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Abstract

A Brelot space is a connected, locally compact, noncompact Hausdorff space together w
choice of a sheaf of functions on this space which are calledharmonic. We prove that by considerin
functions on a tree to be functions on the edges as well as on the vertices (instead of just
vertices), a tree becomes a Brelot space. This leads to many results on the potential theory of t
restricting the functions just to the vertices, we obtain several new results on the potential th
trees considered in the usual sense. We study trees whose nearest-neighbor transition probab
defined by both transient and recurrent random walks. Besides the usual case of harmonic fu
on trees (the kernel of the Laplace operator), we also consider as “harmonic” the eigenfunct
the Laplacian relative to a positive eigenvalue showing that these also yield a Brelot structu
creating new classes of functions for the study of potential theory on trees.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In recent years there has been considerable attention to discretizations of many c
problems in harmonic analysis, potential theory, and geometry (e.g., see [10–12,14
22]). While trying to answer several questions from potential theory in the environme
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trees, we became aware that trees, identified with their set of vertices, behave like
spaces, but miss one fundamental property: connectedness. In this article, we sh
viewing them as connected graphs, that is, their elements are either vertices or point
edges, trees can be endowed with a metric structure for which all topological require
of Brelot spaces hold. In addition, by extending harmonic functions on trees (intend
functions on the vertices) along the edges linearly, we obtain a class of harmonic fun
satisfying the three axioms of Brelot spaces. Using the tools of Brelot theory, we
derive many properties that hold on trees that were not previously known and relate
results to the potential theoretic aspects of trees that had been developed by Cartie
under the more restrictive assumption that the transition probabilities be transient.

Before giving the specific findings of this research, we give a brief overview on
and on Brelot spaces.

1.1. Trees

A tree is a locally finite connected graph with no loops, which, as a set, is iden
with the collection of its vertices. Two verticesv andw of a tree are calledneighborsif
there is an edge connecting them, in which case we use the notationv ∼ w. A path is a
finite or infinite sequence of vertices[v0, v1, . . .] such thatvk ∼ vk+1. A geodesic pathis
a path[v0, v1, . . .] such thatvk−1 �= vk+1 for all k. An infinite geodesic path is also calle
a ray. If u andv are any vertices, we denote by[u,v] the unique geodesic path joinin
them. A vertex is said to beterminal if it has a single neighbor.

Definition 1.1. Given a finite subtreeS of T , the interior of S is the setS̊ consisting of
all verticesv ∈ S such that every vertex ofT which is a neighbor ofv belongs toS. The
boundaryof S in T is defined as the set∂S of all verticesv ∈ S such that exactly on
neighborṽ of v is in S. We say thatS is acompletesubtree ofT if S = S̊ ∪ ∂S.

A treeT may be endowed with a metricd as follows. Ifu,v are vertices,d(u, v) is the
number of edges in the unique geodesic path fromu to v. Given a roote, the lengthof a
vertexv is defined as|v| = d(e, v).

Given two neighboring verticesv,w, thesectordetermined by the edge[v,w] is defined
as

S(v,w)= {u ∈ T : w is in the geodesic path joiningv to u}.

Fixing e as a root of the tree, thepredecessoru− of a vertexu, with u �= e, is the next
to the last vertex of the geodesic path frome to u. An ancestorof u is any vertex in the
geodesic path frome to u−. A descendantof a vertexv is a vertexw such thatv is an
ancestor ofw. We call children of a vertexv the verticesu such thatu− = v. We call
siblingsvertices with the same predecessor.

The boundary∂T of T is the set of equivalence classes of rays under the relatio�
defined by the shift,[v0, v1, . . .] � [v1, v2, . . .], together with the set of terminal vertice
For any nonterminal vertexu, we denote by[u,ω) the (unique) ray starting atu in the
classω, or the geodesic path fromu to ω if ω is a terminal vertex. Then∂T can be
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identified with the set of rays starting atu together with the terminal vertices. Furthermo
∂T is a compact space under the topology generated by the sets

Iv = {
ω ∈ ∂T : v ∈ [e,ω)}

which we callintervals.
We now define a metric onT whose completion isT ∪ ∂T . If v ∼w, defineρ(v,w)=

1/m2 wherem= max{|v|, |w|}. If v andw are any vertices and[v,w] is the geodesic pat
[v1, . . . , vN ], with vk ∼ vk+1, let

ρ(v,w)=
N∑
k=1

ρ(vk, vk+1).

(Of course,ρ(v, v) = 0 for eachv ∈ T .) Observe thatρ(v,w) < π2/3. The completion
of T with respect to this metric isT ∪ ∂T , which is sequentially compact and hen
compact, as a completion of a bounded countable space. On∂T this metric topology is the
same as the topology defined earlier. For an alternate proof of the compactness ofT ∪ ∂T
see [11].

A distribution is a finitely additive complex measure on finite unions of the setsIv . Let
us denote byD the space of finite-valued distributions on∂T .

Eachω ∈ ∂T induces an orientation on the edges ofT : [u,v] is positively orientedif
v ∈ [u,ω). For ω ∈ ∂T , andv ∈ T , define thehorocycle indexkω(v) as the number o
positively oriented edges minus the number of negatively oriented edges in the ge
path frome to v.

Given a treeT , let p be anearest-neighbor transition probabilityon the vertices ofT ,
that is,p(v,u) > 0, if v andu are neighbors,p(v,u) = 0, if v andu are not neighbors. I
is convenient to setp(v, v)= −1, so that for each vertexv, we have

∑
u p(v,u)= 0.

Two treesT andT ′ with transition probabilitiesp andp′, respectively, are said to b
isomorphicif there exists a bijectionϕ from the vertices ofT to the vertices ofT ′ such
thatp(ϕ(v),ϕ(u))= p(v,u) for all v,u ∈ T .

As is customary, a function on a treeT will mean a function on its set of vertices. Th
Laplacianof a functionf :T → C is defined as

�f (v)=
∑
u∈T

p(v,u)f (u) for all nonterminal verticesv ∈ T .

