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Abstract

A Brelot space is a connected, locally compact, noncompact Hausdorff space together with the
choice of a sheaf of functions on this space which are caldethonic We prove that by considering
functions on a tree to be functions on the edges as well as on the vertices (instead of just on the
vertices), a tree becomes a Brelot space. This leads to many results on the potential theory of trees. By
restricting the functions just to the vertices, we obtain several new results on the potential theory of
trees considered in the usual sense. We study trees whose nearest-neighbor transition probabilities are
defined by both transient and recurrent random walks. Besides the usual case of harmonic functions
on trees (the kernel of the Laplace operator), we also consider as “harmonic” the eigenfunctions of
the Laplacian relative to a positive eigenvalue showing that these also yield a Brelot structure and
creating new classes of functions for the study of potential theory on trees.
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1. Introduction

In recent years there has been considerable attention to discretizations of many classical
problems in harmonic analysis, potential theory, and geometry (e.g., see [10-12,14,17,20,
22]). While trying to answer several questions from potential theory in the environment of
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trees, we became aware that trees, identified with their set of vertices, behave like Brelot
spaces, but miss one fundamental property: connectedness. In this article, we show that
viewing them as connected graphs, that is, their elements are either vertices or points on the
edges, trees can be endowed with a metric structure for which all topological requirements
of Brelot spaces hold. In addition, by extending harmonic functions on trees (intended as
functions on the vertices) along the edges linearly, we obtain a class of harmonic functions
satisfying the three axioms of Brelot spaces. Using the tools of Brelot theory, we then
derive many properties that hold on trees that were not previously known and relate these
results to the potential theoretic aspects of trees that had been developed by Cartier in [11]
under the more restrictive assumption that the transition probabilities be transient.

Before giving the specific findings of this research, we give a brief overview on trees
and on Brelot spaces.

1.1. Trees

A treeis a locally finite connected graph with no loops, which, as a set, is identified
with the collection of its vertices. Two verticesandw of a tree are calledeighborsif
there is an edge connecting them, in which case we use the notatiomn. A pathis a
finite or infinite sequence of verticésp, v1, ...] such thaty ~ vi41. A geodesic patlis
a path[vg, v1, ...] such that,_1 # vi41 for all k. An infinite geodesic path is also called
aray. If u andv are any vertices, we denote by, v] the unique geodesic path joining
them. A vertex is said to beerminalif it has a single neighbor.

Definition 1.1. Given a finite subtres of T, theinterior of S is the setS consisting of
all verticesv € S such that every vertex df which is a neighbor ot belongs toS. The
boundaryof § in T is defined as the sexS of all verticesv € S such that exactly one
neighborv of v is in S. We say thafS is acompletesubtree off if S=SUaS.

AtreeT may be endowed with a metritas follows. Ifu, v are verticesd (u, v) is the
number of edges in the unique geodesic path frota v. Given a roote, thelengthof a
vertexv is defined agv| =d(e, v).

Given two neighboring verticas w, thesectordetermined by the edde, w] is defined
as

S(,w) ={u € T: wis in the geodesic path joiningto u}.

Fixing e as a root of the tree, theredecesson ~ of a vertexu, with u # e, is the next
to the last vertex of the geodesic path freno . An ancestorof u is any vertex in the
geodesic path froma to u~. A descendanof a vertexv is a vertexw such thatv is an
ancestor ofw. We call children of a vertexv the verticesu such thatu™ = v. We call
siblingsvertices with the same predecessor.

TheboundarydT of T is the set of equivalence classes of rays under the relation
defined by the shiftjvg, v1,...] >~ [v1, v2, .. .], together with the set of terminal vertices.
For any nonterminal vertex, we denote byu, w) the (unique) ray starting at in the
classw, or the geodesic path from to w if w is a terminal vertex. Thed@T can be
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identified with the set of rays startingatogether with the terminal vertices. Furthermore,
aT is a compact space under the topology generated by the sets

IU={w€8T: ve[e,a))}

which we callintervals

We now define a metric ofi whose completionig U aT. If v ~ w, definep (v, w) =
1/m? wherem = max{|v|, |w|}. If v andw are any vertices and, w] is the geodesic path
[v1, ..., vn], With vg ~ vy, let

N
p(, w) =" p(vg, vit1).

k=1

(Of course,p (v, v) = 0 for eachv e T.) Observe thap (v, w) < 72/3. The completion
of T with respect to this metric ig U a7, which is sequentially compact and hence
compact, as a completion of a bounded countable spac&7Q@his metric topology is the
same as the topology defined earlier. For an alternate proof of the compactiessaf
see [11].

A distributionis a finitely additive complex measure on finite unions of the fetket
us denote byD the space of finite-valued distributions 6.

Eachw € 9T induces an orientation on the edgesiof(u, v] is positively orientedf
v € [u,w). Forw e daT, andv € T, define thehorocycle index,(v) as the number of
positively oriented edges minus the number of negatively oriented edges in the geodesic
path frome to v.

Given a tre€T, let p be anearest-neighbor transition probabilitgn the vertices of’,
thatis, p(v, u) > 0, if v andu are neighborsp(v, u) =0, if v andu are not neighbors. It
is convenient to sep(v, v) = —1, so that for each vertex we have)_, p(v, u) =0.

Two treesT and T’ with transition probabilitieg and p’, respectively, are said to be
isomorphicif there exists a bijectiom from the vertices off" to the vertices off” such
thatp(p(v), o)) = p(v,u) forallv,u eT.

As is customary, a function on a tr@ewill mean a function on its set of vertices. The
Laplacianof a functionf : T — C is defined as

Af(v) = Z p(v,u) f(u) forall nonterminal vertices € T.
ueT

Definition 1.2. A function f on T is said to beharmonicat v if Af(v) =0. A real-
valued functions on T is said to besuperharmonidqrespectivelysubharmonit at v if
As(v) < 0 (respectivelyAs(v) > 0). A potentialis a positive superharmonic function
which does not have any positive harmonic minorants. A superharmonic furatio”

is said to beadmissiblef there is a finite sek and a harmonic functioh on T\ K such
thath(x) <s(x) forall x ¢ K.

A harmonic function defined off a finite set of vertices does not necessarily extend to
a harmonic function on the whole tree as the following example shows.
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Let vo € T with |vg| = 1 and definer on T excepte by letting h(v) =1 if v is
a descendant afp or v = vg andh(v) = 0 otherwise. Therk is harmonic except at the
set of allv with |v| < 1, but in order forh to be harmonic atyg, i(e) would have to
be 1. Fork to be harmonic ai # vo, |u| = 1, h(e) would have to be 0. Thus cannot be
extended to a harmonic function @h

By a homogeneous treaf degreeg + 1 (with ¢ € N) we mean a tred" all of whose
vertices havey + 1 neighbors and, unless otherwise specified, whose associated nearest-
neighbor transition probability ip(v,u) =1/(¢ + 1) if v andu are neighbors. I is
homogenous of degree+ 1, the Poisson kernel is then given by

Po(v) =¢*™ forveT, wedT,

since it satisfies the following properties analogous to those that hold in the classical
case [22]:

(i) Foranyw € 3T, v+ P,(v) is a harmonic function off.
(ii) If u e D, then the function defined by the Poisson integral

f) = / Py () dp(w)

aT

is well-defined and harmonic dh. Conversely, every harmonic functighon T has
such an integral representation for some unigueD.

Let T be a tree with a nearest neighbor transition probabjlityf y = [vo, ..., v,] iS
a path, sep(y) = ]’[f}zlp(vj_l, vj). Forv,w e T, let I, ,, be the set of all finite paths
fromv tow, and letr; , be the set of finite paths of positive length franto w that visit
w after the first step only once, that is,

Flf’wz{[vo,...,vn]efv,w: vi#FwforO<,j<n, n>1}.

Define the Green functiorG of T as G(v,w) = Zyepv L P, and the function
F(v,w) = Zyen; ) p(y). Probabilistically,G (v, w) is the ekpected number of times the
associated random walk startinguatisits w, and F (v, w) is the probability that a random
walk starting atv will ever reachw in positive time. In [11] it is shown that i (v, w) is
finite for some vertices andw, then it is finite for all pairs of vertices ifi. This means
that the associated random walk is transient. This is equivalent to saying tiestricted

to the diagonal of” x T is always less than 1. & is infinite, the random walk is recurrent,
sinceF is identically 1. It is well known (see Appendix by Picardello and Woess of [18])
that if there exist$ > 0 suchthas < p(v, w) < % — 4§ for all v ~ w, then the random walk

is transient.

Proposition 1.1 [11]. Letv, w be distinct vertices and I¢tyo, ..., v,] be the geodesic path
fromv =vgto w =v,. Then
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@) G, w)=F(,w)G(w, w);

() G(v,v) =1/(1— F(v,v));

(€) F(v,w)=[T{=g F (v, ve+1);
d) Fo,v)=),, p(v,u)F(u,v).

Proposition 1.2 [15]. (a) If s is positive superharmonic on a sect6 v, w), where
v, w € T are neighboring vertices, then

F(w,v)s(v) <s(w).

(b) If s is positive superharmonic ofi, then for any pair of neighboring verticas
andw,
s(v) 1

< .
s(w) = F(w,v)

Fv,w) <

In recent years, eigenfunctions of the Laplacian on homogeneous trees have been
studied (cf. [12,20]). LeY" be a tree and lgt1 denote the averaging operator of the vertices
at distance 1, that is

paf @)=Y p,w)f(w).

w~v

Observation 1.1. As an operator on any Banach space of functipnshas norm less than
or equal to 1.

Definition 1.3. Let 7 be a tree and. be a nonzero complex number. A functigh
on T is said to be.-harmonic(respectivelypr-superharmonigif u1 f = Af (respectively,

urf <Af).

Thus theA-harmonic functions are the eigenfunctions of the Laplacian relative to
the eigenvalue. — 1. In particular, the ordinary harmonic functions are the 1-harmonic
functions.

In [20], the authors showed that in the homogeneous case the correspondence

[ / P,(v)* du(w)
oT

maps harmonic functions taé-harmonic functions, wheré,(v) = P,(e,v) and A =
(¢° + ¢ Y /(g +1). In[12], a different operator from the space of harmonic functions to
the space of.-harmonic functions, local in nature, was introduced and studied.

A XA-harmonic function of considerable interest on homogeneous trees is given by the
spherical functiorp; (cf. [14]). Itis the only radial-harmonic function (that is, the value
at a vertexv depends only offw|) satisfying the conditio; (e¢) = 1.

