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BOUNDARY BEHAVIOR OF INVARIANT GREEN’S POTENTIALS
ON THE UNIT BALL IN C*

K. T. HAHN AND DAVID SINGMAN

ABSTRACT. Let p(z) = fB G(z,w) du(w) be an invariant Green’s potential
on the unit ball B in C™ (n > 1), where G is the invariant Green’s function
and p is a positive measure with fB(l — |w|?)" du(w) < oco.

In this paper, a necessary and sufficient condition on a subset E of B such
that for every invariant Green’s potential p,

lim inf(1 — |2|2)"p(2) = 0, e=(1,0,...,0) €8B, z€E,
zZ2—e

is given. The condition is that the capacity of the sets EN{z € B| |z—¢| < €},
€ > 0, is bounded away from 0. The result obtained here generalizes Luecking’s
result, see [L], on the unit disc in C.

1. Introduction. Let E be a subset of B, the unit ball in C*, n > 1. An
invariant Green’s potential is a function on B of the form

p(z) = /B Gz, w) du(w),

where G is the invariant Green’s function (see 2.11b) and u is a positive measure
such that [(1—|w|?)" du(w) < oco. In this paper we give a necessary and sufficient
condition on E such that, for every invariant Green’s potential p,

Jim inf(1 — |2*)"p(2) =0,

2EE
where e = (1,0,...,0). It is that the capacity of the sets EN{z € B| |z —¢| < €},
€ > 0, be bounded away from 0. Here, capacity refers to the capacity with respect
to the potential theory based on the Laplace-Beltrami operator on the ball with
respect to the Bergman metric. See (4.1). This solves a problem posed in [HS],
where the result was proved in the special case of E = {(2,2') € Cx C*!|Imz =
0, (Rez)? + 2|2 < 1}. Our result generalizes a result of Luecking [L] on the unit
disc in C.

2. Preliminaries. For z,w € C" let (z,w) = > n_, 24Wa, |22 = (z,2). For
0<r<lletB.={z€B||2|]<r}, S, ={2€B||2|=r}, B=B;,and § = 5.
Let o be the rotation-invariant positive Borel measure on S with o(S) = 1. Put
e=(1,0,...,0). For each a,z € B let

1 —[a]*Qa(?)
1—(z,a)
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340 K. T. HAHN AND DAVID SINGMAN

where P,(z) = (z,a)a/|a|? and Q4(2) = 2z — P,(2). Then one has
_ (A —la?)( - [2%)

2
(2.1) 1-|pa(2)|* = = (a2 [R, Theorem 2.2.2].
The Bergman metric on the ball B is given by
n
(2.2a) ds%(z) = E 9op d2a dZs,
a,f=1
where
n+1 _
(2.2b) gaﬁ = m{(l - |Z|2)6aﬂ + ZaZﬁ}

[St, p. 23]. The corresponding invariant volume element [K, p. 17] is thus
n+1
1 - [z[7)H

where dm denotes the restriction of Lebesgue measure to B. For each f € L!()),
a € B, ) satisfies

(2.3) /fogoad)\=/ Fdx
B B
[R, Theorem 2.2.6]. The inverse of (g,3) is (gF), where

(2.2¢) d\(z) = dm(z),

af — 1- |z|2
n+1
The Laplace-Beltrami operator of the metric is

A=4igaﬁ 0?2

(6aﬁ - 2,12:5).

a1 afaazﬂ
4 = 9?
= 1—|z|? § — Za28) s
n+1( |2| )aﬂ=1(6aﬂ 2 zﬂ)aéaaZﬁ

[St, p. 27].

A C? function defined on an open subset of B that is annihilated by A will be
called harmonic. The set of functions harmonic on open subsets of B forms a Brelot
harmonic space [H, Théoréme 34.1]. We will make some use of the definitions and
results available in such a general setting. For details see [B].

Let 2 C B be open. A function u is said to be superharmonic on (1 if (i)
u: () — (—o0,00], (ii) u is lower semicontinuous, (iii) for each a € (), there exists
7(a) > 0 such that for all 0 < r < r(a),

(2.4) u(a) > /S u(a(r¢)) do(s),

and (iv) none of the integrals in (iii) is co [U, Definition 1.15].