Definition 1.2. A function f on T is said to beharmonicat v if �f (v) = 0. A real-
valued functions on T is said to besuperharmonic(respectively,subharmonic) at v if
�s(v) � 0 (respectively,�s(v) � 0). A potential is a positive superharmonic functio
which does not have any positive harmonic minorants. A superharmonic functions on T
is said to beadmissibleif there is a finite setK and a harmonic functionh on T \K such
thath(x)� s(x) for all x /∈K.

A harmonic function defined off a finite set of vertices does not necessarily exte
a harmonic function on the whole tree as the following example shows.
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Let v0 ∈ T with |v0| = 1 and defineh on T excepte by letting h(v) = 1 if v is
a descendant ofv0 or v = v0 andh(v) = 0 otherwise. Thenh is harmonic except at th
set of all v with |v| � 1, but in order forh to be harmonic atv0, h(e) would have to
be 1. Forh to be harmonic atu �= v0, |u| = 1, h(e) would have to be 0. Thush cannot be
extended to a harmonic function onT .

By a homogeneous treeof degreeq + 1 (with q ∈ N) we mean a treeT all of whose
vertices haveq + 1 neighbors and, unless otherwise specified, whose associated n
neighbor transition probability isp(v,u) = 1/(q + 1) if v andu are neighbors. IfT is
homogenous of degreeq + 1, the Poisson kernel is then given by

Pω(v)= qkω(v) for v ∈ T , ω ∈ ∂T ,

since it satisfies the following properties analogous to those that hold in the cla
case [22]:

(i) For anyω ∈ ∂T , v �→ Pω(v) is a harmonic function onT .
(ii) If µ ∈ D, then the function defined by the Poisson integral

f (v)=
∫
∂T

Pω(v)dµ(ω)

is well-defined and harmonic onT . Conversely, every harmonic functionf on T has
such an integral representation for some uniqueµ ∈D.

Let T be a tree with a nearest neighbor transition probabilityp. If γ = [v0, . . . , vn] is
a path, setp(γ ) =∏n

j=1p(vj−1, vj ). For v,w ∈ T , let Γv,w be the set of all finite path
from v tow, and letΓ ′

v,w be the set of finite paths of positive length fromv tow that visit
w after the first step only once, that is,

Γ ′
v,w = {[v0, . . . , vn] ∈ Γv,w: vj �=w for 0< j < n, n� 1

}
.

Define the Green functionG of T as G(v,w) = ∑
γ∈Γv,w p(γ ), and the function

F(v,w) =∑
γ∈Γ ′

v,w
p(γ ). Probabilistically,G(v,w) is the expected number of times t

associated random walk starting atv visitsw, andF(v,w) is the probability that a random
walk starting atv will ever reachw in positive time. In [11] it is shown that ifG(v,w) is
finite for some verticesv andw, then it is finite for all pairs of vertices inT . This means
that the associated random walk is transient. This is equivalent to saying thatF restricted
to the diagonal ofT ×T is always less than 1. IfG is infinite, the random walk is recurren
sinceF is identically 1. It is well known (see Appendix by Picardello and Woess of [
that if there existsδ > 0 such thatδ < p(v,w) < 1

2 − δ for all v ∼w, then the random wal
is transient.

Proposition 1.1 [11]. Letv,w be distinct vertices and let[v0, . . . , vn] be the geodesic pat
from v = v0 tow= vn. Then
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(a) G(v,w)= F(v,w)G(w,w);
(b) G(v, v)= 1/(1− F(v, v));
(c) F(v,w)=∏n−1

k=0F(vk, vk+1);
(d) F(v, v)=∑

u∼v p(v,u)F (u, v).

Proposition 1.2 [15]. (a) If s is positive superharmonic on a sectorS(v,w), where
v,w ∈ T are neighboring vertices, then

F(w,v)s(v) � s(w).

(b) If s is positive superharmonic onT , then for any pair of neighboring verticesv
andw,

F(v,w)� s(v)

s(w)
� 1

F(w,v)
.

In recent years, eigenfunctions of the Laplacian on homogeneous trees hav
studied (cf. [12,20]). LetT be a tree and letµ1 denote the averaging operator of the verti
at distance 1, that is

µ1f (v)=
∑
w∼v

p(v,w)f (w).

Observation 1.1. As an operator on any Banach space of functions,µ1 has norm less tha
or equal to 1.

Definition 1.3. Let T be a tree andλ be a nonzero complex number. A functionf
onT is said to beλ-harmonic(respectively,λ-superharmonic) if µ1f = λf (respectively,
µ1f � λf ).

Thus theλ-harmonic functions are the eigenfunctions of the Laplacian relativ
the eigenvalueλ − 1. In particular, the ordinary harmonic functions are the 1-harm
functions.

In [20], the authors showed that in the homogeneous case the correspondence

f �→
∫
∂T

Pω(v)
ζ dµ(ω)

maps harmonic functions toλ-harmonic functions, wherePω(v) = Pω(e, v) and λ =
(qζ + qζ−1)/(q + 1). In [12], a different operator from the space of harmonic function
the space ofλ-harmonic functions, local in nature, was introduced and studied.

A λ-harmonic function of considerable interest on homogeneous trees is given
spherical functionϕλ (cf. [14]). It is the only radialλ-harmonic function (that is, the valu
at a vertexv depends only on|v|) satisfying the conditionϕλ(e)= 1.

The values ofϕλ are given byϕλ(v)= qn(λ) for anyv of lengthn, whereqn(λ) is the
polynomial of degreen in λ satisfying the recursive relation
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qn+1(λ)= q + 1

q
λqn(λ)− 1

q
qn−1(λ), for n� 1, (1)

with the initial conditionsq0(λ)= 1 andq1(λ)= λ (cf. [14]). If λ > 2
√
q/(q+1), then the

roots of the quadratic equation corresponding to the recurrence relation are both p
and given by

(q + 1)λ±√
(q + 1)2λ2 − 4q

2q
.