The values ofp, are given by, (v) = ¢, (1) for anyv of lengthn, whereg, (1) is the
polynomial of degree in A satisfying the recursive relation
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q+1 1
an+1(A) = T)‘Qn()\) - 5‘]n—l()\)a forn > 1, 1)

with the initial conditionsyo(A) = 1 andg1 (1) = A (cf. [14]). If A > 2,/q/(q + 1), then the
roots of the quadratic equation corresponding to the recurrence relation are both positive
and given by

(g +DAr£+/(qg+1)202 - 4q

(
2q

Let o denote the smaller one and fgdenote the other. Thus

¢1.(v) =gn (M) = AB" + Ba”, )

whereA = —a)/(B — ), B= (8 —1)/(B — a). Thereforep, (v) > 0 for all » >
2./q9/(q + 1), and hence for all. > 1.

1.2. Brelot spaces

The field of potential theory goes back to the nineteenth century, with the work
following the research done by Gauss in 1840. Since then, many axiomatic treatments
of the theory have been formulated. For a survey of the different developments of potential
theory and a historical context, see [8]. We shall now give the main outline of the axiomatic
theory of harmonic and superharmonic functions developed by Brelot (see [7]).

Definition 1.4. A Brelot spacds a connected locally compact but not compact Hausdorff
spaces2 together with a harmonic structure in the following sense. For each open set
U c 2 there is an associated real vector space of real-valued continuous functiéhs on
(which are calledharmonic functions o) satisfying the following three axioms.

Axiom 1. (i) If Ug is an open subset @f, the restriction toUg of any function harmonic
on U is harmonic onUo.

(i) A function defined on an open détwhich is harmonic on an open neighborhood of
each point oU is harmonic onU.

Definition 1.5. An open setU is calledregular if it is relatively compact ins2 and for
any real-valued continuous functighon aU, there exists a unique harmonic functioy,
on U approachingf at each point obU. Furthermorehl; is honnegative whenevef Is
nonnegative. '

Axiom 2. There exists a base of regular domains for the open se. of

In particular,s2 is locally connected.
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Axiom 3 (Harnack's property)Any increasing directed family of harmonic functions
defined on a domai®/ has upper envelop@upremurpwhich is either identicallyt-oco
or is harmonic ony.

Remark 1.1. If £ is second countable, Axiom 3 is equivalent to the corresponding
statement for increasing sequences rather than directed families.

Definition 1.6. Let £2 be a Brelot spacd/ an open subset a2, xo € dU. A barrier for
U at xo is a positive harmonic functioh defined in the intersection di and an open
neighborhood ofg such that

lim h(x)=0.

xeU, x—xg

If such a barrier exists, we say thatis aregular boundary poinof U.

Definition 1.7. A compact subsek of a Brelot space? is outer regularif every point
of K has a barrier fof2\K .

Definition 1.8. Given a regular open sdf, for any x € U, the mapf +— h?(x) is

a positive linear functional on the space of the continuous functiortdarBy the Riesz
representation theorem, there exists a positive Radon mea$we d U, calledharmonic
measure relative t&/ andx such that

h?(x)=/fdp§f.
U

Let £2 be a Brelot space and |&t be a regular domain if2. Assumeg is a lower
semi-continuous function bounded below®fi. Then, for each € U define

/gdp§’=sup/fdpf/,
U U

where the supremum is taken over all continuous functjpies dU such thatf < g. By
Axiom 3, x fgd,og is either harmonic or identically-co.

Definition 1.9. Let Up be an open subset of a Brelot spa@e A function s:Ug —
(—00, 00], is said to besuperharmonidf

(1) itis lower semi-continuous;
(2) for any regular domaity with closure contained if/o,

s(x) >/sdp§] for eachx € U;
U

(3) s is not identicallyco on any connected componenti@j.
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Theharmonic supporbf a superharmonic functianis the complement of the largest
open set wherg is harmonic.

Observation 1.2. Condition(2) of Definition 1.9 says that > hgf‘au on any regular domain
U whose closure is contained iy provided that|dU is continuous.

Definition 1.10. A subsetA of a Brelot space? is said to be golar setif there exists
a positive superharmonic function shwhose restriction tat is identicallyoco. A setA is
locally polar if there exists a superharmonic function @nwhich is identicallyoo on A.

In a Brelot space, the minimum principle for superharmonic functions holds:

Theorem 1.1[7, p. 71].A nonnegative superharmonic function on a dontaim a Brelot
space is either identically zero or positive everywherdjon

Any nonnegative superharmonic function which has a harmonic minorant has a greatest
harmonic minorant (see [7, p. 87]).

Definition 1.11. A superharmonic functios on a Brelot space? is said to beadmissible
if there is a compact s&t and a harmonic functioh on 2\ K such that:(x) < s(x) for
alx¢K.

Clearly, positive superharmonic functions and superharmonic functions of compact
harmonic support are admissible.

Definition 1.12. A nonnegative superharmonic function on an open subiset a Brelot
space is called positive potentia{or briefly, apotentia) if its greatest harmonic minorant
onU is identically zero.

Definition 1.13. A BH spacds a Brelot space whose sheaf of harmonic functions contains
the constants. BP spacés a BH space on which there is a positive potential. A BH space
on which no positive potentials exist is calle®8 space

Definition 1.14. A BP space is said to satisfy ttexiom of proportionalityif any two
potentials with the same one-point harmonic support are proportional.

Theorem 1.2[13, p. 139].In a Brelot space without potentials all positive superharmonic
functions are harmonic and proportional. In particular, in a BS space, every positive
superharmonic function must be constant.

Thus, a Brelot space which possesses positive superharmonic functions which are not
harmonic, has potentials.

Theorem 1.3 [3, p. 66].In a BP space a superharmonic functieris admissible if and
only if there exist a potentigh and a harmonic functioit on the whole space such that
s=p+h.
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Theorem 1.4 ([16, Theorem 16.1] and [1, Theorem 3.6[).52 is a Brelot space with
positive potentials and a countable base of neighborhoods or a BS space, then for any
x € £2, there exists a superharmonic function with harmonic suppoft at

It should be pointed out that both of these results assume an additional condition known
as Axiom 3. It was subsequently shown by Mokobodski, Loeb and Walsh that Axiom 3
holds in any Brelot space (see [9]).

As a consequence of Theorems 1.4 and 1.3, in a Brelot saséth potentials and
a countable base of neighborhoods, for any §2 there exists a potential with harmonic
support afx}.

1.3. Outline of results

In Section 2 we shall consider functions on trees to be defined both on vertices and on
edges, and in Theorem 2.1 we shall show that infinite trees then have a harmonic structure
in the sense of Brelot. Since a finite tree is compact, it is not even a candidate to be a Brelot
space. We shall refer to the properties of functions defined only at vertices as being in
the sense of Cartier. Notationally we |gt 7 — R be a function only on the vertices and
¢:T — R be a function on the simplicial complex (that is, on the vertices and edges). Any
f may be extended (e.qg., linearly) tgand anyg may be restricted to a#.

Harmonic (respectively, superharmonic) functions on a tree in the Cartier sense can
be extended to harmonic (respectively, superharmonic) functions in the Brelot sense. For
harmonic functions, this extension (linear) is unique, but for superharmonic functions
there are nonlinear extensions (Proposition 2.2). Conversely, harmonic (superharmonic)
functions in the Brelot sense restrict to harmonic (superharmonic) functions in the Cartier
sense. We show (Proposition 2.3) that superharmonic functions are necessarily finite-
valued and continuous. Moreover (Theorem 2.2), any superharmonic function in the Brelot
sense whose restriction to the set of vertices is harmonic in the Cartier sense must be
harmonic in the Brelot sense.

In Section 3, we study the trees which under the harmonic structure of Section 2 are
BP spaces. These are the trees for which the random walk of the transition probabilities
is transient. The restriction to the vertices of a potential in the Brelot sense is a potential
in the Cartier sense. Conversely, the linear extension of a potential in the Cartier sense
is a potential in the Brelot sense (Proposition 3.2). In Theorem 3.2, we prove that
corresponding to each functianwhich is harmonic in the Cartier sense outside a finite set
of vertices there exists a harmonic functioon the entire tree such that- / is bounded.

As a consequence, we show (Corollary 3.1) that a superharmonic function in the Cartier
sense on a BP trekis admissible if and only if it has a harmonic minorantbrMoreover,

we obtain (Corollary 3.2) a characterization of admissible superharmonic functicfis on
analogous to one proved by Cartier (Theorem 3.1) for positive superharmonic functions.
We use these results to give an example of a nonadmissible superharmonic function.

In Theorem 3.3 we use the Green function introduced by Cartier to construct the
potentials (in the Brelot sense) of point harmonic support. We deduce that the axiom of
proportionality holds for BP trees. In Proposition 3.4, we give an integral representation of
potentials in the spirit of Hervé. In Corollary 3.3, we show that given any tree, the Green



I. Bajunaid et al. / Advances in Applied Mathematics 30 (2003) 706—745 715

potential of a measure is either identically infinity, or is finite everywhere. In Theorem 3.5,
we show that the ratio of the values of any Green function evaluated at any two
points is bounded away from zero with lower bound depending only on the two points
and not onx.

In Section 4, after defining the flux at infinity of a harmonic function and recalling
many results that hold on general BS spaces, we interpret these on BS trees. Our work on
BS spaces, as well as some of our work on BP spaces, is influenced by the approach of
V. Anandam (see [1-5]).

In Proposition 4.2, we construct an unbounded functibrharmonic except afe},
constant on siblings, such thAt(e) = 0 andA H (e) = 1. In Corollary 4.1, corresponding
to a (Cartier) harmonic functiofi on the complement of a complete finite set of vertikes
we give the explicit constructions of the unique numbeand a harmonic function
on T such thatf — h — o« H is bounded offK. The constang is called theflux of f at
infinity (with respect toH). In Theorem 4.4, we give an explicit formula for calculating
the flux at infinity of such a functiorf. We then show that (Theorem 4.5) every positive
superharmonic function on the complement of a finite Kebf vertices is increasing
along each ray in its domain. Furthermore, if the function takes on the same value
at two neighboring vertices, then it must be constant on the sector determined by the
corresponding edge.

