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Instantaneous Rate of Chalnge as a Derivative

The rate of change of f(x) with respect to x when x = c is
given by f'(c).
Example

A toy rocket rises vertically in such a way that t seconds after
lift-off, it is

h(t) = —-;-tz +20t

feet above ground. L&/SMCMOQ
a. What is the (instantaneous) veIOCIty of the rocket at lift-off? (O>
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Significance of the sign of f/(x)

If the function f is differentiable at x = ¢, then
fis increasingat x = cif f'(¢) > 0 |

and |
f is decreasing at x = cif f'(¢) < 0

Example
c. At lift-off, is the rocket rising?

d. Is the rocket rising after 30 seconds?




Derivative Notation

The derivativ@of y = f(x) s sometimes written as
Y o I

dy’ - df
........... Or
aX y—c ax .
Example
dy

Find the rate of change g of y = 5 — x? at the point where
X =2.




Differentiability and Continuity

Continuity of a differentiable function

If the function f(x) is differentiable at x = ¢, then it is also
continuous at x = ¢. This means that for f(x) to be
differentiable at x = c it must at least be continuous there, but
more is required. There are functions that are continuous at a
point but not differentiable there.

Examples of nondifferentiability

Each of the functions below is continuous at x = 0 but not
differentiable at x = 0.

> Vertical tangent: f(x) = x1/3
> C% f(X) = X2/_3

» Corner: f(x) = |x| .
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2.2. Techniques of Differentiation

— (=

f=c

The Constant Rule ; ;\ ™
For any constant c, E[C] =0

l
The Power Rule

For any real number n,

Example
Differentiate the function y = v/x5.
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The Constant Multiple Rule

If ¢ is a constant and f(x) is differentiable, then so is c¢f(x) and
d . d
S [er00] = e—[(x)]

Example -
Differentiate the function y = 2/x.
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The Sum Rule

If f(x) and g(x) are differentiable, then so is their sum and
d d d |
ax () + 9] = —[F(x)] + e 19Xl
Example

. . . 2 2 1
Differentiate the function y = X x2 + 3.3
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Differentiation of polynomials

Example
Differentiate the function y = x3(x2 — 5x + 7).

9= R(ES4T) = -5t e 3

‘7(3—57 Doty ® + 7+ 3%




Equation of tangent lines
Example S
Find the equation of the llne that is tangent to the graph of the
function y = vx3 — x2 4+ X— at the point (4, ~P) 4
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Relative and Percentage Rate of Change

The relative rate of change of a quantity Q(x) with respect to x

IS

Q'(x)

Q(x) |
The corresponding percentage rate of change of Q(x) with
respect to x is

100Q(x)

Q(x) /




Relative and Percentage Rate of Change

Example

It is estimated that t years from now, the population of a certain
town will be P(t) = 2 4 100¢ + 8, 000.

a. Express the percentage rate of change of the population as
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b. What will happen to the percentage rate of change of the
population in the long run?
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Rectilinear Motion

Motion of an object along a line is called rectilinear motion.
If the position at time t of an object moving along a straight line
is give by s(t), the the object has

ax
. o OX
velocity v(t) = s'(t) = o
and 4
acceleration a(t) = V/(t) = F‘;

The objectis  moving to the right when v(t) > 0,
moving to the left  when v(t) < 0, and
Stationary when v(t) = 0.




Rectilinear Motion

Example

The position at tirhe t of an objéct moving along a line is given
by s(t) = 3 — 9f2 + 15¢ + 25.

a. Find the velocity of the object.

b. Find the total distance traveled by the object between t = 0
and t = 6.

c. Find the acceleration of the object and determine when the
object is accelerating and decelerating between t = 0 and
f=6.