Let α denote the smaller one and letβ denote the other. Thus

ϕλ(v)= qn(λ)=Aβn +Bαn, (2)

whereA = (λ − α)/(β − α), B = (β − λ)/(β − α). Thereforeϕλ(v) > 0 for all λ >
2
√
q/(q + 1), and hence for allλ > 1.

1.2. Brelot spaces

The field of potential theory goes back to the nineteenth century, with the
following the research done by Gauss in 1840. Since then, many axiomatic trea
of the theory have been formulated. For a survey of the different developments of po
theory and a historical context, see [8]. We shall now give the main outline of the axio
theory of harmonic and superharmonic functions developed by Brelot (see [7]).

Definition 1.4. A Brelot spaceis a connected locally compact but not compact Hausd
spaceΩ together with a harmonic structure in the following sense. For each ope
U ⊂ Ω there is an associated real vector space of real-valued continuous functionsU

(which are calledharmonic functions onU ) satisfying the following three axioms.

Axiom 1. (i) If U0 is an open subset ofU , the restriction toU0 of any function harmonic
onU is harmonic onU0.

(ii) A function defined on an open setU which is harmonic on an open neighborhood
each point ofU is harmonic onU .

Definition 1.5. An open setU is calledregular if it is relatively compact inΩ and for
any real-valued continuous functionf on∂U , there exists a unique harmonic functionhUf
onU approachingf at each point of∂U . Furthermore,hUf is nonnegative wheneverf is
nonnegative.

Axiom 2. There exists a base of regular domains for the open sets ofΩ .

In particular,Ω is locally connected.
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Axiom 3 (Harnack’s property).Any increasing directed family of harmonic functio
defined on a domainU has upper envelope(supremum) which is either identically+∞
or is harmonic onU .

Remark 1.1. If Ω is second countable, Axiom 3 is equivalent to the correspon
statement for increasing sequences rather than directed families.

Definition 1.6. Let Ω be a Brelot space,U an open subset ofΩ , x0 ∈ ∂U . A barrier for
U at x0 is a positive harmonic functionh defined in the intersection ofU and an open
neighborhood ofx0 such that

lim
x∈U,x→x0

h(x)= 0.

If such a barrier exists, we say thatx0 is aregular boundary pointof U .

Definition 1.7. A compact subsetK of a Brelot spaceΩ is outer regularif every point
of ∂K has a barrier forΩ\K.

Definition 1.8. Given a regular open setU , for any x ∈ U , the mapf �→ hUf (x) is
a positive linear functional on the space of the continuous functions on∂U . By the Riesz
representation theorem, there exists a positive Radon measureρUx on∂U , calledharmonic
measure relative toU andx such that

hUf (x)=
∫
∂U

f dρUx .

Let Ω be a Brelot space and letU be a regular domain inΩ . Assumeg is a lower
semi-continuous function bounded below on∂U . Then, for eachx ∈ U define∫

∂U

g dρUx = sup
∫
∂U

f dρUx ,

where the supremum is taken over all continuous functionsf on ∂U such thatf � g. By
Axiom 3, x �→ ∫

g dρUx is either harmonic or identically+∞.

Definition 1.9. Let U0 be an open subset of a Brelot spaceΩ . A function s :U0 →
(−∞,∞], is said to besuperharmonicif

(1) it is lower semi-continuous;
(2) for any regular domainU with closure contained inU0,

s(x)�
∫
∂U

s dρUx for eachx ∈ U ;

(3) s is not identically∞ on any connected component ofU0.
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Theharmonic supportof a superharmonic functions is the complement of the large
open set wheres is harmonic.

Observation 1.2. Condition(2) of Definition 1.9 says thats � hUs|∂U on any regular domain
U whose closure is contained inU0 provided thats|∂U is continuous.

Definition 1.10. A subsetA of a Brelot spaceΩ is said to be apolar set if there exists
a positive superharmonic function onΩ whose restriction toA is identically∞. A setA is
locally polar if there exists a superharmonic function onΩ which is identically∞ onA.

In a Brelot space, the minimum principle for superharmonic functions holds:

Theorem 1.1 [7, p. 71].A nonnegative superharmonic function on a domainU in a Brelot
space is either identically zero or positive everywhere onU .

Any nonnegative superharmonic function which has a harmonic minorant has a g
harmonic minorant (see [7, p. 87]).

Definition 1.11. A superharmonic functions on a Brelot spaceΩ is said to beadmissible
if there is a compact setK and a harmonic functionh onΩ\K such thath(x)� s(x) for
all x /∈K.

Clearly, positive superharmonic functions and superharmonic functions of com
harmonic support are admissible.

Definition 1.12. A nonnegative superharmonic function on an open subsetU of a Brelot
space is called apositive potential(or briefly, apotential) if its greatest harmonic minoran
onU is identically zero.

Definition 1.13. A BH spaceis a Brelot space whose sheaf of harmonic functions con
the constants. ABP spaceis a BH space on which there is a positive potential. A BH sp
on which no positive potentials exist is called aBS space.

Definition 1.14. A BP space is said to satisfy theaxiom of proportionalityif any two
potentials with the same one-point harmonic support are proportional.

Theorem 1.2 [13, p. 139].In a Brelot space without potentials all positive superharmo
functions are harmonic and proportional. In particular, in a BS space, every pos
superharmonic function must be constant.

Thus, a Brelot space which possesses positive superharmonic functions which
harmonic, has potentials.

Theorem 1.3 [3, p. 66]. In a BP space a superharmonic functions is admissible if and
only if there exist a potentialp and a harmonic functionh on the whole space such th
s = p+ h.
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Theorem 1.4 ([16, Theorem 16.1] and [1, Theorem 3.6]).If Ω is a Brelot space with
positive potentials and a countable base of neighborhoods or a BS space, then f
x ∈Ω , there exists a superharmonic function with harmonic support at{x}.

It should be pointed out that both of these results assume an additional condition
as Axiom 3′. It was subsequently shown by Mokobodski, Loeb and Walsh that Axio′
holds in any Brelot space (see [9]).