In Section 5, we a give a condition for a random walk on a tree to be transient in terms
of a certain function on the boundary. Specifically, in Theorem 5.1 we show that if the
random walk is transient, then this function is finite-valued somewhere. On the other hand
(Theorem 5.2), if this function is finite on an interval, then the random walk is transient.
We provide an example of a tree for which this function is finite at one boundary point,
yet, the random walk is recurrent.

In Section 6, we give other harmonic structures on trees by replacing the Laplacian
operator with the operatak = A — a?I (a > 0). These structures yield Brelot spaces
whose sheaf of harmonic functions does not contain the constants. They are, however,
always endowed with potentials. As in Section 3, (Proposition 6.1) harmonic and
superharmonic functions, interpreted as eigenfunctions of the Laplacian relative to the
eigenvalue:?, can be extended to harmonic (respectively, superharmonic) functions in the
Brelot sense. Furthermore, in Proposition 6.2 we show that superharmonic functions are
always finite-valued. In Proposition 6.4 and Observation 6.2, we construct the potentials
of harmonic point support on homogeneous trees. Finally, (Proposition 6.6) we give
a formula for the Green function on any tree (which turns out to be finite everywhere),
and (Theorem 6.1) show that the axiom of proportionality holds.

2. TheBrelot structureon atree

Notation. Let T be a tree with infinitely many vertices. Consider the spﬁcwhich is
the tree viewed as a 1-dimensional simplicial complex, with the terminal vertices removed.
Thatis, for allu, v nonterminal vertices with ~ v, consider the séit, v] = {(1—1)u +tv:
0<r<1}. If vis aterminal vertex and ~ v, then sefu, vl ={(1—-Hu +rv: 0<r < 1}.
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ThenT =
with v.

[u, v]. Of course, we identifyl — t)u + rv with tv + (L — r)u and Q¢ + v

u~v

We now state and prove our main result.
Theorem 2.1. T may be given the structure of a Brelot space.

Proof. Put a metric ori by extending the metrid on T as follows. Letu, v, u’, v’ € T,
withu ~vandu’ ~v',and letx = (1 — Hu +tv, y= (1 —t)u’ + /v, with 0<r < 1,
0< Y <1 If [u,v] =[u/,v'], we may assume that = u’,v = v' and then define
d(x,y) = |t — t'|. If the edges are different, assume thaandu’ are the nearest of the
four pairs(u, u’), (u,v'), (v,u’), (v, v'), then define

dix,y)=t+du,u)+1.

Under this metricT is a locally compact, but not compact, connected and locally con-
nected Hausdorff space. In additidh has a countable base.

We now define harmonicity of.

Let U be an open subset df, f a function onU, andx € U. If x ¢ T, then
x = (1 —ro)u + tov for someu,v € T, 0 < 1y < 1. Then we definef to be harmonic
atx if there exista, b € R ande > 0 such thatf (1 — t)u + tv) = (1 — t)a + tb for all ¢,
with |t — 0] < €. If x =v € T, v not a terminal vertex, theyf is harmonic ab if there
existse > 0 such that for all € (0, ¢),

fw= ZP(U, ) f((1—=1)v+rtu).

u~v

We say that a functiorf continuous oriJ is harmonic onJ if f is harmonic at each
x € U. Since harmonicity is defined locally, the first axiom of Brelot is satisfied.

A harmonic functionf on T can be extended to a harmonic functioni)by linearity,
e, f(A—tv+rw)y=A—-1)f@) +tf(w), forallv~w,0<t < 1.

We now show that there is a base of regular domains.xFerT’, consider the sets
Bc(x)={ye T d(x,y) <e},whereifx =veT,thenO<e <1, andifx =(1—to)u +
tov, with 0 < 19 < 1, thene < min{l1 — 1o, 10}. Let x = (1 — ro)u + tov, wWith u,v € T,
0 < 19 < 1. Then the boundary aB. (x) consists of the point€l — 7o — €)u + (fp + €)v
and (1 — 19 + €)u + (to — €)v. If f is defined on the boundary aB.(x), then f
can be extended linearly (and hence, harmonically) inside. Next, {et € T, where
v is not terminal. Then for G< € < 1, the boundary ofB.(x) is the set of points
{(1— €)v + €u: for all neighbors: of v}. If f is defined ord B.(x), then let

@)=Y p,uw) f(L—ev+eu)

u~v

and extendf linearly inside. ThusB.(x), 0 < € < 1, is regular and the second axiom of
Brelot is satisfied.
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Next we show that Harnack’s property holds. £¢}}.cn be an increasing sequence of
harmonic functions on some connected operiset T and let

lim fu(x) = f(x) < o0.
n—0o0
Furthermore, let us assunféxg) < oo, for somexg € U.

Claim 1. If xg € (u, v), for some neighboring vertices v, then f is finite and harmonic
onfu,vlNU.

For, letx € [u,v] N U, x # xo. Let y be a point of[u, v] N U on the opposite side
of xo from x. Then there exists somee (0, 1) such thatxg = (1 — t)x + ty, so that
fu(x0) = (1 —1) fr(x) +tfu(y). Sincef f,} is increasing and (xg) < oo, thenf(x) < oo.
Also since the finite limit of linear functions is lineaf,is harmonic orfu, v]NU.

Claim 2. If xo=u € T, then for allv ~ u, f is finite and harmonic ofu, v]N U.

For, choose > 0 such thatc, = (1 — ¢)u + ¢v € U forall v ~u. Then

So(0) =D pu, v) fu(x).

As above, this implies thaf (x,) < oo, and so by Claim 1f is finite on[u, v]N U, and

again by linearityf is harmonic oriu, v]N U By connectednesg, is finite and harmonic
onU. Hence the third axiom is satisfied afids a Brelot space. O

Observation 2.1. The harmonic functions off correspond to the harmonic functions
on T in the sense that their restriction Toare harmonic according to Definition 1.2, and
conversely, every harmonic function @h(in the sense of Definition 1.2) extends linearly
to a (unique) harmonic function dh.

We now describe the harmonic measure Bn Let U = B.(xo) be a regular
neighborhood okp e 7.

Casel. If xo ¢ T, thenxg = (1 — ro)u + tov (0 < 1p < 1), for some neighboring vertices
andv, and

U ={xs =1 —toxe)u+ (o Fe)v}.
Then foranyx € U, x = (1 — t)x4 + tx_, for somer € (0, 1). Thus
/ fdo¥ =@ —1)f(xy) +1f(x)

for any function defined oAU .
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Case2. If xo=v e T, thendlU ={x, =1L —e)v+eu|u~v}.If x €U, then thereis
a neighboug of v such that

x=A—te)v+reug=(1—1v+1((L—e)v+eug), forsome0<s <1,

SO

/ Fdpl = @—16) > p(v.u) f () + tef (tug),

u~v

for any function defined oAU .

Observation 2.2. Any complete finite set of vertices on a tréaogether with its edges is
regular. Indeed, we can solve the Dirichlet problem on the interior vertices of any such set
(cf. [10]) and then extend the unique solution linearly on the edges.

Next we study the superharmonic functions®n

Proposition 2.1. Given a superharmonic function ofi, its linear extension tol is
superharmonic ofT'.

Proof. Lets be superharmonic df (in the sense of Definition 1.2) and defin@l—7)v+

tu) = (L —1)s(v) + ts(u) for any pair of neighboring verticeasandu. On the interior of

the edgdu, v], s is linear hence harmonic and hence superharmonic. Furthermore, for each
€ € (0,1) and each vertex,

§:pwmh«1—dv+6@:=§:p@J0ﬂ—eh@)+§:p@Jkﬁm

= L—e)s@) +e )y p,u)s)

< (1—e)s(v) +es(v) =s(v). O

Linear extensions of superharmonic functions Brare the smallest superharmonic
extensions tq@".

Proposition 2.2. If s is a superharmonic function ofi which is not harmonic, there are
nonlinear superharmonic functions @hextendings.

Proof. Let v be a vertex oril" such thats is superharmonic but not harmonicatLet
L >0 besuchthat(v) =), , p(v,u)s(u) + L. Fix u ~v. Defines linearly on[v, w]
forallw~v, w#u.On[v,u]l ={u;, = A —t)v+rtu: 0<r <1}, lets be any nonlinear
concave function starting atv) and ending up at(z) and such that for anye (0, 1),

su) <A —-1)s@) +tsu) +

L
pv,u)’
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Any suchs is superharmonic at. Thuss is superharmonic off, but nonlinear on the edge
[v,u]. O

Proposition 2.3. I s is superharmonic off, thens is finite-valued and continuous. In
particular, there are no polar sets ifi.

Proof. First we show that is finite-valued on all off". First, assume(v) = oo for some
v e T. Then for each ~v and each € (0, 1),

s((l— v +tu) >A—-1s)+ts(u),

sos is identically infinity on[v, «). On the other hand,(u) > )", ., p(u, w)s(w) = oo,
sincev is a neighbor of: ands(v) = oco. Thus,s is identically infinity on the whole edge
[v, u]. By connectedness,= oo on T, contradicting superharmonicity.

Next, assume(x) = oo, for somex in the interior of the edgév, u]. Then, for each
te€0,1), s(A—tv+1tx) > @A —1)s() + ts(x) = oco. Similarly, s((L — H)u + tx) >
(1 —1)s(u) + ts(x) = oco. Sos is infinity on (v, u). Again by superharmonicity, for ad
sufficiently small,s(v) > >, ., p(v, w)s((1 — €)v + ew) = co. Thus,s(v) = co. By the
first case, we get a contradiction, completing the proof of the finiteness.

Next, suppose is not continuous at, a point in the interior of the edde, «]. Sinces
is lower semi-continuous, limipf, ; s(y) > s(x). Then there exists somee R such that

limsups(y) > A > s(x).

y—x

Thus there exists a sequer{gg} approaching such that(y,) > A for all n € N. For y,
sufficiently close tox, let z, be the symmetric point of,, with respect tox in the interior
of the edgdv, u]. Thens(z,) + s(yn) < 2s(x). Thus

25(x) < s(x) + A <liminfls(zn) +5(ym)] < 25(x),

a contradiction. Henceis must be continuous at

Now let us assume is not continuous at € 7. Then there is a neighbarof v such
that limsup_, g s (ue) > s(v), whereu, = (1—€)v+cu. Let{e,} be a sequence of positive
numbers approaching 0 such thét.,) > A > s(v). Sinces is superharmonic,

s@) = Y p(v, ws(we,),
and so

s(v) > liminf > P w)s(we,) =Y pv, w) liminf s (we,)

w~v w~v

> Z p, w)s() + p(v,u)r > s(v),

w~v, WHEU

a contradiction. Thus is continuous ab, completing the proof. O



720 I. Bajunaid et al. / Advances in Applied Mathematics 30 (2003) 706—745

Proposition 2.4. If s is superharmonic off’, then its restriction toT" is superharmonic
onT.