It was observed in [UT, Proposition 1.6] that if u is superharmonic on ) then
(2.4) holds for all r > 0 such that o, (B,) C Q.

We wish to see that the above definition agrees with the definition of superhar-
monic in a Brelot space [H, p. 427, Definition A]. If u is C?, then both definitions
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of superharmonic are equivalent to Au < 0 [H, Proposition 34.1; U, p. 505 or UT,
Proposition 1.18]. Since it is clear that the limit of an increasing sequence of Brelot
superharmonic functions is either identically co or Brelot superharmonic, the result
will follow from

PROPOSITION 2.1. Let u be superharmonic on ). Let w be an open, relatively
compact subset of ). Then there is an increasing sequence of C*®(w) functions,
superharmonic on w, with limit u.

Note. This was proved for = B in [UT, Theorem 1.25]. We include the proof
for the reader’s convenience.

PROOF. We shall see that the proof depends only on the values of u on some
compact neighborhood of w. Thus, since constants are harmonic, we may assume
for the remainder of the proof that u is nonnegative.

For f,g > 0, define, for a € B,

[ *g(a) = /B £(2)9(pa(2) dA(z)

[U, Definition 2.1].
Let w; be a relatively compact subset of ) with @ C w;. There exists r; > 0
such that

(2.5) 0a(Br1) Cwy (all a € w).

Since p; ! = g, this says 2 is in w; whenever |p,(2)| < 71.
Let x > 0 be radial and C* with support in B,, and suppose |, p X dX = 1. Since

(2.6) u*x(a) = /B u(2)x(pa(2)) dA(2) = /13 u(pa(2))x(2) dA(2),
the value of u * ¥ on w depends only on the value of u on w;. The first equality
in (2.6) shows u * x € C*(w). Integrating the second in polar coordinates shows
u*x <uonuw.

Fix a € w. Let wy be a relatively compact open subset of {2 such that @; C wa.
Choose 0 < ry < r; such that op(Ba2r,) C we (all b € wy). Let € > 0. Since

(u * x) 0 @, is uniformly continuous on B,,, there exists 0 < § < rz such that

(2.7) |(u* x)(pa(rs)) — (u* x)(Pa(ss))| < €
forall0<r<ry,¢€S,and |[s—7| <. Fixany r > 0 with r < ry. Let h >0
be C*, radial, [z hd\ = 1 with support in {2|r —§ < |z| <r +6}. Then, with a
similar proof as above,
(2.8) u*h(¢) <u(¢) (all ¢inwy).
Thus, by [U, Proposition 2.2],

(uxx) *h(a) =ux*(x*h)(a) =ux*(h*x)(a)=(uxh)*x(a)

- / (% h)(0a(2))X(2) dA(2)
(2.9) B
< / u(a(2))X(2) dA(2)

Br,

=ux*x(a).
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The inequality in (2.9) follows from (2.5) and (2.8). From (2.7),

wawmw—ﬂm*mwm@Mdm

o n—1
: /|s|='r—6 ./s (e *2)(pa(s6)) = (u* X)(soa(rc))l(ljz_sﬁ)w_lh(s) do(s) ds
<e.
Thus
(2.10) /S(u *X)(a(rs)) do(¢) < e+ (ux x) xh(a) < £ + (u* x)(a)

by (2.9). Since ¢ is arbitrary, (2.10) implies u  x is superharmonic on w.

Let {r;} be a sequence of real numbers decreasing to 0. Choose, for each Js
X5 2 0, radial, C*°, [ x; = 1 with support in {2|r;+1 < |2| < r;}. Then we have
seen {u * x;} is a sequence of functions superharmonic on w. The fact that they
increase to u on w was shown in [U, Lemma 2.13]. This completes the proof.

Let S* denote the space of nonnegative superharmonic functions on B. An
element of S* which majorizes no positive harmonic functions is called a potential
[H, p. 427]. These are precisely of the form

(2.11a) wm=LG@mwm,
where -
+1 1 (1 _ t2)n—1
(2.11b) Glz,w) =" / (k9 P
m Jip,wy  B2?

is the Green’s function on B and u is a positive measure for which Gu(z) # oo [U,
Theorem 2.16]. It should be pointed out that although the definition of Green’s
function of B is given in [U], the actual computation of the Green’s function of B
was carried out in [HM] as a special case of more general classical Cartan domains.