As a consequence of Theorems 1.4 and 1.3, in a Brelot spaceΩ with potentials and
a countable base of neighborhoods, for anyx ∈Ω there exists a potential with harmon
support at{x}.

1.3. Outline of results

In Section 2 we shall consider functions on trees to be defined both on vertices a
edges, and in Theorem 2.1 we shall show that infinite trees then have a harmonic st
in the sense of Brelot. Since a finite tree is compact, it is not even a candidate to be a
space. We shall refer to the properties of functions defined only at vertices as be
the sense of Cartier. Notationally we letf :T → R be a function only on the vertices an
g : T̃ → R be a function on the simplicial complex (that is, on the vertices and edges)
f may be extended (e.g., linearly) to ag and anyg may be restricted to anf .

Harmonic (respectively, superharmonic) functions on a tree in the Cartier sens
be extended to harmonic (respectively, superharmonic) functions in the Brelot sens
harmonic functions, this extension (linear) is unique, but for superharmonic func
there are nonlinear extensions (Proposition 2.2). Conversely, harmonic (superhar
functions in the Brelot sense restrict to harmonic (superharmonic) functions in the C
sense. We show (Proposition 2.3) that superharmonic functions are necessarily
valued and continuous. Moreover (Theorem 2.2), any superharmonic function in the
sense whose restriction to the set of vertices is harmonic in the Cartier sense m
harmonic in the Brelot sense.

In Section 3, we study the trees which under the harmonic structure of Section
BP spaces. These are the trees for which the random walk of the transition proba
is transient. The restriction to the vertices of a potential in the Brelot sense is a po
in the Cartier sense. Conversely, the linear extension of a potential in the Cartier
is a potential in the Brelot sense (Proposition 3.2). In Theorem 3.2, we prove
corresponding to each functionu which is harmonic in the Cartier sense outside a finite
of vertices there exists a harmonic functionh on the entire tree such thatu− h is bounded.
As a consequence, we show (Corollary 3.1) that a superharmonic function in the C
sense on a BP treeT is admissible if and only if it has a harmonic minorant onT . Moreover,
we obtain (Corollary 3.2) a characterization of admissible superharmonic functionsT
analogous to one proved by Cartier (Theorem 3.1) for positive superharmonic func
We use these results to give an example of a nonadmissible superharmonic function

In Theorem 3.3 we use the Green function introduced by Cartier to construc
potentials (in the Brelot sense) of point harmonic support. We deduce that the axi
proportionality holds for BP trees. In Proposition 3.4, we give an integral representat
potentials in the spirit of Hervé. In Corollary 3.3, we show that given any tree, the G
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potential of a measure is either identically infinity, or is finite everywhere. In Theorem
we show that the ratio of the values of any Green functionGx evaluated at any two
points is bounded away from zero with lower bound depending only on the two p
and not onx.

In Section 4, after defining the flux at infinity of a harmonic function and reca
many results that hold on general BS spaces, we interpret these on BS trees. Our w
BS spaces, as well as some of our work on BP spaces, is influenced by the appr
V. Anandam (see [1–5]).

In Proposition 4.2, we construct an unbounded functionH harmonic except at{e},
constant on siblings, such thatH(e)= 0 and�H(e)= 1. In Corollary 4.1, correspondin
to a (Cartier) harmonic functionf on the complement of a complete finite set of verticesK,
we give the explicit constructions of the unique numberα and a harmonic functionh
on T such thatf − h− αH is bounded offK. The constantα is called theflux of f at
infinity (with respect toH ). In Theorem 4.4, we give an explicit formula for calculati
the flux at infinity of such a functionf . We then show that (Theorem 4.5) every posit
superharmonic function on the complement of a finite setK of vertices is increasing
along each ray in its domain. Furthermore, if the function takes on the same
at two neighboring vertices, then it must be constant on the sector determined
corresponding edge.

In Section 5, we a give a condition for a random walk on a tree to be transient in
of a certain function on the boundary. Specifically, in Theorem 5.1 we show that
random walk is transient, then this function is finite-valued somewhere. On the othe
(Theorem 5.2), if this function is finite on an interval, then the random walk is trans
We provide an example of a tree for which this function is finite at one boundary p
yet, the random walk is recurrent.

In Section 6, we give other harmonic structures on trees by replacing the Lap
operator with the operatorL = � − a2I (a > 0). These structures yield Brelot spac
whose sheaf of harmonic functions does not contain the constants. They are, ho
always endowed with potentials. As in Section 3, (Proposition 6.1) harmonic
superharmonic functions, interpreted as eigenfunctions of the Laplacian relative
eigenvaluea2, can be extended to harmonic (respectively, superharmonic) functions
Brelot sense. Furthermore, in Proposition 6.2 we show that superharmonic functio
always finite-valued. In Proposition 6.4 and Observation 6.2, we construct the pote
of harmonic point support on homogeneous trees. Finally, (Proposition 6.6) we
a formula for the Green function on any tree (which turns out to be finite everywh
and (Theorem 6.1) show that the axiom of proportionality holds.

2. The Brelot structure on a tree

Notation. Let T be a tree with infinitely many vertices. Consider the spaceT̃ which is
the tree viewed as a 1-dimensional simplicial complex, with the terminal vertices rem
That is, for allu,v nonterminal vertices withu∼ v, consider the set[u,v] = {(1− t)u+ tv:
0 � t � 1}. If v is a terminal vertex andu∼ v, then set[u,v] = {(1− t)u+ tv: 0 � t < 1}.
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u∼v[u,v]. Of course, we identify(1− t)u+ tv with tv+ (1− t)u and 0u+ v

with v.

We now state and prove our main result.

Theorem 2.1. T̃ may be given the structure of a Brelot space.