Proof. Givenv € T, sinceB1(v) is regular, we have

s) =) p.u)s().

u~v

Thuss is superharmonic off. O

We wish to highlight the following result, whose proof is a simple application of the
minimum principle for superharmonic functions.

Theorem 2.2. If s is superharmonic offt and its restriction tof" is harmonic onT’, thens
is harmonic onT .

Proof. Let/ be the linear extension efrestricted tol". Sinces is concave on each edge,
s > h onT. Sinceh is harmonic onT’, s — h is nonnegative superharmonic d@h By
Theorem 1.1, either — £ is identically zero or positive everywhere. Buth on 7. Thus
s=honT. O

In what follows we shall refer to a treg as being a BP (respectively, BS) tredifis
a BP (respectively, BS) Brelot space.

3. TreesasBP spaces

Throughout this section we shall assume tlfais a tree endowed with a nearest
neighbor transition probability whose associated random walk is transient (so that the
Green functionG (v, w) is finite for eactw, w € T).

Proposition 3.1. T is a BP space.
In particular, an example of a BP space is a homogeneous tree of degree greater than 2.

Proof. Givenw € T, the functionG,, : T — [0, co) defined byG,(v) = G (v, w) satisfies

the conditionsAG,,(v) =0 for w # v and AG,,(w) = —1 (see [11, Proposition 2.3]).
Therefore,G,, is positive superharmonic ofi, nonconstant, and harmonic dm{w}.
ExtendingG,, linearly on all edges yields a nonconstant positive superharmonic function
onT.By Theorem 1.27 cannot be a BS spacen

Proposition 3.2. A potential onT restricted toT is a potential on7. Conversely, the
linear extension td@" of a potential orT" is a potential onr .

Proof. Let p be a potential on7. Thus p, and hencep|T, is superharmonic by
Proposition 2.4. 1f1: T — [0, co) is a harmonic minorant gb| 7, thenk can be extended
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by linearity to a unique nonnegative harmonic functionZrvhich must be a harmonic
minorant ofp. Thush must be identically 0. Thereforg|T is a potential. The converse is
clear. O

Proposition 3.3. If s is superharmonic ofi" and its restriction toT is a potential on7,
thens is a potential onT".

Proof. Let & be a nonnegative harmonic minorantsobn T.Thenh|T is a nonnegative
harmonic minorant of| T, sok|T =0. Thush =0. O

We shall see that there are potentialsZothat are not linear extensions of potentials
on T (for example, the potentials 6h with harmonic point support in the interior of an
edge).

If f is afunction onT, define theGreen potential off on T by

Gfw) =) G,u)f (),

ueT

if the series converges absolutely, divergestpor diverges to-oo. Clearly, the harmonic
support ofGf is exactly the support of .

Theorem 3.1 [11]. Every positive superharmonic functisnon 7 is of the forms =

h + Gf, whereh is a nonnegative harmonic function antis a nonnegative function
on T with support equal to the harmonic supportsofFurthermore, this representation is
unique.

As a consequence, we see that every poteptiah 7 is of the formGf for a unique
nonnegative functiorf with support equal to the harmonic supportof

The following result was proved by Nakai in a general BP space and can be found in
[21] or [2, Theorem 1.20]. We state it and prove it in the tree setting, where it does not
follow trivially from known facts about trees.

Theorem 3.2. Letu be a function or?” which is harmonic outside a finite subgétof T'.
Then there exists a functignharmonic on?” such that: — u is bounded ofK .

Proof. Fix a roote. Choosen € N such thatK is a proper subset oB,, the open
ball of radiusn: B, = {v € T: d(e,v) < n}. DefineU on B, as the solution to the
Dirichlet problem with boundary valueson d B, and defindJ (v) = u(v) for d(e, v) > n.
Leth(v) =U®w) + Z\w\:n AU (w)G (v, w). Thenh is harmonic onT. Recalling (a) of
Proposition 1.1, we have

() —U®| < > [AUW)|G(w, w),

lw|=n

foranyv € T. Thush — u is bounded offK. O
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Coroallary 3.1. A superharmonic function ofi is admissible if and only if it has a harmonic
minorant onT .

Proof. Lets be an admissible superharmonic functiorfarmhen there exists a function

on T harmonic outside a finite sekX such thatu(v) < s(v) for all v € T\K. By
Theorem 3.2, there exists harmonic on7T such that|h — u| is bounded onl’. Thus

h < u + ¢ for some positive constant, whencek — ¢ is a harmonic minorant of;

on T. The converse follows immediately from the definition of admissible superharmonic
function. O

We can now generalize Theorem 3.1 as follows.

Corollary 3.2. A superharmonic functiom which is not harmonic oif" is admissible if
and only if there exist a potential and a harmonic function on 7 such thats = p + h
onT.

Proof. Lets be an admissible superharmonic functionZns not harmonic. Then has
a harmonic minorant off. Let & be the greatest harmonic minorantsof Thuss — &
is a positive superharmonic function whose greatest harmonic minorant issG; &ois
a potential. Conversely, if= p+h with p a potential and harmonic, therk is a harmonic
minorant ofs. Thuss is an admissible superharmonic function which is not harmonic.

Example 3.1. Let T be a homogeneous tree of degeee- 1 (¢ > 2) with roote. Then
s(v) = —|v| is a nonadmissible superharmonic function ®nTo see this, observe that
As(e) = —1 andAs(v) = —(qg —1)/(g + 1) for v # ¢, sOs is superharmonic. If were
admissible, then by Corollary 3.%, would have a harmonic minorant on 7. Thus,
h(v) < —|v| for eachv € T. But sinceh is harmonic, for any positive integer, i (e)

is the average of the values lofat the vertices of length. Thush(e) < —n, foralln € N,

a contradiction.

We now give the construction of the greatest harmonic minorant of an admissible
superharmonic functionon T. For each: € N, let B,, denote the open ball centeredeat
of radiusn and leth,, be the solution to the Dirichlet problem ), with boundary values
5|9 B,. SinceB, is regular by Observation 2.2, by (2) of Definition 1533 h, on B, for
all n € N. Thus, using the notation of Definition 1.8, we obtain

hn = hijyg, > ' o, = htds
since h,4+1 is harmonic on the closure a8, ands > h,1 on dB,. Hence D(s) =
lim,— o0 h, €Xists and is harmonic of. D(s) is the greatest harmonic minorantsof

We now construct potentials with harmonic _point support orand show that all
potentials with the same harmonic point supporflbare proportional, that i’ satisfies

the axiom of proportionality.
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Theorem 3.3. Let x € T. If x € T, then the potentials supported dm} are positive
multiples of the linear extension 6f,, whereG, is the Green functiol’, (u) = G(u, v)
fx=veT.lfx¢T,x=(1-1tv+ rw, withv, w neighboring vertices) < ¢ < 1, then
G, is defined by

vi[p, w) A —0Gy(y) + p(w, V)iGy (y)]
* 1-5G () +sGy(w)+sL—1)y, ify=A—-s)v+sw, 0<s <,
L—5)Gx(v) +sGy(w)+ L —s)ty, ify=A—-s)v+sw, t <s<1,

wherey, = (1—1)/(p(v, w)) +1/(p(w, v)).

Proof. As remarked above, if = v € T, then the functiorG, is superharmonic off’,
harmonic on7\{v}, and its greatest harmonic minorant @his zero. Thus its linear
extension onT is a potential with harmonic support at If p is a potential onT'
with harmonic support ab, then by Proposition 3.2 and Theorem 3.1 appliethtd,

p = Gf, for some nonnegative functiofi with support{v}. Thusp = f(v)G, onT. By
Observation 2.1p = f(v)G, onT.

Let us now assume ¢ T, so thatx = (1 — ¢)v + tw, wherev ~ w andrz € (0, 1).
Clearly, G, is harmonic off[v, w] and, by linearity, it is also harmonic on the segments
(v, x) and (x, w). FurthermoreG, is superharmonic at, since fore > 0 sufficiently
small, the average betweéh (1 —t+e)v+ (t —e)w) andG,((L—t —€)v+ (t + €)w)
is given by

(1= 1)Gx(v) +1Gy(w) +1(L— 1)y, — gyf =Gy (x) — gyt <Gy (x).

We now show tha6, is harmonic ab (hence, by symmetry, at). LetG, be the linear
extension oG, |[v, x] to [v, w]. Thus

G:(w) = Gy(w) + (L —1)y.

To prove thaiG, is harmonic ab, we need to show that

Y WG @)+ p, )G (w) =G (v),

U~V UFEW

since harmonicity ofG, in an e-neighborhood ofv is equivalent to harmonicity at the
nearest neighbors of its linear extension. Usi@, (v) = —1 andAG,,(v) = 0, we obtain

Y WG )+ po, )Gy (w)

U~v, UFW

=yp,w)A—1) Y p,wG,w) +ypw,v)t Y p,u)Gyu)

U~v, UFW U~v, UFW

+ v P, w)[(1 =) p(v, w)Gy (W) + 1p(w, V)G (w) + (1~ 1)]
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=y [pv, w1 — ) (AGy(V) + Gy (V) + p(w, V)1 (AG (V) + Gy (v))
+p(v, W)L - 1)]
=[P, w) A —1)Gy(v) + p(w, V)1Gw (V)] = G, (V).

ThusG, is positive superharmonic ah, harmonic offx and since it is defined as a positive
linear combination of potentials offv, w), its restriction to7' is a potential onT". By
Proposition 3.3G, is a potential with harmonic support @at}.

Let us assume, is a potential with harmonic support &t}, with x € (v, w), x =
(1—tx+ty,0<t < 1. Thusp,|T must be harmonic off\{v, w} and so it must be of
the formaG, + BG,, for somea, B > 0. LetG, (w) andG,, (v) be the numbers such that

Gw) = Y p,wGyw) + p,w)G,(w), 3
UV, UFEW

Gow) = Y pw,)Gy) + p(w,v)Gy(v). 4)
U~W, UFV

Now py is harmonic on(v, w) except atc. Let us defin@v in a small neighborhood af
by

G, (2) forze (u,v), u~v, u#w,

G = { (1= 9Gu(@) +5Gy(w) forz=(1—5)v+sw.

