{2}\left(\frac{60-r^{2}}{r}\right) \\
120 \pi=2 \pi\left(r h+r^{2}\right) & =\pi r\left(60-r^{2}\right) \\
60=r(h+r)=r h+r^{2} & \\
60-r^{2}=r h \\
h & =\frac{60-r^{2}}{r}
\end{array}
$$

Recap: (1) Derivative is limit of difference quotient: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)$
(2) $f^{\prime}(x)$ is the slope of tangent line to graph of f at x
(3) $f^{\prime}(x)$ is the instantaneous rate of change
 of f with respect to x.

Instantaneous Rate of Change as a Derivative

The rate of change of $f(x)$ with respect to x when $x=c$ is given by $f^{\prime}(c)$.
Example
A toy rocket rises vertically in such a way that t seconds after liftoff, it is

$$
h(t)=-\frac{1}{2} t^{2}+20 t
$$

feet above ground.
feet/second
a. What is the (instantaneous) velocity of the rocket at liftoff? $h^{\prime}(0)$ $h^{\prime}(t)=$ velocity at time.
b. What is its velocity after 10 seconds? $h^{\prime}(10)$

Let's find $h^{\prime}(t)$ for any t.

$$
\begin{aligned}
h^{\prime}(t) & =\lim _{s \rightarrow 0} \frac{h(t+s)-h(t)}{s}=\lim _{s \rightarrow 0} \frac{-\frac{1}{2}(t+s)^{2}+20(t+s)+\frac{1}{2} t^{2}-20 t}{s} \\
& =\lim _{s \rightarrow 0} \frac{-\frac{1}{2}\left(t^{2}+2 s t+s^{2}\right)+20 t+20 s+\frac{1}{2} t^{2}-20 t}{s} \\
& =\lim _{s \rightarrow 0} \frac{-\frac{1}{2} t^{2}-s t-\frac{1}{2} s^{2}+20 t+20 s+\frac{1}{2} t^{2}-20 t}{s}=
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{s \rightarrow 0} \frac{s\left(-t-\frac{1}{2} s+20\right)}{s}=-t+20 \\
& h^{\prime}(t)=-t+20
\end{aligned}
$$

a. $h^{\prime}(0)=20$ feet $/$ secend
b. $h^{\prime}(10)=-10+20=10$ feet/second

$$
h^{\prime}(20)=0 \text { feet/second }
$$

$$
h^{\prime}(30)=-10 \text { feet } / \text { secend }
$$

$$
\begin{gathered}
h^{\prime}(30)=-10 \text { feet } / \text { secend } \\
\left.h^{\prime}(40)=-20 \text { feet/secend } \quad h^{\prime}(00)-10\right] \\
h^{\prime}(40)=-\frac{1}{2}(40)^{2}+20(40) \quad h^{\prime}(0)=20 \quad h^{\prime}(30)=-10 \\
t=0 \rightarrow 0-h^{\prime}(40)=-20
\end{gathered}
$$

$$
=-\frac{1}{2}(40)(40)+(20)(40)
$$

$$
=-800+800=0
$$

Significance of the sign of $f^{\prime}(x)$

If the function f is differentiable at $x=c$, then

$$
f \text { is increasing at } x=c \text { if } f^{\prime}(c)>0
$$

and

$$
f \text { is decreasing at } x=c \text { if } f^{\prime}(c)<0
$$

Example

C. At lift-off, is the rocket rising?
d. Is the rocket rising after 30 seconds?

Derivative Notation

The derivative $f^{\prime}(x)$ of $y=f(x)$ is sometimes written as

$$
\frac{d y}{d x} \text { or } \frac{d f}{d x}
$$

In this notation, $f^{\prime}(c)$ is written as

$$
\left.\frac{d y}{d x}\right|_{x=c} \text { or }\left.\frac{d f}{d x}\right|_{x=c}
$$

Example

Find the rate of change $\frac{d y}{d x}$ of $y=5-x^{2}$ at the point where $x=2$.

$$
\begin{aligned}
& \frac{d y}{d x}=-2 x \\
& \left.\frac{d y}{d x}\right|_{x=2}=-2(2)=-4
\end{aligned}
$$

Differentiability and Continuity

Continuity of a differentiable function If the function $f(x)$ is differentiable at $x=c$, then it is also continuous at $x=c$. This means that for $f(x)$ to be differentiable at $x=c$ it must at least be continuous there, but more is required. There are functions that are continuous at a point but not differentiable there.

