Quiz 10 - Wednesday - Sections 3.5, 4.1

3.5 18) Want to find x and y that minimize C.

$C = \text{cost of the box}$

$C = (\text{cost of top + bottom}) + (\text{cost of sides})$

$= 2x^2 + 2x^2 + (1)(4xy)$

$\uparrow \quad \uparrow \quad \uparrow$

$\text{bottom} \quad \text{top} \quad \text{area of}$

side

$= 4x^2 + 4xy$

Constraint: \hspace{1cm} $250 = x^2y \quad \Rightarrow \quad y = \frac{250}{x^2}$

$C = 4x^2 + 4x \left(\frac{250}{x^2} \right)$

$= 4x^2 + \frac{1000}{x}$

\[\begin{cases}
C = 4x^2 + 1000x^{-1} \\
C' = 8x - 1000x^{-2} = 8x - \frac{1000}{x^2}
\end{cases} \]

Find critical numbers:

$C' = 8x - \frac{1000}{x^2} = 0$

$8x = \frac{1000}{x^2}$

$8x^3 = 1000 \Rightarrow x^3 = \frac{1000}{8} = 125$

$\Rightarrow \quad x = 5$

Are we done? No. We need to find C.

MINIMIZE THIS
\[C(5) = 4(5)^2 + \frac{1000}{5} = 100 + 200 = 300 \]

No. We need at least $300 to make the box.

Exponents:

\[f(x) = b^x \quad b > 0, \ b \neq 1 \]
The natural exponential base

The natural exponential base is the number e defined by

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$\approx 2.71828\ldots$$

Compound interest

- P = principal
- r = interest rate (annual)
- $P_0 = P$
- $P_k = \text{balance after } k \text{ years}$
- $P_1 = P(1+r)$
- $P_2 = P(1+r)(1+r) = P(1+r)^2$
- $P_3 = P(1+r)^3$
- \ldots
- $P_m = P(1+r)^m$
Say you compound quarterly.

\[P_0 = P \]
\[P_{\frac{1}{4}} = P \left(1 + \frac{r}{4}\right) \]
\[P_{\frac{2}{4}} = P \left(1 + \frac{r}{4}\right)^2 \]
\[P_{\frac{3}{4}} = P \left(1 + \frac{r}{4}\right)^3 \]
\[P_1 = P \left(1 + \frac{r}{4}\right)^4 \]

\[P = 1000 \]
\[r = 0.06 \]

\[P_1 = 1000 \left(1 + \frac{0.06}{4}\right)^4 \]
\[= 1000 \left(1.0616778\ldots\right) \]
\[= \$1061.36 \]

Monthly:

\[P_0 = P \]
\[P_{\frac{1}{12}} = P \left(1 + \frac{r}{12}\right) \]
\[P_{\frac{2}{12}} = P \left(1 + \frac{r}{12}\right)^2 \]
\[\vdots \]
\[P_1 = P \left(1 + \frac{r}{12}\right)^{12} \]

\[P_1 = 1000 \left(1 + \frac{0.06}{12}\right)^{12} \]
\[= 1000 \left(1.0616778\ldots\right) \]
\[= \$1061.68 \]
If we compound \(b \) times per year, then after \(t \) years the balance is:

\[
B(t) = P \left(1 + \frac{r}{b} \right)^{bt}
\]

We see that if \(b \) is large, then \(B(t) \) gets larger as well.

What if we let \(b \to \infty \)?

\[
B(t) = P \left[\left(1 + \frac{r}{b} \right)^b \right]^{rt} \rightarrow \text{Say } r = 0.06
\]

\[
2.7101715 \ldots
2.7142155 \ldots
2.7174666 \ldots
2.718182 \ldots
\]

Continuous compounding:

\[
B(t) = Pe^{rt}
\]

\(e \)
4.2. Logarithmic Functions

If \(x \) is a positive number, then the logarithm of \(x \) to the base \(b (b > 0, b \neq 1) \), denoted \(\log_b x \), is the number \(y \) such that \(b^y = x \); that is,

\[
y = \log_b x \quad \text{if and only if} \quad b^y = x \quad \text{for} \quad x > 0
\]

Example
Evaluate \(\log_{10} 1,000 \).

\[
\log_{10} 1000 = y
\]
\[
y = 3
\]

Example
Solve the equation \(\log_4 x = \frac{1}{2} \).