ThenG, is harmonic near and thusp, (y) = a(N}U(y) 4+ BGy(y) fory=(1—s)v+sw,

0 < s <t. Similarly, letting

Gy (2) forze (u,w), u~w, u#v,

Gy(z) = { (1— s)éw(v) +5Gy(w) forz=@A—-s)v+sw,

we getp, (y) =aGy(y) + ﬁéu,(y) fory=(1—-s)v+sw, t <s < 1. Inparticular,p, (x)
must agree with the values from both definitions. So

a[1—1)Gy(v) +1Gy(w)] + B[(L = )G (v) + Gy (w)]
=a[(1=NGy®) +1Gy(w)] + B[(L = DG (v) +1G(w)].
Thus
at[Gy(w) — Gy(w)] = BL—N)[Gw(v) — Gu(v)]. (5)

SinceAG,(v) = —1, using(3) we get

—1=) p.wGw— Y pE,uwGw) —p,w)G,w)

u~v U~v, UFW

= p, w)Gy(w) — p(v, W)Gy(w) = —p(v, W)[Gy(w) — Gy(w)].
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ThusG,(w) — Gy(w) = 1/p(v, w). Similarly G, (v) — Gy (v) = 1/ p(w, v). Hence (5)
becomes

L))
pv,w)  pw,v)’

whence

g = atp(w, v)
CA-npv,w)

So off (v, w), we have

Px = aGy+ BGy :a[GU + Mcw}
(1_t)p(vvw)
o
= m[(l—np(v, w)Gy + 1p(w, V)G |
o

— Gy
A-0)p, wy
By harmonicity on(v, w) — {x} and continuity atr, we have that

o

x=—"—"—"—""—G
P A-Dp, w)ys

everywhereo’. O

Definition 3.1. Let £2 be a Brelot space, and Iét be a domain in2. A Green function
onU, ifitexists, is a functionGy : U x U — (0, oo] satisfying the conditions:

(a) Gy is lower semi-continuous obi x U and continuous oV x U\{(x, x): x € U};
(b) Foreachy e U, x — G(x, y) is a potential with harmonic support gt}.

Remark 3.1. If f is a positive continuous function dnhandGy is a Green function oy,
thenGy, (x,y) = f(y)Gu(x,y), x,y € U, is also a Green function oli.

Theorem 3.4 [16, Theorem 18.2]Let 2 be a Brelot space satisfying the axiom of
proportionality. Then there exists a Green functiGnon 2 and every potentiaP on £2
admits a unique integral representation of the form

P(x)=Gu(X)=/G(x,y)du(y), xef,
2

wherepu is a nonnegative measure @h.

The functionG i is calledthe Green potential ofx.
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Conversely (cf.[19, p. 68]), the function @éhdefined by the above integral is a potential
if it is finite at one point.

As a consequence, by splitting the potentials with harmonic point support at the vertices
from those with harmonic point support inside edges, we obtain

Proposition 3.4. Every potential inT’ admits a unique integral representation of the form

P:Zava—i- ZG)tv,wv (6)

veT v~w

wherea, > 0, and, ,, is a (nonnegativEmeasure onv, w). Conversely, the function
on7 defined in6) is a potential if it is finite at one point.

Corollary 3.3. If T is any tree, the Green potential of a measurelois either identically
infinity, or is finite everywhere.

Proof. By Proposition 3.4, the functioR in (6) is a potential (hence, superharmonic) if it

is finite at one point. By Proposition 2.3, any superharmonicfunctioﬁ arfinite-valued.
Thus, if P is finite at one point, the® must be finite everywhere.o

In particular, this yields a noncombinatorial proof of Cartier's Proposition 2.3 that
P =) a,G, is either finite everywhere or infinite everywhere. Cartier does this by
showing that ify andz are vertices anfly, . .., v,] the path fromy to z, thenp(y, z) =
]_[;lep(vj,l, v;) has the property that for any vertex

Gx(y) 2 p(y,2)Gx(2). (7)

Thus, P(y) > p(y, 2) P(z), so thatP(y) finite implies thatP(z) is finite. We now prove
thatp:T x T — (0, 1] can be extended to a function Gnx T, so that(7) holds for all
X,y,2 € T.

Theorem 3.5. If T is any tree, then for any, y,z € T, there exists a positive constant
p(y, z) independent af such thatG.(y) > p(y, 2) G« (2).

Proof. As noted above in (7),if,z € T thenG,(y) > p(y,z2)G«(z) forall x € T, where
o(y, z) is the product of the transition probabilities along the edges of the geodesic path
from y to z. In particular, ify ~ z thenp(y, z) = p(y, z). We shall definep(y, z) for all
v,z € T so that (7) holds for alt € T. _
We show first that for aly, z € T, (7) is valid for allx € T. Suppose: = (1 —)v + tw
where O< ¢t < 1 andv ~ w. Then

G:(y) = n[pw, W)L =1)Gu(y) + p(w, V)1 Gy (Y)]

vilpw, w)A = 0)p(y,2)Gu(2) + p(w, V)1p(y, 2)Gu (2)]
p(y,2)Gx(2),

Vol

which proves the result in casez € T.
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Next suppose that € T — T andz is a vertex one of whose edges contajnsThus
y=(1-1s)z+sz wherez’ ~zand O<s < 1. Let

A, =min{p(z,2)G.(2), p(z'.2)G,(2)}.

Definep(y, z) andp(z, y) as follows:

(y.2)=p(,2) (z,y) (1+ ! + ! )_l
,Z) = Z,2), Z, = VTN .
pLy )4 Pz, y p(z,7) A,

Note that O< p(z, y) < p(z, z’). To complete the proof in this case, we have to consider
the cases where ¢ (z, z’) andx € (z, ') separately.

First suppose that = (1 — t)v +tw, 0 < ¢t < 1, wherev, w are vertices witHv, w} #
{z,Z'}. Then(7) implies

Gy(y) = 1—9)Gy(2) +5Gu(2) > (1= 5)Gy(z) +5p(Z’, 2)Gy(2)
> p(z',2)Gy(2) (8)
and

G@) _ Gv(@)

v X 1- v X )
Gy(y) <A-95GC (z)+sP(Z’Z/) 2.2

SO

Gy(2) = p(z,2)Gy(y). 9

We deduce frong8) that

G:(Y) = [P, w)L—DGy(y) + p(w, V)t Gy (Y)]
vilpw, w)A =1 p(2', 2)Gy(2) + pw, V)ip(z', 2)Gu(2)]

(@, 2)G(2) = p(y,2)Gx(2)

Vol

and a similar argument usin@) yields

Gx(2) 2 p(z,2)Gx(y) = p(z, y) G (y).
This completes the case¢ (z, 7).

Suppose now that = (1 —r)z + ¢z’ and O< s <t < 1. Sincez, 7/ are neighboring
vertices, we obtain from the first argument of the proof that

Gx(Z) = p(,2)Gx(z) and Gi(2) > p(z,2)G+ (). (10)

Now
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Gr(y) = 1=5G:(2) +5G () +5(L—1)y: = (1= 5)G1(2) +5G(2)
> (1-5)Gx(2) +sp(@.2)Gx(z) = p(Z', )[(1— $)Gx () +5Gx(2)]
= p(,2)G:(2).

Also
G.:(2) = y[pz. 2HA -G () + p(Z. 2)1G(2)]
> yymin{p(z,2)G.(2), p(z’, )G (2)}
= YAz,
S0
Gy
V< Az,(j)'

Thus, by (10) we have

G.(2) | Gx(2)

(1—5)Gx(2) +5G (@) +sA—1)y; <Gx(2) +
p(z,2) Az

Gy (y)

_ Gx(Z)
ey

(11)
SO

Gy (2) 2 p(z,y)Gx(y).

If 0 <t <s <1 the argument is similar. This completes the proof in casel — T
andz is a vertex one of whose edges contains

Now suppose that, z are inT — T and lie on distinct edges. Thus there exist unique
verticesv, w such thaty lies on an edge af, z lies on an edge ob andd (v, w) is as small
as possible. Since(y, v), p(v, w), andp(w, z) have already been defined, we may define

p(y,2)=p,v)pl, w)p(w,z).

Then foranyx € T,

G:(y) Z p(y,v)G:(v) Z p(y, V) p(v, w)Gx (W) = p(y,v)p(v, w)p(w, 2)Gx(2)
= p(¥,2)Gx(2).

Supposey € T — T andz is a vertex none of whose edges contaijnsLet v be
the unique vertex closest to whose edge containg. An argument similar to that of
the last paragraph shows that the result holds if we definez) = p(y, v)p(v, z) and

p(z,y)=p(,v)p,y).
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Finally, suppose, z € T — T and both lie on the same edge w). Define

p(y.2) =min{p(y, v)p(, 2), p(y, w)p(w, 2)}.

Then for anyx € f,

G:(y)Zp(y,v)G:(v) Z p(y,v)p(,2)Gx(2) 2 p(y, 2)Gx(2).

This completes the proof.O

Observe that by Theorem 3.5,/ifis a measure off, then by integratingz, andG,
againstu we get

Guy) = p(y,2)Gu(z).

Thus we obtain another proof of the fact that eitlig is identically infinity or is finite
everywhere.

4. TreesasBS spaces

In this section, we study those trees whose corresponding nearest-neighbor transition
probability is recurrent.

Example 4.1. Let T be a homogeneous tree of degeee 1 (g > 2) rooted ate whose
corresponding nearest-neighbor transition probability is not isotropic but is defined radially
as follows. Letp(e,v) =1/(g + 1) for [v| =1, p(v™,v) = 1/(29) for [v| > 2, p’ =
pv,v7) = % for |v] > 1. The completionl” of T is a BS space. In order to see this,
let us assume that the Green funct@pis finite. By symmetry with respect tg G, must

be radial, and thus, in order to be harmonicaoff must be of the fornG.(v) = A + B|v|

for some constantd, B. SinceAG.(e) < 0, it follows that B < 0. Clearly, there is no
constantd such thatd + B|v| > O for all v € T. Thus the Green function must be infinite.