Let 0 < ¢ < 1 be fixed. It is shown in [HS] that there are constants ¢; and
c2 = ca(c) such that

(2.12a) G(z,w) 2 ¢1(1 = |pz(w)|*)* (all z,w in B),
(2.12b) G(z,w) < c2(1 = |pz(w)|)™  (if |0z (w)| > c).
It follows from this and (2.1) that Gu is a potential if and only if
(2.13) / (1 = [w[2)" du(w) < oo,

B

For E C B and any v € St, the reduced function and its regularization are
defined by

RE(2) = inf{w(2)|w € S*, w > v on E}
and
RE(2) = lim inf RE(¢),

§—2
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respectively [H, p. 433 or B, Definition 9]. Then RF is harmonic on B\E and
superharmonic on B. Moreover, we have the following relations:

(2.14a) RE<RE<v onB,

(2.14b) RE=v onE,

and

(2.14c¢) REZ = RF  on B\E and the interior of E.

Thus, Rf = RP in case E is open. If E is relatively compact in B, then Rf is a
potential.

A set E C B is polar if there is a potential which is co on E [H, p. 434 or B,
Definition 21]. The polar sets defined here coincide with the corresponding notion
in the classical potential theory [H, Théoréme 36.1].

The most important result concerning polar sets is the Cartan-Brelot conver-
gence theorem which states that if {vx} is a decreasing sequence in S, then

( lim vk(z))A = lim inf (klim vk(§)>

k—o0 §—2 —o0

is superharmonic and equals limg_, o vk (2) except at most on a polar set [H, p. 436,
Theorem 27]. The Topological Lemma of Choquet [D, Lemma A, VIIL.3] implies

(2.15) Ry (2) = RY(2),

except perhaps on a polar set. The proof of the convergence theorem makes use
of the Domination Principle [H, p. 436, Axiome D, and Corollaire to Théoréme
36.2] which states that if v € S*, Gu is a finite potential satisfying v > Gu on the
support of u, then v > Gu holds on B. As a consequence, a set £ C B is polar if
and only if RE = 0 or equivalently RZ(z) = 0 for one z € B.

For any E C B,

(2.16a) RE(2) = inf{RY (2)|U open, U > E}

[H, p. 434]. Hence, by the Topological Lemma of Choquet, there is a decreasing
sequence of open sets {Ux}, Ux D E, such that, for all z € B,

A
(2.16b) RE(2) = (kgn; RY* (z)) .

For a Borel set E C B,
(2.17a) RE(2) = sup{RX (2)|K compact, K C E}

[H, p. 434, Théoréme 8|. Hence, by [D, Theorem A, VIIIL.2], there is an increasing
sequence of compact sets {K;} contained in E such that, for all z € B,

(2.17b) RE(z) = lim R (2).
j—o0

3. Energy. Let u and v be two positive measures on B such that Gu and Gv
are the corresponding potentials. Define the mutual energy of y and v by

(3.1) o] = /B Gu(z) dv(2).
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The energy of u (or Gpu) is ||u|| = [u, u]'/2. Fubini’s theorem and the symmetry of
G (deduced from (2.1)) implies

(3.2) [u, V] = [v, ).

LEMMA 3.1. Let {Gu;}, {Gv;} be increasing sequences of potentials with limits
Gu and Gu, respectively. Then {[uj,v;]} is an increasing sequence with limit [u, v).

PROOF. Since
/ Guydv; < / Gujy1dv; = / G dpjsa
B B B

S/ Gvjt1dpj41 =/Guj+1 dvji1,
B

the sequence {[u;,v;]} is indeed increasing. For each k > 0,

lim [p;,v;] > lim inf/ Guk dv; = lim inf/ G;dug

=/ Gl/duk=/ Gugdv.
B B

Letting k — oo gives lim;_,o0 15, ;] > [u, v]. The opposite inequality is obvious.
An improvement of Lemma 3.1 will be given later in Corollary 3.4.