Examples of nondifferentiability

Each of the functions below is continuous at $x=0$ but not differentiable at $x=0$.

- Vertical tangent: $f(x)=x^{1 / 3}$
- Cusp; $f(x)=x^{2 / 3}$
- Corner: $f(x)=|x|$.

$$
f(x)=x^{1 / 3}
$$

2.2. Techniques of Differentiation

The Constant Rule
For any constant $c, \quad \frac{d}{d x}[c]=0$

The Power Rule
For any real number $n, \quad \frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$

Example
Differentiate the function $y=\sqrt{x^{5}}$.

$$
\begin{aligned}
& y=\sqrt{x^{5}}=\left(x^{5}\right)^{1 / 2}=x^{5 / 2} \\
& \frac{d y}{d x}=\frac{5}{2} x^{\frac{5}{2}-1}=\frac{5}{2} x^{3 / 2}
\end{aligned}
$$

egg. $\quad y=x^{-4} \quad \frac{d y}{d x}=(-4) x^{-4-1}=-4 x^{-5}$
eg. $\quad y=\frac{1}{x^{2}}=x^{-2} \quad \frac{d y}{d x}=-2 x^{-3}$

The Constant Multiple Rule

If c is a constant and $f(x)$ is differentiable, then so is $c f(x)$ and

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

Example
Differentiate the function $y=2 \sqrt[3]{x^{4}}$.

$$
\begin{aligned}
& y=2 \sqrt[3]{x^{4}}=2\left(x^{4}\right)^{1 / 3}=2 x^{4 / 3} \\
& \frac{d y}{d x}=2 \frac{d}{d x}\left(x^{4 / 3}\right)=2 \cdot \frac{4}{3} x^{\frac{4}{3}-1}=2 \cdot \frac{4}{3} x^{1 / 3} \\
& =\frac{8}{3} x^{1 / 3} \\
& y=\frac{9}{\sqrt{t}}=9 t^{-1 / 2} \quad \frac{d y}{d t}=\frac{d}{d t}\left(9 t^{-1 / 2}\right) \\
& =9 \frac{d}{d t}\left(t^{-1 / 2}\right)=9 \cdot \frac{-1}{2} t^{-3 / 2} \\
& =-\frac{9}{2} t^{-3 / 2}
\end{aligned}
$$

The Sum Rule

If $f(x)$ and $g(x)$ are differentiable, then so is their sum and

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

Example
Differentiate the function $y=\frac{2}{x}-\frac{2}{x^{2}}+\frac{1}{3 x^{3}}$.

$$
\begin{aligned}
y & =2 x^{-1}-2 x^{-2}+\frac{1}{3} x^{-3} \\
\frac{d y}{d x} & =\frac{d}{d x}\left(2 x^{-1}-2 x^{-2}+\frac{1}{3} x^{-3}\right) \\
& =\frac{d}{d x}\left(2 x^{-1}\right)+\frac{d}{d x}\left(-2 x^{-2}\right)+\frac{d}{d x}\left(\frac{1}{3} x^{-3}\right) \\
& =2 \frac{d}{d x}\left(x^{-1}\right)-2 \frac{d}{d x}\left(x^{-2}\right)+\frac{1}{3} \frac{d}{d x}\left(x^{-3}\right) \\
& =2\left(-x^{-2}\right)-2\left(-2 x^{-3}\right)+\frac{1}{3}\left(-3 x^{-4}\right) \\
& =-2 x^{-2}+4 x^{-3}-x^{-4}
\end{aligned}
$$

e.g.