We recall (see Theorem 3.2 and the paragraph preceding it) that in a BP@pase
well as in a tree whose underlying random walk is transiert,iff a function defined on
the space and harmonic on the complement of a compaét siteng = i + b, whereh
is harmonic on2 andb is bounded. This is not true on BS spaces, but we shall describe
an obstruction, called thitux at infinity ofg (which we shall usually refer to just dke
flux), so that when the flux of is zero, therg = i + b as above. First we shall describe
the situation in a general BS space.

Definition 4.1. Let £2 be a BS space. A functio” harmonic off some compact set is
called astandard fors2 if the following is true: given any functiog which is harmonic
off an arbitrary compact set, there exists a harmonic fundii@m the whole space and
a unique real number such thatg — « H — h is bounded off a compact set. The constant
« is then called thélux (at infinity) of g with respect taH .
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Observation 4.1. If g is harmonic on the whole space, then the flug a$ O (takeh = g).

If ¢ is bounded harmonic outside a compact Eetthen the flux ofg is also zero (take

h = 0). Furthermore, the flux is linear and unchanged by addition of a function harmonic
on the whole space or a function which is bounded harmonic outside a compact set.

Observation 4.2. Let 2 be a BS space! a standard fog2. If K1 and K, are compact
sets ing2 and f is harmonic on2\ (K1 N K2), then the flux off is independent of the
choice of the seK; or K». For, if a1, a2 are constants any, 4> are harmonic o2 such
that f — h; — «; H is bounded off some compact skt containingk; (j = 1, 2), then
(a1 — a2) H — (h1 — h2) is bounded outsid&’, hence its fluxx; — a2 is 0.

We shall see in Theorem 4.1 that standards for a BS space always exist.

Observation 4.3. The numbekr depends on the choice &f: Any nonzero multiple of

a standard for2 is again a standard, but the value of the flux will change. Furthermore, if
H is any function harmonic off some compact set with fius¢ 0 with respect taH , then

H is itself a standard of2: If g is harmonic off some compact set aads its flux with
respect toH, then sinced — @H andg — «H are both the sum of a harmonic function
on £2 and a bounded function, so is

~ o, ~ -
g§—-H=(g—aH)— -(H—aH).
a

Q| R

We now show that the uniquenessmfand ofa leads to the uniqueness ofa. If o'

is a constant such thgt— o’ H is the sum of a harmonic function a2 and a bounded
function off a compact set, sine€(H — @ H) is the sum of a global harmonic function
and bounded function off a compact set, then so is

g—a'aH=(g— o/ﬁ) +o/(ﬁ —aH).
By the uniqueness of the flux with respectfiQ o’@ = «. Thuse' = a/a.

The following theorem is Theorem 1.17 of [2], together with the note following
Lemma 2 of [5].

Theorem 4.1. Let 2 be a BS spacef C £2 compact, outer regular, and not locally polar.
Then there exists a harmonic functiéh> 0, not identicallyO, which is unbounded o
and tending td on 0 K . FurthermoreH is a standard for?2.

Theorem 4.2. Let 2 be a BS spacek a honempty compact subset. Then any positive
harmonic function o2\ K which tends to zero oK is a standard fors2.

Proof. Let H be a positive harmonic function of2\K tending to zero oK. By
Theorem 4.1, there exists a standardforBy Observation 4.3, we need only show that
the flux of H with respect to that standard is nonzero. Assume to the contrary that the flux
of H is zero. Then there exists a harmonic functioon £2 such that?d — & is bounded off
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a compact set. Extenfl to all of £2 by letting it be 0 onK. This extension is continuous,
since we assumed thét tends to 0 oK. Let xg € K. Then every relatively compact
regular neighborhood’ of xg has some boundary point outsiéfe(whereH is positive).
Thus

/Hdp)% > 0= H(xp),
AU

so H is subharmonic but not harmonic. L&t > 0 be a constant which is an upper bound
for H— h on all of 2. ThenM — (H — h) is a positive superharmonic function @,
hence it is a constant by Proposition 2.1 and Theorem 1.2. Fherh is constant sdf is
harmonic everywhere, a contradiction

Proposition 4.1. LetT be a BS tree rooted at If 2 is nonnegative bounded harmonic off
andh(e) =0, thenh must be identicall.

Proof. Let M be an upper bound df. Sinceh is subharmonic o, M — h is positive
superharmonic off, hence constant by Theorem 1.2, Tlius 0. O

Proposition 4.2. LetT be a BS tree rooted at There exists a functiod on T positive and
harmonic offe, unbounded, constant on siblinf., ifu= = w™, thenH (1) = H (w)),

such thatH (e) = 0 and AH(e) = 1. In particular, the linear extension off to T is

a standard.

Proof. Define H(v) by induction on|v|. SetH(e¢) =0, andH (v) = 1 for |v] = 1. Let
lv] =n > 1 and label the vertices on the geodesic path feoto v as vg, vy, ..., v,.
AssumeH has already been definedwgt 1 andv,—». Define

1 p(Vp—1,vy-2)
H(v,) = H(v,_1) — H(v,_ ).
(on) 1— p(Un—1, Vn—2) (on-1) 1— p(Vn-1, Vn—2) (on-2)

This definition corresponds to the harmonicity conditiom,at; :
H(vn-1) = p(vn-1, vn—2) H (v,—2) + (1 = p(vp-1, vn—Z))H(Un)-
ThusH (v,) is the solution to the second-order linear recurrence relation

1 n
Xn — Xn—1,
1-r,

Xptl =
mt 1-r,

wherer, = p(vy,, v,—1), With initial conditionsxg = 0 andx; = 1. Observe that, is an
increasing sequence, since

I'n

(Xp — xp-1), (12)

xn-l—l_xn:l .
—7In
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andxg < x1. Thus, the functiorff is necessarily unbounded by Proposition 4.1

Lete, =r,/(1—ry). Then(12) becomes,+1 — x, = €,€,—1 . . . €1, Whence using the
initial conditionx1 = 1 by induction, we obtait, .1 =1+ ;_;€1...€. Thusifve T,
n g |U|1 Iettlngfn(v) = p(vnv Un,l)/(l_ p(vl’lv Unfl))a we get

lv]-1

Hw)=14 ) e1(v)---ev). (13)

k=1

Let us analyze the case whenis the constant € [1/2,1). If r > 1/2, then

1 r
Xp = 1(6” —1), wheree = 1

€— —r

If r=1/2,thenx, =n. Thus

1 .
H(U)Z:G_l(ev—l) if r >1/2,
v] if r=1/2.

Brelot theory tells us that every harmonic functigndefined outside a finite set of
vertices in a BS tre& can be written as the sum of a function harmoniclgra certain
multiple of H, and a bounded harmonic function. Our aim is to give explicit formulas for
this representation of . As a first step we have

Theorem 4.3. Let T be a BS tree rooted at and let H be as in Propositiord.2. For
veT letvg,...,v, be the vertices on the geodesic path froto v. Lete, = 1 andw, =
Pn—1---po/(rn---ry) for v =n > 1, wherep; = p(v;, v;41) andr; = p(vj,vj_1). For
eachv € T there existsH, > 0 (unique up to an additive constgritarmonic except at
such thatA H, (v) = 1, and H, — a, H takes on a finite number of values. Thus

flux(Hy,) = ay.

Proof. Forv =e, let H, = H. By definition of flux, H, has the required properties. Now
assumev €T, |[v| =n > 1. Leta, by, ..., b, be constants to be determined later and let
H, be defined by

Hy,(u) =aHu) — by

if u is v or a descendant af, which is not a descendant of 1 fork=0,...,n—1, or
u is v or a descendant af in the casek = n. SinceH, is clearly harmonic off the path
[e, v], the problem reduces to finding constasi®o, .. ., b, such thatH, is harmonic at
eachvi, k=0,...,n—1,andAH,(v) = 1. In order forH, to be harmonic a¢, we need
(1— po)H,(u) + poH,(v1) — Hy(e) =0, whereu ~ e, u # v1. Thus

(1= po) (wH () — bo) + po(eH (v1) — b1) +bo =0.
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SinceAH (e) = 1, we obtain
pobo — pob1+a =0.

BecauseH is harmonic at eachy, k = 1,...,n — 1, harmonicity ofH, at v yields the
conditionrgby_1 + prbry1+ (L —ry — pr)by = by, whence

rebe—1 — (rk + pibr + prbis1=0, forl<k<n-—1.
Furthermore, the condition H,(v) = 1 yields
rn(H (Un—1) = bu—1) + (L = ro) (@ H (u) = by) — (@H (v) = by) =1, (14)
whereu is any descendant af SinceH is harmonic av, (14) reduces to
rnbn_1 —rpb, = —1.

Thus we obtain a system consisting:.ef 1 equations in the + 2 unknowndy, . .., b,, «
whose augmented matrix is given by

o —po 0 0 - 0 0 o 1 0
ri —(r1+p1) p1 o .- 0 0 0 00
0 ra —(r2+p2) p2 --- O 0 0 0 0
0 0 0 0 -+ rm-1 —(n-1+pu-1) pa1 0 O
0 0 0 o .- 0 Tn -r, 0 -1

By an elementary row reduction we see that the system is consistent ar that free
variable. The general solution is given by

1 n—=1 n-1
b”_r_<1+ Z ]_[?> forO<k<n-—2,
n J

bk = m=k+1 j=m
1
b, — — fork=n—-1,
I'n
Pn—1---p1po
o= —— = Uy.
rn DY rzrl

In particular, if we choosé,, < 0, thenH,, is positive. Notice thaH, — «, H is bounded
and so the flux o, equalsx,. O

We can now calculate the flux at infinity of a functighwhich is harmonic outside
a complete finite sek .
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Theorem 4.4. Under the hypotheses of Theordn3, let f be harmonic outside a finite
complete subtre& . Then

ﬂUX(f)=Z[au > p(v,u)f(u)+(aap(ﬁ,v)—av)f(v)}
vedK u~v,u¢kK

wherev is the unique vertex il which is a neighbor ob. If we extendf to beOinsidek,
we obtain

flux(f)= D Af@a, (15)

ved KUK
wherek = {v: vedK}.