PROPOSITION 3.2. Let Gu and Gv be two potentials. Then

(3-3) [, ] < ALl ]|l

PROOF. Let u = Gy and v = Gv. Suppose first that u and v are C* and u and
v are supported by B,, 0 < rg < 1. Let {¢;} and {¢,} be sequences in C°(B),
{%;} increasing to 1 on B and ¢; = 1 on a neighborhood of the support of ;.
Then

—/ dzjuduz/ ’UA(’(/}J"U,) d/\=/ @ij(z[)ju) d\
B B B
=/ Yul(p;v) d/\=/ Yulvdl.
B B

Here the first equality follows from Theorem 2.5 of [U] and the third from Propo-
sition 2.4 of [U]. Letting j — oo, we obtain

(3.4) (b, v] = —/BuAvd/\.

Let ro < r < 1. By Green’s identity [S, 92.5],

/ u—dr—/ uAvdA:/ (grad u,grad v) d),
B

r

where dr is the volume element determined by the metric (2.2) on B, = S,, and

5 Ou Ov
= B 27 7
(grad u,grad v) = 4Re Z g 9% 975
a,p A
We claim
) ov ,
(3.5) }1_12 o5, Uz, dr =0.
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For |2| =7,

u(z) = /B Gleyw) du(w) S ca [ (1= los(w))" dusw)

o

B T LU 1 DN
_2/3 e du(w) =00 =)

(3.6)

o

The inequality in (3.6) follows from (2.12b), while the last equality is a consequence
of u being a potential.

The derivative of v in the outward normal direction along S, is given by

1/2
ov Z 500V 0f E 30f Of
_:2Re gaﬁ—-T- / gaﬁ‘-—.f
(3.7) on (a r 0zg Bza) - 023 02,

)

_ (grad f, grad v)
|| grad f||

where f(2) =¥, ZaZa — 1.
After some calculations, we obtain

4
2 _ 201 _ »2\2
(3.82) lgrad fI* = —7(1 = 7",
(3.8b) (grad f radv)——4—(1—|z|2)2ReZn:z v
’ & '8 T n+1 — 02

So, from (3.7) and (3.8),

ov 2 1-—1r2 = ov
3.9 _— = Re Za— | -
(3.9) on Vn+1 r (; aaza)

But a straightforward computation shows

= ov ne
Re(z Za-az) =O(1—7‘2) 1.
a=1

Thus,
(3.10) dv/dn = O(1 — r?)™.
For z € S,, d\(2) is reduced to

n+1

(3.11) dr(z) = (l—_rzwr%'l do(z).
So, from (3.6), (3.11) and (3.12),
u-a—vd7'=0(1—1'2w)"_1 —0 asr—1ifn>2.
S, on

This proves the claim in (3.5).
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Now

v du
ap 9Y
4Re Z (9Zﬁ 0%a

1/2 1/2
Jdu Ou 5 Ov Ov

< ap dU af 7 7

- (E 49 B2p 074 ) (Z/; 49 dvg 62.,)

|(grad u,gradv)| =

a,f a,
= || grad u|| || grad v]|.
Therefore,

u@dr-/ uAvd)\S/ Il gradul] || grad o|| dA
an B,- Br )

1/2 , 1/2
5(/ ||gradu||2dA) (/ ||gradv||2d)\)
B, B,

1/2 1/2
= u%d'r—/ ulAud vggdr—[ vAvd) .
on . on .

Letting r — 1 and using (3.4) and (3.5) we obtain
(3.12) [, V] < lual] [II.

- Thus the proposition is true in this case.