Proof. Put a metric oñT by extending the metricd on T as follows. Letu,v,u′, v′ ∈ T ,
with u ∼ v andu′ ∼ v′, and letx = (1 − t)u+ tv, y = (1 − t ′)u′ + t ′v′, with 0� t � 1,
0 � t ′ � 1. If [u,v] = [u′, v′], we may assume thatu = u′, v = v′ and then define
d(x, y) = |t − t ′|. If the edges are different, assume thatu andu′ are the nearest of th
four pairs(u,u′), (u, v′), (v,u′), (v, v′), then define

d(x, y)= t + d(u,u′)+ t ′.

Under this metric,̃T is a locally compact, but not compact, connected and locally
nected Hausdorff space. In addition,T̃ has a countable base.

We now define harmonicity oñT .
Let U be an open subset of̃T , f a function onU , and x ∈ U . If x /∈ T , then

x = (1 − t0)u + t0v for someu,v ∈ T , 0< t0 < 1. Then we definef to be harmonic
at x if there exista, b ∈ R andε > 0 such thatf ((1− t)u+ tv) = (1 − t)a + tb for all t ,
with |t − t0| < ε. If x = v ∈ T , v not a terminal vertex, thenf is harmonic atv if there
existsε > 0 such that for allt ∈ (0, ε),

f (v)=
∑
u∼v

p(v,u)f
(
(1− t)v + tu

)
.

We say that a functionf continuous onU is harmonic onU if f is harmonic at each
x ∈U . Since harmonicity is defined locally, the first axiom of Brelot is satisfied.

A harmonic functionf onT can be extended to a harmonic function onT̃ by linearity,
i.e.,f ((1− t)v + tw)= (1− t)f (v)+ tf (w), for all v ∼w, 0< t < 1.

We now show that there is a base of regular domains. Forx ∈ T̃ , consider the set
Bε(x)= {y ∈ T̃ : d(x, y) < ε}, where ifx = v ∈ T , then 0< ε � 1, and ifx = (1− t0)u+
t0v, with 0< t0 < 1, thenε � min{1 − t0, t0}. Let x = (1 − t0)u + t0v, with u,v ∈ T ,
0< t0 < 1. Then the boundary ofBε(x) consists of the points(1 − t0 − ε)u+ (t0 + ε)v

and (1 − t0 + ε)u + (t0 − ε)v. If f is defined on the boundary ofBε(x), then f
can be extended linearly (and hence, harmonically) inside. Next, letx = v ∈ T , where
v is not terminal. Then for 0< ε < 1, the boundary ofBε(x) is the set of points
{(1− ε)v + εu: for all neighborsu of v}. If f is defined on∂Bε(x), then let

f (v)=
∑
u∼v

p(v,u)f
(
(1− ε)v + εu

)
and extendf linearly inside. Thus,Bε(x), 0< ε � 1, is regular and the second axiom
Brelot is satisfied.
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Next we show that Harnack’s property holds. Let{fn}n∈N be an increasing sequence
harmonic functions on some connected open setU ⊂ T̃ and let

lim
n→∞fn(x)= f (x)� ∞.

Furthermore, let us assumef (x0) <∞, for somex0 ∈U .

Claim 1. If x0 ∈ (u, v), for some neighboring verticesu,v, thenf is finite and harmonic
on [u,v] ∩U .

For, let x ∈ [u,v] ∩ U , x �= x0. Let y be a point of[u,v] ∩ U on the opposite sid
of x0 from x. Then there exists somet ∈ (0,1) such thatx0 = (1 − t)x + ty, so that
fn(x0)= (1− t)fn(x)+ tfn(y). Since{fn} is increasing andf (x0) <∞, thenf (x) <∞.
Also since the finite limit of linear functions is linear,f is harmonic on[u,v] ∩U .

Claim 2. If x0 = u ∈ T , then for allv ∼ u, f is finite and harmonic on[u,v] ∩U .

For, chooseε > 0 such thatxv = (1− ε)u+ εv ∈U for all v ∼ u. Then

fn(x0)=
∑
v∼u

p(u, v)fn(xv).

As above, this implies thatf (xv) <∞, and so by Claim 1,f is finite on[u,v] ∩U , and
again by linearity,f is harmonic on[u,v]∩U . By connectedness,f is finite and harmonic
onU . Hence the third axiom is satisfied and̃T is a Brelot space. ✷
Observation 2.1. The harmonic functions oñT correspond to the harmonic functio
on T in the sense that their restriction toT are harmonic according to Definition 1.2, a
conversely, every harmonic function onT (in the sense of Definition 1.2) extends linea
to a (unique) harmonic function oñT .

We now describe the harmonic measure oñT . Let U = Bε(x0) be a regular
neighborhood ofx0 ∈ T̃ .

Case 1. If x0 /∈ T , thenx0 = (1− t0)u+ t0v (0< t0 < 1), for some neighboring verticesu
andv, and

∂U = {
x± = (1− t0 ± ε)u+ (t0 ∓ ε)v

}
.

Then for anyx ∈U , x = (1− t)x+ + tx−, for somet ∈ (0,1). Thus∫
f dρUx = (1− t)f (x+)+ tf (x−)

for any function defined on∂U .
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Case 2. If x0 = v ∈ T , then∂U = {xu = (1 − ε)v + εu | u ∼ v}. If x ∈ U , then there is
a neighboru0 of v such that

x = (1− tε)v + tεu0 = (1− t)v + t
(
(1− ε)v+ εu0

)
, for some 0� t < 1,

so ∫
f dρUx = (1− tε)

∑
u∼v

p(v,u)f (xu)+ tεf (xu0),

for any function defined on∂U .

Observation 2.2. Any complete finite set of vertices on a treeT together with its edges i
regular. Indeed, we can solve the Dirichlet problem on the interior vertices of any su
(cf. [10]) and then extend the unique solution linearly on the edges.

Next we study the superharmonic functions onT̃ .

Proposition 2.1. Given a superharmonic function onT , its linear extension tõT is
superharmonic oñT .