$$
\begin{aligned}
y & =x^{2}-x \\
\frac{d y}{d x} & =2 x-1
\end{aligned} \sqrt[x^{(1)} \underset{\frac{d}{d x}}{\rightarrow}]{ } 1 x^{0}=1
$$

eg. $\quad y=1-7 x$

$$
\frac{d}{d x}(1)=0
$$

$$
\frac{d y}{d x}=0-7=-7 \quad \frac{d}{d x}(7 x)=7
$$

Differentiation of polynomials

Example
Differentiate the function $y=x^{3}\left(x^{2}-5 x+7\right)$.

$$
\begin{aligned}
y & =x^{3}\left(x^{2}-5 x+7\right)=x^{5}-5 x^{4}+7 x^{3} \\
\frac{d y}{d x} & =5 x^{4}-5 \cdot 4 x^{3}+7 \cdot 3 x^{2} \\
& =5 x^{4}-20 x^{3}+21 x^{2}
\end{aligned}
$$

Equation of tangent lines

Example
Find the equation of the line that is tangent to the graph of the function $y=\sqrt{x^{3}}-x^{2}+\frac{16}{x^{2}}$ at the point $(4,-7)$.

$$
\begin{aligned}
& \text { verity: } x=4 \\
& y=\sqrt{(4)^{3}}-(4)^{2}+\frac{16}{42} \\
& =\sqrt{64}-16+1 \\
& =8-16+1=-7 \\
& \text { oops. } \\
& y=x^{3 / 2}-x^{2}+16 x^{-2} \\
& \text { slope }=-\frac{11}{2} \\
& \frac{3}{2}-1=\frac{3}{2}-\frac{2}{2}=\frac{1}{2} \\
& \left.\frac{d y}{d x}\right|_{x=4}=\frac{3}{2}(4)^{1 / 2}-2(4)-32(4)^{-3} \\
& =\frac{3}{2}+8-8-\frac{1}{2}=-\frac{11}{2} / 1
\end{aligned}
$$

Relative and Percentage Rate of Change

The relative rate of change of a quantity $Q(x)$ with respect to x is

The corresponding percentage rate of change of $Q(x)$ with respect to x is

$$
\frac{100 Q^{\prime}(x)}{Q(x)}
$$

Relative and Percentage Rate of Change

Example
It is estimated that t years from now, the population of a certain town will be $P(t)=t^{2}+100 t+8,000$.
a. Express the percentage rate of change of the population as

$$
\begin{aligned}
& \text { a function of } t \text {. } \\
& P(t)=\text { \#peple in town } \quad 100 \frac{P^{\prime}(t)}{P(t)}=\frac{(2 t+100)(100)}{t^{2}+100 t+8000} \\
& t=\# \text { yeas from now. }
\end{aligned}
$$

$$
P^{\prime}(t)=2 t+100 \leftarrow \text { people }
$$

b. What will happen to the percentage rate of change of the population in the long run?

$$
\begin{gathered}
\text { Pct R,0,C. when } t=10 ? \\
\frac{(2(10)+100)(100)}{(10)^{2}+100(10)+8000}=\frac{12000}{9100} \\
\cong 1.3 \% \text { per year. }
\end{gathered}
$$

Rectilinear Motion

Motion of an object along a line is called rectilinear motion. If the position at time t of an object moving along a straight line is give by $s(t)$, the the object has

$$
\text { velocity } \quad v(t)=s^{\prime}(t)=\frac{d x}{d t}
$$

and

$$
\text { acceleration } \quad a(t)=v^{\prime}(t)=\frac{d v}{d t}
$$

The object is moving to the right when $v(t)>0$, moving to the left when $v(t)<0$, and stationary when $v(t)=0$.

Rectilinear Motion

Example

The position at time t of an object moving along a line is given by $s(t)=t^{3}-9 t^{2}+15 t+25$.
a. Find the velocity of the object.
b. Find the total distance traveled by the object between $t=0$ and $t=6$.
c. Find the acceleration of the object and determine when the object is accelerating and decelerating between $t=0$ and $t=6$.