Suppose that Gu and Gv are potentials whose measures are compactly sup-
ported, say in B;_, for some & > 0. Thus Gu and Gv are harmonic on B — B, _..
Let {r;} be a sequence of numbers strictly decreasing to 0. Let {1;} be C* func-
tions with support in B,; — B,,,,, radial, 9; > 0 and [ ¢;dA =1. Let § > 0 be
so small that for |z| > 1 -6, ¢,(B;;) C B — By_.. Then precisely as in the proof
of Proposition 2.1, {Gu * 9} and {Gv * 9,} are harmonic on B — B;_g, they are
C*(B) and they increase respectively to Gu and Gv [U, Lemma 2.1]. Thus they
are C* potentials with compact support. From (3.12) we have

(Gu * 5, Gv x ;] < ||Gu ;][ |G * 4.
Letting y — oo and applying Lemma 3.1 gives
(3.13) [, V] < Alpll [¥]-

Finally, the proof of the proposition will be completed for arbitrary potentials
Gp and Gv by considering the restrictions of 4 and v to B;_;/, and applying (3.13)
and Lemma 3.1.

COROLLARY 3.3. Let u and v be two positive measures on B. Then ||u+v|| <
[leall + 111]-

PROOF.
Il + vI1? = [lsll® + (211 + 2(p, v]
< el + 1117 + 201wl vl = (lasll + 111D,
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COROLLARY 3.4. Let {Gux} be an increasing sequence of potentials such that
supy ||uk|| < co. Then there is a potential Gu such that limg_.oo Gur = Gu and
limpe— oo ||kl = [lkell-

PROOF. Let 0 < r < 1. B, is regular for the Dirichlet problem on B,. That is,
for every continuous function f on S, there is a unique harmonic function P, f on
B, which tends to f on S, and which is > 0 if f > 0 [R, Lemma 5.5.4]. For £ € By,
let p§ be the measure such that

[, raee= P10
[H, p. 426]. Then, by [U, Lemma 1.19],

(3.4) e = [ Goedo < Gor(e)

- /S G(&,w) dpl(w) = P,G(£, ) (€).

Since P,G(&,-) decreases as r increases [U, Corollary 1.20], lim,—; P-G(&,")
defines a harmonic function on B [U, Proposition 1.10] which minorizes G(§,-). It
follows the limit as r — 1 in (3.14) is 0. Thus lim,_,; ||o§|| = 0.

Let u = limg_—, o0 Gug. Then

[ wast = jim [ Guedgt = Jim [, 5] < sup el 15
s, k—oo Jg, k—o0 k>0
by Proposition 3.2. Thus

(3.15) lim [ udpg =0 for each £ € B.
r—1 S,

It is easy to see that the limit in (3.15) defines the greatest harmonic minorant of
u on B. It follows that u is a potential. The result now follows from Lemma 3.1.

LEMMA 3.5. Let E be polar and let Gu be a potential of finite energy. Then
u(E) =0.

PROOF. We may assume E is relatively compact. For each k > 0 let Ay =
{z € B|Gu(z) < k}. Let ux be the restriction of u to Ag. Since A is closed, Guk
is harmonic on B\Ak. For z € Ag, Guk(z) < Gu(z) < k. Thus Gux is a finite
potential and we may apply the Domination Principle to deduce Gux < k on B.

Let p be a potential that is co on E. Let U be a relatively compact neighborhood
of E. Then RY is the potential of a measure v with support in U. Since

/ Grduy < /Guduk = /Gukdv <k -v({U) <o
E
and Gv = oo on E, ug(F) must be 0. Letting k — oo gives
ulEN{z € B|Gu(z) < oo}] = 0.
If u[E N {z € B|Gu = oo}] were positive, then
wo= [ Gudu< [Guau=lul,

contradicting our assumption. Thus u(E) =0.
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PROPOSITION 3.6. Let {Gui} be a decreasing sequence of potentials such that
1]l < o0. If Gp = (limg oo Guk)?, then ||u|| = limg_ oo ||px]|-

PROOF. The Cartan-Brelot convergence theorem implies Gp = limg_,o0 Gug
except at most on a polar set. Using Lemma 3.5, the proof follows the same
pattern as Lemma 3.1.

PROPOSITION 3.7. Let E C B be polar. Then there is a potential of finite
energy that is oo on E.

PROOF. Suppose first E is bounded. Since RF = 0, there is a decreas-
ing sequence of relatively compact open sets {Uy}, each containing E such that
(limg— 0o RY*)" = 0 (2.16b). Let px be the measure on Uk whose potential is RU*.
(Recall RY" = Rf”‘ since Uy is open.) Then, by (2.14a),

[l | =/Ri]'° duk S/duk < o0.