Proof. Let s be superharmonic onT (in the sense of Definition 1.2) and defines((1− t)v+
tu)= (1 − t)s(v)+ ts(u) for any pair of neighboring verticesv andu. On the interior of
the edge[u,v], s is linear hence harmonic and hence superharmonic. Furthermore, fo
ε ∈ (0,1) and each vertexv,∑

u∼v
p(v,u)s

(
(1− ε)v + εu

) =
∑
u∼v

p(v,u)(1 − ε)s(v)+
∑
u∼v

p(v,u)εs(u)

= (1− ε)s(v)+ ε
∑
u∼v

p(v,u)s(u)

� (1− ε)s(v)+ εs(v)= s(v). ✷
Linear extensions of superharmonic functions onT are the smallest superharmon

extensions tõT .

Proposition 2.2. If s is a superharmonic function onT which is not harmonic, there ar
nonlinear superharmonic functions oñT extendings.

Proof. Let v be a vertex onT such thats is superharmonic but not harmonic atv. Let
L > 0 be such thats(v) =∑

u∼v p(v,u)s(u)+ L. Fix u∼ v. Defines linearly on[v,w]
for all w ∼ v, w �= u. On [v,u] = {ut = (1 − t)v + tu: 0 � t � 1}, let s be any nonlinea
concave function starting ats(v) and ending up ats(u) and such that for anyt ∈ (0,1),

s(ut )� (1− t)s(v)+ ts(u)+ L
.

p(v,u)
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Any suchs is superharmonic atv. Thuss is superharmonic oñT , but nonlinear on the edg
[v,u]. ✷
Proposition 2.3. If s is superharmonic oñT , thens is finite-valued and continuous. I
particular, there are no polar sets iñT .

Proof. First we show thats is finite-valued on all of̃T . First, assumes(v) = ∞ for some
v ∈ T . Then for eachu∼ v and eacht ∈ (0,1),

s
(
(1− t)v + tu

)
� (1− t)s(v)+ ts(u),

so s is identically infinity on[v,u). On the other hand,s(u)�
∑

w∼u p(u,w)s(w) = ∞,
sincev is a neighbor ofu ands(v) = ∞. Thus,s is identically infinity on the whole edg
[v,u]. By connectedness,s = ∞ on T̃ , contradicting superharmonicity.

Next, assumes(x) = ∞, for somex in the interior of the edge[v,u]. Then, for each
t ∈ (0,1), s((1 − t)v + tx) � (1 − t)s(v) + ts(x) = ∞. Similarly, s((1 − t)u + tx) �
(1 − t)s(u)+ ts(x) = ∞. Sos is infinity on (v,u). Again by superharmonicity, for allε
sufficiently small,s(v) �

∑
w∼v p(v,w)s((1 − ε)v + εw)= ∞. Thus,s(v)= ∞. By the

first case, we get a contradiction, completing the proof of the finiteness.
Next, supposes is not continuous atx, a point in the interior of the edge[v,u]. Sinces

is lower semi-continuous, lim infy→x s(y)� s(x). Then there exists someλ ∈ R such that

lim sup
y→x

s(y) > λ> s(x).

Thus there exists a sequence{yn} approachingx such thats(yn)� λ for all n ∈ N. Foryn
sufficiently close tox, let zn be the symmetric point ofyn with respect tox in the interior
of the edge[v,u]. Thens(zn)+ s(yn)� 2s(x). Thus

2s(x) < s(x)+ λ� lim inf
n→∞

[
s(zn)+ s(yn)

]
� 2s(x),

a contradiction. Hences is must be continuous atx.
Now let us assumes is not continuous atv ∈ T . Then there is a neighboru of v such

that lim supε→0 s(uε) > s(v), whereuε = (1− ε)v+ εu. Let {εn} be a sequence of positiv
numbers approaching 0 such thats(uεn)� λ > s(v). Sinces is superharmonic,

s(v)�
∑
w∼v

p(v,w)s(wεn ),

and so

s(v) � lim inf
n→∞

∑
w∼v

p(v,w)s(wεn )�
∑
w∼v

p(v,w) lim inf
n→∞ s(wεn)

�
∑

w∼v,w �=u
p(v,w)s(v)+ p(v,u)λ > s(v),

a contradiction. Thuss is continuous atv, completing the proof. ✷



720 I. Bajunaid et al. / Advances in Applied Mathematics 30 (2003) 706–745

the

e,

st
t the

than 2.

).

ction

y
d

Proposition 2.4. If s is superharmonic oñT , then its restriction toT is superharmonic
onT .

Proof. Givenv ∈ T , sinceB1(v) is regular, we have

s(v)�
∑
u∼v

p(v,u)s(u).

Thuss is superharmonic onT . ✷
We wish to highlight the following result, whose proof is a simple application of

minimum principle for superharmonic functions.

Theorem 2.2. If s is superharmonic oñT and its restriction toT is harmonic onT , thens
is harmonic oñT .

Proof. Let h be the linear extension ofs restricted toT . Sinces is concave on each edg
s � h on T̃ . Sinceh is harmonic oñT , s − h is nonnegative superharmonic oñT . By
Theorem 1.1, eithers− h is identically zero or positive everywhere. Buts = h onT . Thus
s = h on T̃ . ✷

In what follows we shall refer to a treeT as being a BP (respectively, BS) tree ifT̃ is
a BP (respectively, BS) Brelot space.

3. Trees as BP spaces

Throughout this section we shall assume thatT is a tree endowed with a neare
neighbor transition probabilityp whose associated random walk is transient (so tha
Green functionG(v,w) is finite for eachv,w ∈ T ).

Proposition 3.1. T̃ is a BP space.

In particular, an example of a BP space is a homogeneous tree of degree greater

Proof. Givenw ∈ T , the functionGw : T → [0,∞) defined byGw(v)=G(v,w) satisfies
the conditions�Gw(v) = 0 for w �= v and�Gw(w) = −1 (see [11, Proposition 2.3]
Therefore,Gw is positive superharmonic onT , nonconstant, and harmonic onT \{w}.
ExtendingGw linearly on all edges yields a nonconstant positive superharmonic fun
on T̃ . By Theorem 1.2,̃T cannot be a BS space.✷
Proposition 3.2. A potential onT̃ restricted toT is a potential onT . Conversely, the
linear extension tõT of a potential onT is a potential oñT .