Proof. The extended functiorf is harmonic except 08K U K. Thus the functionf —
Y veakui Af (v)H, is harmonic everywhere and so by Observation 4.1 and Theorem 4.3,
we get

flux(f)= Y AfOAuxH)= > Af@ay.

ved KUK ved KUK
Now, forv € 9K,
Afy= Y pu)fw)— f), (16)
u~v,u¢k
and forw € K,
Afwy= Y pw,v)f (). (17)
vedK, v=w

The result follows from(16) and(17). O

Using Theorem 4.1, we can now get explicit constructions of all the parameters in the
definition of flux. Observing that by Theorem 48, — o, H takes on finitely many values
we get

Corollary 4.1. Let f be harmonic in the complement of a complete finite set of verkices
and extendf to beOon K. Set

o = Z Af (Vo h=f— Z Af(v)H,, and
ved KUK ved KUK

b= Y Af@)(H, —a,H).
ved KUK

Thenh is harmonic onT, b is bounded, and —h —aH =b.
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Proof. Extendf insideK by definingf|[% = 0. In the proof of Corollary 4.4, we saw that
the function

h=f- Y Af@H,

ved KUK

is harmonic onT'. Seta, = flux(H,) anda = flux(f). SinceH, — o, H is bounded, by
(15) we see that

f—h—aH= )" Af@)(H,—a,H),

vedKUK

a bounded function. O

We end the section with an interesting result on the growth of positive superharmonic
functions on a BS tree.

Theorem 4.5. Let T be a BS tree and lek be a finite set of vertices. Letbe a function
on T which is positive superharmonic @\ K. Thens is increasing along each ray in the
complement oK. Thatis, if[vo, vy, ...] is a ray not intersectind, thens (v;) <s(vj+1)
for all j > 0. Furthermore, ifs(v;) = s(v;+1) for somej, thens must be constant in the
sector determined bjw;, vj1].

Proof. Since the random walk associated withis recurrent, the functioF on T' x

T defined before Proposition 1.1 is identically 1. The first part of the result follows
immediately from part (a) of Proposition 1.2 applied to a sectdf\iK UK. If s(v;) =
s(vj4+1) < s(w) for somej, wherev;y1 € [vj, w], then by the first part the mean valuesof

at the neighbors ob; 1 would be bigger thar(v;11), contradicting superharmonicity.
Thuss(v;) =s(vj+1) = s(w). Hences must be constant on the seciv;, v;11). O

Potential theory on BS trees has received less attention in the literature than potential
theory on BP trees. In a future paper [6], we shall extend and expand the results of this
section.

5. Conditionsfor transienceon atree

Given atre€r” rooted at, letw be a boundary point df which is not a terminal vertex.
Let us denote by, the vertex of lengthr in the unique geodesic path franin the classo.
For eacthn > 1, set

p(wp, wp—1)

en(@) =77 p(wn, wp—1)

Define H*(w) = 1+ ) 2s€1(w)e2(w) - - - €x—1(w) = lim,_.o0 H(wy,), Where H is the
functionin (13).
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Theorem 5.1. (a) If T is a tree whose random walk is transient, then there exists some
w € 3T such thatH*(w) < oo.
(b) If H* is bounded, then the random walk ®ris transient.

Proof. The random walk off" is transient if and only iff* is a BP space. As in the proof
of Proposition 4.2H is harmonic except atandA H (e¢) = 1. ExtendH linearly to T.

Assume thaf is a BP space. Then by Theorem 32 = h + b whereh is harmonic
everywhere and is bounded. LeB, ={v € T: |v| <n}. Then

h(e):/HdpeB"—/bdpeB".

9By 0By

Sinceb is bounded and constants are harmogﬁ},% Hd,oe " is bounded. In particular,
if v, is @ minimum point forH on 9By, then{H(v,,)} is bounded. By the compactness
of T U AT and the fact tha¥’ is discrete, there is ata € T which is the limit of some
subsequence @b, }, whenceH *(w) < oo, proving (a).

Next, assume that/* is bounded by some constam. ThenM — H is a positive
nonconstant superharmonic function. Thiids a BP space by Theorem 1.20

The following theorem is clearly much stronger than (b) of Theorem 5.1. The reason
we left Theorem 5.1 as it stands is that it is a purely combinatorial statement, yet its proof
is purely Brelot theoretic.

Theorem 5.2. If H* is finite on an interval, then the random walk @ns transient.
Proof. First we show that if?* is bounded on an interval, then the random walklois

transient. Assumé/ * is bounded orl,, wherev is a vertex of lengthv. Let Tp be the tree
consisting of the descendantsofOn Ty define the transition probabilities

p(w, u) if w+#v,
po(w, u) = { _pww e,y
1—p(w,w™) '

Let Hp be the analogue of the functidii on Ty viewed as a tree rooted atlet w € Tp be
a descendant af at distancen. Then

N+m

Hw) =14 ) e(w)--e_1(w)
k=2

N N+m
1+Z€l(w)"'€k—l(w)+€1(w)""5N(w)(1+ Z eN+1(w)---6k—1(w)>

k=N+2
= A+ BHo(w),
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where A and B are constants. Sinc&* is bounded onl,, Hj is bounded on the
nonterminal vertices 0§ Tp. By Theorem 5.1, the random walk @i is transient. Thus,
letting F and Fp be the functions corresponding to the trgesand Tp defined before
Proposition 1.1, we obtain th@y (v, v) < 1. But

F,v)=pw, v )F ,v)+ Z pv, w)F(w,v),

wT=v
by part (d) of Proposition 1.1. Sind&(w, v) = F(w, v) for w™ = v, we have

Fow.v)= Y pov.w)F(w,v)= Y %F(w,vx

S0Y ,-—p P, W) F(w,v) = (1— p(v,v7))Fo(v, v). Thus
F(,v)=pw, v )F@v ,v)+ (1 — p(v, v_))Fo(v, v)<p,v )+1—p,v)=01

Therefore, the random walk dhis transient.

Next, assumed ™ is finite but unbounded o#, for somev € T, and that the random
walk on T is recurrent. Sincéd* is unbounded or,, H is unbounded or§,, the set
of descendants af. Pick v1 € S, such thatH (v1) > 1. Since the random walk of is
recurrent, by the first part of the proéf* is unbounded of,,. Thus H is unbounded
on S,, and so there exists € S,, such thatd (v2) > 2. Inductively, we obtain a sequence
{vn}nen such thatv,y1 is a descendant of, for all » and H(v,) > n. Let w be the
equivalence class of the r@y;, vo, ...]. Then

H*(w)= lim H(v,) = o0,
n—00

which is a contradiction. Consequently Af* is finite on1,, then the random walk ofi
must be transient. O

Corollary 5.1. Let T be a tree rooted at¢ and letr € (0, 1/2). Assume there existg € T
such that for each descendanof vg, p(u,u™) < r. ThenT is transient.

Proof. For every descendantof vg, we have

<1 foralln > |vgl.

p
€ (1) < 1—-,

ThusH* is bounded or,,. The conclusion follows at once from Theorem 5.23

The next example shows that finiteness of the funcfibnat a single boundary point
does not guarantee transience.
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Example 5.1. Let T be a homogeneous tree of degree 3 rooted athose transition
probabilities are as follows. Fiyp € (0,1/3] and an infinite rayp = [vgp = e, v1, ...).
Define p(v,, vy—1) = 1/3, p(vy, ny1) = p, p(vp, w) =g for w ~v,, w ¢ p, forn > 1,
ple,v)=1/3for|v| =1, p(v_,v) =1/4, p(v,v™) = 1/2 for all other values of. Thus
p+q+1/3=1.Foreach € N, letw, be the neighbor of,, which does not lie op.

Let 7> be the tree of Example 4.1 with= 2. Observe that except for the probabilities
starting along, T» andT are exactly the same. Since foral¢ p, Fv’)v_ with respect tdl’
is the same as the corresponding set with respel,té’ (v, v™) is the same for both sets.
But the random walk o is recurrent, s& (v, v—) = 1. In particular,F (wy, v,) = 1 for
alln e N.

Next observe that the subtree consisting of the descendanjsi®isomorphic to the
subtree of descendants®f; 1. ThusF (v,+1, v,) = F(vy42, vy41) for all n > 0. Call this
common values.

By the multiplicative property of",

1
F(vpq1,vp) = :_3 + pF(Vng2, Vny1) F(Una1, vp) + g F (Wi 1, vpg 1) F(Vpg1, va),

or B =1/3+ pp%+ ¢p. Sinceq =2/3 — p, we obtaind =1 or g =1/(3p). But g < 1
and %/ (3p) > 1, thus we must havg = 1. Thus for every neighbar of vg, F(v,vp) =1
and so by part (d) of Proposition 1.1, we d&tvg, vo) = 1 and thus the random walk @h
is recurrent.

Observe that sincel/3)/(1— 1/3) =1/2, if w is the equivalence class pf then

o0 1 k—1
H*(a))=2<§> < o0.

k=1

In a forthcoming note, we shall show that fof3l< p < 2/3, 8 =1/(3p) <1, so
that the random walk off is transient. On the other hand, the functiddisand H* are
independent op.

6. Other Brelot structureson atree

We now consider other harmonic structures on a tree.aFix 0 and consider the
functions onT" which are the eigenfunctions of the Laplacian with eigenvafue f (v) =
a®f(v) forall v e T. These correspond to theharmonic functions of Definition 1.3 where
A =a? + 1. Defining the operatat = A — 4?1, theharmonic functionshat we study now
are the elements of the kernel bf If Lf = 0, extendf on each edggv, u] by means of
the solution to the Helmholtz equatioti = a?y given by:

F(A=nDv+ru)=E0-0f)+E0) fw),
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where for 0<r <1,

gl _ gat
0 =——
Notice thatt” (1) = a%(¢). Extendingf gives us arL-harmonic function orf'.

We now give the local definition of.-harmonic. LetU be an open set iff and
f a continuous function or/. Assume firstx = (1 — fo)v + rou, with 0 < 19 < 1,
v,u € T. Define f to be L-harmonic atx if there existb,c € R ande > 0 such that
f(A=tv+rtu)=EA—1)b+ &@)c forall ¢, |t — rg] < €. Observe that the function
g(t) = f((1 —1)v + ru) satisfies the equatiogl’ (1) = a?g(r) (in fact, this is equivalent
to L-harmonicity on the edge).

If x =v e T, v notaterminal vertex, we say thitis L-harmonic ab if for somee > 0
and for allz € (0, ¢)

[ )——Zp(v ) f((L =) +rtu),

u~v

whereq is the function ori0, 1] mapping 0 to 1 and 1 td given by
a(t) =L —1)+ AE(@).

We now say thatf is L-harmonic onU if it is L-harmonic at eachr € U, x not
a terminal vertex of”. The first Brelot space axiom clearly holds.