Thus limg—o0 ||k|| = 0 (Proposition 3.6). Choose a subsequence {kk;} such that

||ux;|| < 1/27. Then Corollary 3.4 implies PO Ri] *7 is a potential of finite energy.
Clearly it is co on E (2.14b).

In general let {Ej} be an increasing sequence of bounded sets with union E.
Choose a potential Gui of finite energy that is co on Ey. Put v = /2| -
Then ) Gy is the required potential.

4.” Capacity. Let E C B. Define

(4.1) ¢(E) = { oo if RF is not a potential,

lull® if R = Gp.
We call ¢(E) the capacity of E.

PROPOSITION 4.1. (a) Let E C B. There is a decreasing sequence of open sets
{Un}, each containing E such that limpy, o0 ¢(Up) = ¢(E).

(b) If E is Borel, there is an increasing sequence of compact sets {Km}, each
contained in E such that limy, o ¢(Kp) = ¢(E).

PROOF. (a) If ¢(E) = oo, there is nothing to show. Suppose then ¢(E) < oo.
The result will follow from (2.16b) and Proposition 3.6 if we show there is an open
set U containing E having finite capacity.

Let Uy = {2|Rf(2) > 1}. Since RE =1 on E, (2.15) implies E\U, is polar. By
Proposition 3.7, there is a potential Gv of finite energy that is co on E\U,. Put
Uz = {2|Gv(z) > 1}. Then U = U; UU, is an open set containing E. Since

2RE(2) +Guv(2) 21 (all z€ V),

we have '
2R (2z) + Gu(z) > RV(z) (all z€ B)

by definition of the reduced function. Since ¢(E) < oo, 2RF has finite energy.
Hence Corollary 3.3 implies so has RY.
(b) The proof follows from (2.17b) and Lemma 3.1.
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LEMMA 4.2. For each £ € B and 0 <r <1, the map

ﬂm=Lwa4mww

18 continuous on B.

PROOF. It is clearly continuous at points of B\pe(S,). If now wo € p¢(S;),
then for each € > 0 the function

fo(w) = /S Gloe(r +€)z,w) do(2)

is continuous at wg. Since f. increases as € decreases [U, Proposition 1.17, Corollary
1.20] f is lower semicontinuous at wp. Repeating the argument with —e completes
the proof. '

LEMMA 4.3. Let v be superharmonic on B. Then, for every £ € B,
lim [ w(pe(r2)) do(z) = v(é).
—vJs

PROOF. The lower semicontinuity of v implies
lim inf / v(pe(rz)) do(z) > v(&).
r— S
Super mean value property (2.4) implies

limsup/sv(goe(rz))da(z) < ().

r—0

PROPOSITION 4.4. Let E be a Borel, relatively compact subset of B. If RIE 18
the potential G, then ||u||? = u(B).

PROOF. Since ||u||> = [5 Gudu < [51-du = pu(B), we may assume ||u|| < oo.
If E is closed, the result holds by Lemma 3.5 since, in general, u(B\E) = 0.
For a general E, choose {K} as in (2.17b). Put Rf{" = Gu;. Then, by Lemma
3.1,
Jim pj(B) = lim sl = llell?.
By passing to a subsequence we may assume {u;} converges weakly to a measure
v. We show Gv = RE.

| BB pere)) dotz) = lim [ Gui(oe(r2)) dota)
S I Js

(4.2) = lim /S/I?G(goe(rz),w)duj(w)da(z)

Jj—o0

= tim [ [ Gloe(rs), w)do(a) dus(w).

J—o0
Lemma 4.2 shows that the inner integral in (4.2) is a continuous function of w.
Thus the limit is

/_/G(goe(rz),w) do(z) du(w)=/Gu(go€(rz))da(z).
EJs s
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Letting r — 0 in :che first and last term in this string of equalities and applying
Lemma 4.3 gives RE(¢) = Guv(¢). )

Let ¢ € C2°(B) be identically 1 on a neighborhood of E. Then, using Theorem
2.5 of [U],

u(B)=/Bi/1du=—/BGqud)\=—/BGVA¢d/\

- / Ydv = v(B).
B
Thus
lull? = lim ||u;l|> = lim u;(B) = v(B) = u(B).
Jj—00 Jj—o0
This concludes the proof.
5. Main results.