Proof. Let p be a potential onT̃ . Thus p, and hencep|T , is superharmonic b
Proposition 2.4. Ifh :T → [0,∞) is a harmonic minorant ofp|T , thenh can be extende
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by linearity to a unique nonnegative harmonic function onT̃ which must be a harmoni
minorant ofp. Thush must be identically 0. Thereforep|T is a potential. The converse
clear. ✷
Proposition 3.3. If s is superharmonic oñT and its restriction toT is a potential onT ,
thens is a potential oñT .

Proof. Let h be a nonnegative harmonic minorant ofs on T̃ . Thenh|T is a nonnegative
harmonic minorant ofs|T , soh|T = 0. Thush= 0. ✷

We shall see that there are potentials onT̃ that are not linear extensions of potenti
on T (for example, the potentials oñT with harmonic point support in the interior of a
edge).

If f is a function onT , define theGreen potential off onT by

Gf (v)=
∑
u∈T

G(v,u)f (u),

if the series converges absolutely, diverges to∞, or diverges to−∞. Clearly, the harmonic
support ofGf is exactly the support off .

Theorem 3.1 [11]. Every positive superharmonic functions on T is of the forms =
h + Gf , whereh is a nonnegative harmonic function andf is a nonnegative functio
onT with support equal to the harmonic support ofs. Furthermore, this representation
unique.

As a consequence, we see that every potentialp on T is of the formGf for a unique
nonnegative functionf with support equal to the harmonic support ofp.

The following result was proved by Nakai in a general BP space and can be fou
[21] or [2, Theorem 1.20]. We state it and prove it in the tree setting, where it doe
follow trivially from known facts about trees.

Theorem 3.2. Letu be a function onT which is harmonic outside a finite subsetK of T .
Then there exists a functionh harmonic onT such thath− u is bounded offK.

Proof. Fix a root e. Choosen ∈ N such thatK is a proper subset ofBn, the open
ball of radiusn: Bn = {v ∈ T : d(e, v) < n}. DefineU on Bn as the solution to the
Dirichlet problem with boundary valuesu on∂Bn and defineU(v)= u(v) for d(e, v)� n.
Let h(v) = U(v) +∑

|w|=n �U(w)G(v,w). Thenh is harmonic onT . Recalling (a) of
Proposition 1.1, we have∣∣h(v)−U(v)

∣∣� ∑
|w|=n

∣∣�U(w)∣∣G(w,w),
for anyv ∈ T . Thush− u is bounded offK. ✷
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Corollary 3.1. A superharmonic function onT is admissible if and only if it has a harmon
minorant onT .

Proof. Let s be an admissible superharmonic function onT . Then there exists a functionu
on T harmonic outside a finite setK such thatu(v) � s(v) for all v ∈ T \K. By
Theorem 3.2, there existsh harmonic onT such that|h − u| is bounded onT . Thus
h � u + c for some positive constantc, whenceh − c is a harmonic minorant ofu
onT . The converse follows immediately from the definition of admissible superharm
function. ✷

We can now generalize Theorem 3.1 as follows.

Corollary 3.2. A superharmonic functions which is not harmonic onT is admissible if
and only if there exist a potentialp and a harmonic functionh on T such thats = p + h

onT .

Proof. Let s be an admissible superharmonic function onT , s not harmonic. Thens has
a harmonic minorant onT . Let h be the greatest harmonic minorant ofs. Thus s − h

is a positive superharmonic function whose greatest harmonic minorant is 0, sos − h is
a potential. Conversely, ifs = p+hwith p a potential andh harmonic, thenh is a harmonic
minorant ofs. Thuss is an admissible superharmonic function which is not harmonic.✷
Example 3.1. Let T be a homogeneous tree of degreeq + 1 (q � 2) with root e. Then
s(v) = −|v| is a nonadmissible superharmonic function onT . To see this, observe th
�s(e)= −1 and�s(v) = −(q − 1)/(q + 1) for v �= e, so s is superharmonic. Ifs were
admissible, then by Corollary 3.1,s would have a harmonic minoranth on T . Thus,
h(v) � −|v| for eachv ∈ T . But sinceh is harmonic, for any positive integern, h(e)
is the average of the values ofh at the vertices of lengthn. Thush(e)� −n, for all n ∈ N,
a contradiction.

We now give the construction of the greatest harmonic minorant of an admi
superharmonic functions onT . For eachn ∈ N, letBn denote the open ball centered ae
of radiusn and lethn be the solution to the Dirichlet problem inBn with boundary values
s|∂Bn. SinceBn is regular by Observation 2.2, by (2) of Definition 1.9,s � hn onBn for
all n ∈ N. Thus, using the notation of Definition 1.8, we obtain

hn = h
Bn
s|∂Bn � h

Bn
hn+1|∂Bn = hn+1,

since hn+1 is harmonic on the closure ofBn and s � hn+1 on ∂Bn. HenceD(s) =
limn→∞ hn exists and is harmonic onT . D(s) is the greatest harmonic minorant ofs.

We now construct potentials with harmonic point support onT̃ and show that al
potentials with the same harmonic point support onT̃ are proportional, that is,̃T satisfies
the axiom of proportionality.
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Theorem 3.3. Let x ∈ T̃ . If x ∈ T , then the potentials supported on{x} are positive
multiples of the linear extension ofGx , whereGx is the Green functionGv(u)=G(u,v)

if x = v ∈ T . If x /∈ T , x = (1− t)v + tw, with v,w neighboring vertices,0< t < 1, then
Gx is defined by

Gx(y)=


γt
[
p(v,w)(1 − t)Gv(y)+ p(w,v)tGw(y)

]
if y /∈ (v,w),

(1− s)Gx(v)+ sGx(w)+ s(1− t)γt if y = (1− s)v + sw, 0 � s � t,

(1− s)Gx(v)+ sGx(w)+ (1− s)tγt if y = (1− s)v + sw, t � s � 1,

whereγt = (1− t)/(p(v,w))+ t/(p(w,v)).