Consider the base of domains defined bydHgalls as in Section 2. We show that we
can solve the Dirichlet problem on each such domain. Fixing a vertéor any neighbor
u of v, letu, = (1 — t)v + ru. Let us first solve the Dirichlet problem on a neighborhood
of x = uyy, with v,u € T, 0 < 19 < 1 by taking this neighborhood to bg. (x), where
e < min{rg, 1—1o}. If f is defined ord Be (x) = {us+e}, thenf can be extended as follows:

flu) = g(z ) ——[E(e+10—1) f (uig—e) + (€ —t0+1) f (urgre) ]

for |t — 10| < €. By construction,f is L-harmonic insideB. (x).
Next, letx = v € T, wherev is a nonterminal vertex. For @ € < 1, 0B.(x) =
{ue: u~ v} If fis defined ord B<(x), then let

f)=—— Zp(v ) f (ue) (18)

and

flu) = Ee—0)f()+&E0) fue)], for0O<r<e

«5()[

Thus the second axiom of Brelot is satisfied.
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If all the neighbors ofy and the corresponding edges are contained,iri18) implies
thataf (v) =3, p(v, u) f ().

The proof of the third axiom of Brelot is almost identical to that which was given in the
proof of Theorem 2.1. Thus thie-harmonic functions give a Brelot structure on

Notice that under this structur, is not a BH space since the nonzero constants are not
L-harmonic. In the remainder of this section we shall assume that the harmonic structure
onT is induced by the operatdr= A — a?I, fora > 0.

Observation 6.1. By Observation 1.2, it is L-superharmonic of,v~weT,x, y €
[v,w], and O< ¢ < 1, then

s(A=nx +1y) > (A= Dx +1y) =E@A = D)s(x) +EDs ().

Moreover, foranw € T,and O<r < 1,

1
s(v) > hf\taB,(U) = o) Zp(v, u)s((l —Hv+ tu)

u~v
1

> 5 2P0 05w +£0sw)

u~v

(5(1 —0s@) +E1D) Y pl, u)s(u)),

u~v

L
()

whencers(v) > )", p(v, u)s(u). In particulars|7T is A-superharmonic off'.

Proposition 6.1. Lets be A-superharmonigrespectivelyp-harmoniq on any treeT". Then
the extension of defined on the edges by

s((l— Hv + tw) =£A-0s)+EM)s(w), forallreO,1),v,weT
is L-superharmonigrespectivelyL-harmonig on 7.

Proof. First observe that restricted to the interior of each edgelisharmonic, hence
L-superharmonic there. Next, lete T and O< ¢ < 1. Then

Yo p@ws(A-vteu) = Y pu.wEL—)s@) + Y pv.u)s(€)su)

= EL—e)s() +&@©) Y p(v,u)s(u)

< EL—e)s(v) +2E(e)s(v) = a(e)s(v), (19)

proving L-superharmonicity at each vertexIf s is A-harmonic, the inequality in (19) is
an equality, provind.-harmonicity on7. O
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Definition 6.1. We shall call the extension afin Proposition 6.1 thé&-extensiorof s.

Proposition 6.2. If s is L-superharmonic off’, thens is finite-valued.

Proof. First, assume(v) = oo for somev € T. Then for eacht ~ v and each € (0, 1),
s((A—0v+1tu) = EA—1)s(v) +E@)s(u),

sos is identically infinity on[v, u). On the other hand, by Observation 6.1,

ds() = ) plu, wys(w) = oo,

w~u

sincev is a neighbor of: ands(v) = co. Thus,s is identically infinity on the whole edge
[v, u]. By connectedness,= oo on T, contradictingL-superharmonicity.

Next, assume(x) = oo, for somex in the interior of the edgév, u]. Then, for each
t€(0,1),s(L—tv+tx) =2EA—1)s(v) +&£@)s(x) =oo. Similarly,s(L — t)u +tx) >
E(L—1t)s(u) + £(t)s(x) = co. Sos is infinity on (v, u). Again by L-superharmonicity,
s() = (1/a(€)) Y,y PV, w)s((L — €)v + ew) = co0. Thus,s(v) = co. By the first case,
we get a contradiction, completing the proofa

Proposition 6.3. Let T be any tree. Then the spafmnderthe harmonic structure induced
by L = A — a?I has potentials.

Proof. As above, leth = a? + 1. Observe that the positive constants are positive
superharmonic but ndt-harmonic. Thus, by Theorem 1.2,has potentials. O

Let T be a homogeneous tree of deggee 1 and, as in Section 1.1, let= ((g + DA —

V(g + 1212 — 4q)/(29) which is the smaller positive root of the quadratic equation
associated with the recurrence relation (1), anglbe the larger.

Proposition 6.4. The functionp(v) = «!’!, v € T, is a potential on7 with harmonic
support at{e} with respect to the structure induced by

Proof. Assumev € T, |v| =n > 0. Then

qan+l+an71 B qa—i—a*l
qg+1 - g+1

n1p(v) = p(v) = Ap(v).

Thus Lp(v) = 0 for all v # e. Furthermoreu1p(e) = o, SO Lp(e) = @ — A, a negative
number. Thusp is positive A-superharmonic and.-harmonic off e. Assume# is
a nonnegative-harmonic function such th@t< p. Leth be the radialization of, i.e.,

~ 1
h)y=— > hw),

C
T =)
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where ¢, is the number of vertices of length. Since’ is nonnegative, G h < p.
Furthermoref is A-harmonic.
If v, is any vertex of length, then

- 1 - -
ﬁh(vnm + e =2

(which is the recurrence relation (1)) for > 2, and i(v1) = Ah(e). Thus h(v,) =
cof"™ + c1a” and 0< ¢cgB" + c1a™ < " for all n. Sincep > «, it follows thatco = 0,
soh is a multiple of p. On the other hand, singeis not harmonic a¢, ¢c1 = 0. Thush is
identically 0, whencé = 0. Thereforep is a potential. O

Observation 6.2. In this homogeneous case, the Green function fol tliperator is given
by

1
Gu,v)=Gyu) = )L—ocd(“’”).

Let T be any treeq > 0, » = a? + 1. Define the operataf on the space of functions
onT by

G= Z A" K1,
Jj=0

Wherey,{ is the j-fold composition of the operatqr; with itself. Notice that fora > 0,
A > 1 and so by Observation 1.§; is a bounded operator of norifG|| < 1/(A» — 1).
Furthermore

I +pu1G=14+Guy1=2xG. (20)
Proposition 6.5. Let f be a nonnegative function on a trdé Then either there is no
nonnegative solutionto Ls = — f, or Gf is a nonnegative solution and any nonnegative

solutions to Ls = — f satisfies the inequality> Gf.

Proof. Assume there exists: T — [0, o) such thatLs = — f. Thenuis — As = — f, SO

1 +1f—
Aﬂls S =s.

Composing withu yields
L2 + ! f=pis=xs—f.
Auls )»Ml = 1S = AS s

whence

11 1,
S=xf+ﬁﬂlf+ﬁﬂlso
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By induction, it follows that for alk € N

1.1 1, 1 1 .1, 1 1,
s = xf‘f‘ﬁﬂlf‘f‘"“f‘kﬁ_lﬂlf‘i‘An+1ll«1 S?xf‘i‘ﬁﬂlf‘i‘""i‘wﬂlfo
Lettingn — oo, we deduce > Gf. ThusGf <ooand by (20)LGf=—f. O
We now show tha& induces the Green function dhx T.

Proposition 6.6. Let v € T. Then the function off defined byG, = G4, is a potential
on T with harmonic support atv}. Furthermore, every potential with harmonic support
at v is a positive multiple o6 ,,.

Proof. SinceLG, = —§, < 0, G, is positive L-superharmonic orf" and L-harmonic
on T\{v}. If A is an L-harmonic minorant ofG,, then L(G, — h) = —§,, SO by
Proposition 6.5G, — h > G,. It follows thath < 0. ThusG, is a potential.

Let p be a potential with harmonic support at By scaling, it suffices to show
that if Lp(v) = —1, thenp = G,. Thus, assumind.p(v) = —1, Lp = —§,. Applying
Proposition 6.5 tof = 4§, ands = p, we obtainp > G,. Buth = p — G, is nhonnegative
L-harmonic andt < p. Thush =0, whencep =G,. O

Recall the axiom of proportionality (Definition 1.14).

Theorem 6.1. Let T be any tree. Then the axiom of proportionality holds founder the
Brelot structure given by..

Proof. If p1 and p, are potentials off' with harmonic support at € T, then p1|T and
p2|T are potentials o” with the same harmonic point support. Thus, by Proposition 6.6,
they are multiples of one another. So assymand p, are potentials ofit with harmonic
support atx € (v, w), wherev,w € T. Then p1 and p, are potentials orf" which are
L-harmonic except possibly at, w. Thus off [v, w], p; = «;G, + B;Gy, for some
aj,B;=0,j=12. Let Gf, be the&-extension ofG,. Nearv, define(N}% to be Gf, off

(v, w), while fory = (1 — s)v + sw, 0< s < 1, define

GS(y) =E(L—5)Gy(v) + £(5) G (w),

whereG, (w) is the quantity defined by

2Gy ()= p,u)Gy() + p(v, w)Gy(w).
uFw

DefineG ,(v) by reversing the roles af andw. Then forj =1, 2,

b — «;Gy+ ;G5 onfv,x],
/ a./G§+ﬂjGi} on[x, w].
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Soforx=(1-1tv+tw,0<r <1, we have
pj(x) =a;G(x) + B;G5,(x) =a;GE(x) + B GE, (x).
This fixesa; /B8, j =1, 2. Moreover

@i [E(L—DGu) +ENOGo(w)] + Bi[EL— )Guw (V) +E1) Gy (w)]
=a;[EL—DGy) +ENOGy ()] + B;[EL - )G @) + EOGuw(w)].
Thus
ajE([Gy(w) — Gy(w)] = BjE(L — D[Gw (V) — Guw®)].

Consequently,

o1 ap E(1-1) [éw(w — Gw(v>]

Bi B2 EW) LGy(w)— Gy(w)

proving proportionality. O

By Theorem 6.1 and Theorem 3.4, we know that there is a Green functigh 8y
Observation 3.1, we obtain

Corollary 6.1. If T is any tree, then the Green functigh on T under the structure
inherited by the operatok can be chosen so that its restrictionTox T equals the Green
function of Propositior6.6.
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