\[
4^{\frac{1}{2}} = x
\]
\[
X = 2
\]
Properties of Logarithms

Let \(b(b > 0, b \neq 1) \) be any logarithmic base. Then,

\[\log_b 1 = 0 \quad \text{and} \quad \log_b b = 1 \iff b^1 = b \]

and if \(u \) and \(v \) are any positive numbers, then

- **The equality rule:** \(\log_b u = \log_b v \) if and only if \(u = v \)
- **The product rule:** \(\log_b (uv) = \log_b u + \log_b v \)
- **The power rule:** \(\log_b u^r = r \log_b u \) for any real number \(r \)
- **The quotient rule:** \(\log_b \left(\frac{u}{v} \right) = \log_b u - \log_b v \)
- **The inversion rule:** \(\log_b b^u = u \)

\[\left(\log_b b^u \right) = u \quad \log_b (b) = u \]
Properties of Logarithms

Example
Use logarithm rules to rewrite each of the following expressions in terms of $\log_3 2$ and $\log_3 5$.

a. $\log_3 270 = \log_3 (27 \cdot 10) = \log_3 (3 \cdot 3 \cdot 3 \cdot 2 \cdot 5)$

 $= \log_3 (3) + \log_3 (3) + \log_3 (3) + \log_3 (2) + \log_3 (5)$

b. $\log_3 \left(\frac{64}{125} \right) = 3 + \log_3 (2) + \log_3 (5)$

 $= \log_3 (64) - \log_3 (125)$

 $= \log_3 (2^6) - \log_3 (5^3)$

 $= 6 \log_3 (2) - 3 \log_3 (5)$
Properties of Logarithms

Example
Use logarithm rules to simplify each of the following expression.

a. \(\log_3(x^3y^{-4}) = \log_3(x^3) + \log_3(y^{-4}) \)
 \[= 3 \log_3(x) - 4 \log_3(y) \]

b. \(\log_7(x^3\sqrt{1 - y^2}) \)
 \[= \log_7(x^3) + \log_7((1 - y^2)^{1/2}) \]
 \[= 3 \log_7(x) + \frac{1}{2} \log_7(1 - y^2) \]
 \[= 3 \log_7(x) + \frac{1}{2} \log_7((1 - y)(1 + y)) \]
 \[= 3 \log_7(x) + \frac{1}{2} \log_7(1 - y) + \frac{1}{2} \log_7(1 + y) \]

\[\log_3(x^3y^{-4}) = 5 \]
\[3 \log_3(x) - 4 \log_3(y) = 5 \]
\[3 \log_3(x) - 5 = 4 \log_3(y) \]
\[\frac{1}{4} (3 \log_3(x) - 5) = \log_3(y) \]
\[y = 3^{(\frac{1}{4} (3 \log_3(x) - 5))} \]
\[(\log_3(y) = t \iff 3^t = y) \]

\[3^5 = x^3y^{-4} \]
\[y^{-4} = \frac{243}{x^3} \]
\[\bullet 243 = x^3y^{-4} \]
\[y^4 = \frac{243x^3}{243} \]
The Natural Logarithm

The logarithm \(\log_e x \) is called the natural logarithm of \(x \) and is denoted by \(\ln x \); that is,

\[
y = \ln x \quad \text{if and only if} \quad e^y = x
\]

Properties of the Natural Logarithm

For positive numbers \(u \) and \(v \),

- The equality rule: \(\ln u = \ln v \) if and only if \(u = v \)
- The product rule: \(\ln(uv) = \ln u + \ln v \)
- The power rule: \(\ln u^r = r \ln u \) for any real number \(r \)
- The quotient rule: \(\ln \left(\frac{u}{v}\right) = \ln u - \ln v \)
- Special values: \(\ln 1 = 0 \) and \(\ln e = 1 \)
The Natural Logarithm

The Inverse Relationship between e^x and $\ln x$
\[e^{\ln x} = x \text{ for } x > 0 \quad \text{and} \quad \ln e^x = x \text{ for all } x \]

Example
Solve the following equations.

a. $-2 \ln x = 3$
\[\ln (x) = \frac{-3}{2} \]
\[e^{\frac{-3}{2}} = e^{\ln (x)} \]
\[x = e^{\frac{-3}{2}} \]

b. $\ln x = 2(\ln 3 - \ln 5)$
\[\ln(e^x) = \ln(\frac{1}{3}) \]
\[-x = \ln(\frac{1}{3}) \]
\[x = -\ln(\frac{1}{3}) \]

\[e^y = -3 \]
\[\ln(-3) = y \]
\[\ln(x) \text{ is undefined for } x \leq 0 \]
\[\text{Domain of } \ln(x) \text{ is } x > 0. \]

\[\ln(x) = 2(\ln 3 - \ln 5) \]
\[= 2 \ln(\frac{3}{5}) \]
\[= \ln \left(\left(\frac{3}{5} \right)^2 \right) \]
\[e^\ln(x) = e^{\ln \left(\left(\frac{3}{5} \right)^2 \right)} \]
\[x = \left(\frac{3}{5} \right)^2 = \frac{9}{25} \]