LEMMA 5.1. Let pu be a finite measure on B and let
du(w)

(1= |w)™

For each z € B, define S(z) = p,(By2). Then

6.1 (=) [ 6 u)dviw)

dv(w) =

= lim G(z,w)du(w) =0
2=eJB\S(z)

PROOF. If w € B\S(2), |pz(w)| > 1/2. Thus, by (2.12b),
(1= [21*)"G(2,w) < ea(1 = |21)*(1 = |z (w)[?)"
_ ca(l— [z (1 = Jw]?)"
|1 = (2, w)|?n
c2(1— [2[*)*"(1 = Jw[?)"
(1 =z |w])?n

Thus
limsup(1 — |2[?)" / Gz, w) dv(w)
z—e B\S(z)
. du(w)
< ¢g lim su 1—z22"/“
< c2limsip( =11 | T

=0
by the bounded convergence theorem.
The last limit in (5.1) is 0, again by the bounded convergence theorem, since by
(2.12b),
XB\S () (W)G(z,w) < caxp\s(2) (W)(1 = |0z (w)]*)" < (£)"cs.

THEOREM 5.2. Let E be a Borel subset of B with e = (1,0,...,0) as a limit
point. The following are equivalent:
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(a) For every potential Gv,

liminf(1 - |2|%)"Gr(z) = 0.
2€E
(b) infesoc(EN{z€B| |[z—¢| <e}) >0.

REMARK 5.3. For each positive integer m, let U, = {z € B| |z — ¢| < 1/m}.
Suppose for some myg, RlEnUm° is a potential Gu. For each m > mg let u,, be
the restriction of 4 to E N Upy,. Since Guy, is harmonic on B\Upp,, limy,— oo Glim
is harmonic on B and minorizes Gu [U, Proposition 1.10]. Thus lim.,— 0o Glm is
identically 0 on B. Proposition 3.6 therefore implies that either ¢(ENU,,) = oo for
all m or limy, o ¢(E N Up) = 0. Thus (b) above is equivalent to ¢(ENUy,) = 00
for all m.

PROOF OF THE THEOREM. Suppose first that (b) fails. We will show there is
a potential Gv such that

(5.2) ' lim(1 - |2|?)"Gr(z) = oo.
2€E
Remark 5.3 implies our assumption is equivalent to ¢(ENUpy,) < oo for some m.
Proposition 4.1(a) implies there is an open set containing ENU,, and having finite
capacity. Thus, for the purpose of finding v to satisfy (5.2), we may assume E is
open. .
Choose {m;} increasing to oo such that ¢(ENUp;) < 1/7247. Put

Vi=EN{z€B|1/mj;2 < |z—e| <1/my}.

Consider the potential Gu; = jRme. Then |[|u;]|? = 7%¢(Vm;) < 1/47. Thus
Corollary 3.3 and Corollary 3.4 show ) Gu; is a potential Gu of finite energy.
Since u = Y_ u;, Proposition 4.4 implies u(B) = Y u;(B) = Y ||u;l> < oo, so p is
finite. Clearly

(5.3) lim Gu(z) = oo.

z—e
z2€E

Put dv(w) = dp(w)/(1 — |w|?)". Let S(2) = p.(Bi/2). Lemma 5.1 and (5.3)
imply

(5.4) lim G(z,w) du(w) = .

2€EYS(?)
If we S(2), |p.(w)| < 1/2, hence
(1= =)A= w?) 1= 21%)A = |w]?)

3
1 <1l- ISoz(w)|2 =

= (w)E = (= [u])?
(1 [2P)(1L = [w?) _ 4(1 - |])
ST S I-wE
Thus
(5.5) =2 S0 - wl)  (esw)| < ).

Since |p(w)| = [pw(2)|,
(5.6) 1= w2 F1-12)  (ez(w)l < 3)-
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Thus

lim inf(1 - |2|>)"Gu(z)
z€EE

>11m1nf1—|z| / G(z,w) dv(w)
zEE

> ()" lim inf G(z,w) du(w)
zGE S(z)
=00
by Lemma 5.1 and (5.3). This completes the proof of (a)=>(b).
Suppose now (b) holds. Consider a potential Gv. Put du(w) = (1—|w|?)" dv(w).
Let

h(z) = ) G(z,w) du(w),

where S(2) = p,(By/2). According to Remark 5.3, ¢c(ENU;) = oo for all j. Thus,
by Proposition 4.1(b), there are compact sets E; contained in U; N E such that

(5.7) lim ¢(E;) =

j—oo

Let Gu; = R and let Fj = U, eg, 2(B1/2). Then, since |p,(w)| = |pw(2)],
(5.8) [ i@ = [ he)dus(2)
= / / Xs(2)(w)G(2,w) du(w) du;(2)
E; /B
= [ [ xs(@)6(e w)dutw) dus )
- / Gz, w) du; (=) du(w)
F; JE;
= [ BPw)dutw) < u(F)

and the latter goes to 0 as j — oo since xr,(2) — 0 as |2| — 1 (2.1). This shows

liminf h(z) =0,
z—e
2€E

for if h were bounded below by € > 0 on |, Ej,

/hduj =_/ hdu; > ep;(E;)
E;

=ec(E;) (Proposition 4.4)
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which tends to oo as j — oo (5.7), contradicting the last inequality in (5.8). Thus
liminf(1 - |2>)"Gv(z)
z€E

= liminf(1 - |2]?)" G(z,w)dv(w) (Lemma 5.1)
z€E S(2)

< (%) liminf G(z,w)du(w) (5.6)

2€E S(=)
= (1)" lim jnf h(2)
z€EE

=0.
This completes the proof.
6. Remarks. Let 0 < § <1. Put
Es ={(z,7) € Cx C" }|Imz =0, (Re2)? + || < 6}.

In [HS] it is shown that the limit result of Theorem 5.2 holds with E =FE;. We
show in this section directly that E; satisfies condition (b) of Theorem 5.2.

LEMMA 6.1. Let o be an automorphism of B and E a Borel subset of B. Then
c(p(E)) = c(E).
PROOF. Suppose first that E is relatively compact. Since vop € St when-

ever v € ST [U, Proposition 1.17], it follows from the definition that IA{f(E) (2) =
RE(p(2)). Thus, if RF = Gy,

REP)(2) = RE(p(2)) = /B Glp(2), w) du(w)

- / G(z, p(w)) dp(w)
B

since |y () (0(w))| = |pz(w)| = Gr(2), where v = pop. Proposition 4.4 implies
c(p(E)) = v(p(E)) = u(E) = c(E).

In general, let E, = ENB,. Then ¢(p(E)) = lim,_1 ¢(p(E;)) = lim,—1 c(Er) =
¢(E). The first and third equalities follow from Lemma 3.1 and the fact that if {Am}
is an increasing sequence of sets with union A then limy,—co Rf"‘ = Ri“.

LEMMA 6.2. Let RE be a potential. Then E is polar if and only if ¢(E)=0.

PROOF. If E is polar, RE = 0, hence ¢(E) = 0.

Suppose ¢(E) = 0. For every j there is an open set V; containing £ such that
¢(V;) < 1/27. Then ERY’ is superharmonic (Corollary 3.3 and Corollary 3.4) and
is o0 on E. This proves the Lemma.

We now show that E; satisfies (b) of Theorem 5.2. For each 6 € (0,1), E;s is
a (2n — 1)-dimensional disc, hence is not polar. (Indeed if it were polar, the fact
that a finite union of polar sets is polar would allow us to construct an open region
F whose boundary was polar. But a superharmonic function which was oo on oF
would be oo on F, contradicting (iv) of the definition of superharmonic.) Thus
C(E5) > 0.
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Let {tx} be a sequence increasing to 1. Put 2k = (t,0,...,0). Then p,, (Es) C
E1, c(92,(Es)) = ¢(Es) > 0 and since 02z, (E5) moves out to e as k — oo, we see
E, satisfies (b) of Theorem 5.2.
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