Proof. As remarked above, ifx = v ∈ T , then the functionGv is superharmonic onT ,
harmonic onT \{v}, and its greatest harmonic minorant onT is zero. Thus its linea
extension onT̃ is a potential with harmonic support atv. If p is a potential onT̃
with harmonic support atv, then by Proposition 3.2 and Theorem 3.1 applied top|T ,
p =Gf , for some nonnegative functionf with support{v}. Thusp = f (v)Gv on T . By
Observation 2.1,p= f (v)Gv on T̃ .

Let us now assumex /∈ T , so thatx = (1 − t)v + tw, wherev ∼ w and t ∈ (0,1).
Clearly,Gx is harmonic off[v,w] and, by linearity, it is also harmonic on the segme
(v, x) and (x,w). Furthermore,Gx is superharmonic atx, since forε > 0 sufficiently
small, the average betweenGx((1− t + ε)v+ (t − ε)w) andGx((1− t − ε)v+ (t + ε)w)

is given by

(1− t)Gx(v)+ tGx(w)+ t (1− t)γt − ε

2
γt =Gx(x)− ε

2
γt < Gx(x).

We now show thatGx is harmonic atv (hence, by symmetry, atw). Let G̃x be the linear
extension ofGx |[v, x] to [v,w]. Thus

G̃x(w)=Gx(w)+ (1− t)γt .

To prove thatGx is harmonic atv, we need to show that∑
u∼v, u �=w

p(v,u)Gx(u)+ p(v,w)G̃x(w)=Gx(v),

since harmonicity ofGx in an ε-neighborhood ofv is equivalent to harmonicity at th
nearest neighbors of its linear extension. Using�Gv(v)= −1 and�Gw(v)= 0, we obtain∑

u∼v, u �=w
p(v,u)Gx(u)+p(v,w)G̃x (w)

= γtp(v,w)(1 − t)
∑

u∼v, u �=w
p(v,u)Gv(u)+ γtp(w,v)t

∑
u∼v, u �=w

p(v,u)Gw(u)

+ γtp(v,w)
[
(1− t)p(v,w)Gv(w)+ tp(w,v)Gw(w)+ (1− t)

]
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[
p(v,w)(1 − t)

(
�Gv(v)+Gv(v)

)+p(w,v)t
(
�Gw(v)+Gw(v)

)
+p(v,w)(1 − t)

]
= γt

[
p(v,w)(1 − t)Gv(v)+ p(w,v)tGw(v)

]=Gx(v).

ThusGx is positive superharmonic oñT , harmonic offx and since it is defined as a positi
linear combination of potentials off(v,w), its restriction toT is a potential onT . By
Proposition 3.3,Gx is a potential with harmonic support at{x}.

Let us assumepx is a potential with harmonic support at{x}, with x ∈ (v,w), x =
(1 − t)x + ty, 0< t < 1. Thuspx |T must be harmonic onT \{v,w} and so it must be o
the formαGv + βGw for someα,β � 0. LetG̃v(w) andG̃w(v) be the numbers such th

Gv(v) =
∑

u∼v, u �=w
p(v,u)Gv(u)+ p(v,w)G̃v(w), (3)

Gw(w) =
∑

u∼w,u �=v
p(w,u)Gw(u)+ p(w,v)G̃w(v). (4)

Now px is harmonic on(v,w) except atx. Let us definẽGv in a small neighborhood ofv
by

G̃v(z)=
{
Gv(z) for z ∈ (u, v), u∼ v, u �=w,

(1− s)Gv(v)+ sG̃v(w) for z= (1− s)v + sw.

ThenG̃v is harmonic nearv and thuspx(y)= αG̃v(y)+ βGw(y) for y = (1− s)v + sw,
0 � s � t . Similarly, letting

G̃w(z)=
{
Gw(z) for z ∈ (u,w), u∼w, u �= v,

(1− s)G̃w(v)+ sGw(w) for z= (1− s)v + sw,

we getpx(y)= αGv(y)+ βG̃w(y) for y = (1− s)v + sw, t � s � 1. In particular,px(x)
must agree with the values from both definitions. So

α
[
(1− t)Gv(v)+ tG̃v(w)

]+ β
[
(1− t)Gw(v)+ tGw(w)

]
= α

[
(1− t)Gv(v)+ tGv(w)

]+ β
[
(1− t)G̃w(v)+ tGw(w)

]
.

Thus

αt
[
G̃v(w)−Gv(w)

]= β(1− t)
[
G̃w(v)−Gw(v)

]
. (5)

Since�Gv(v)= −1, using(3) we get

−1 =
∑
u∼v

p(v,u)Gv(u)−
∑

u∼v, u �=w
p(v,u)Gv(u)− p(v,w)G̃v(w)

= p(v,w)Gv(w)− p(v,w)G̃v(w)= −p(v,w)[G̃v(w)−Gv(w)
]
.
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ThusG̃v(w) − Gv(w) = 1/p(v,w). Similarly G̃w(v) − Gw(v) = 1/p(w,v). Hence (5)
becomes

αt

p(v,w)
= β(1− t)

p(w,v)
,

whence

β = αtp(w,v)

(1− t)p(v,w)
.

So off (v,w), we have

px = αGv + βGw = α

[
Gv + tp(w,v)

(1− t)p(v,w)
Gw

]
= α

(1− t)p(v,w)

[
(1− t)p(v,w)Gv + tp(w,v)Gw

]
= α

(1− t)p(v,w)γt
Gx.

By harmonicity on(v,w)− {x} and continuity atx, we have that

px = α

(1− t)p(v,w)γt
Gx

everywhere oñT . ✷
Definition 3.1. Let Ω be a Brelot space, and letU be a domain inΩ . A Green function
onU , if it exists, is a functionGU :U ×U → (0,∞] satisfying the conditions:

(a) GU is lower semi-continuous onU ×U and continuous onU ×U\{(x, x): x ∈ U};
(b) For eachy ∈ U , x �→G(x,y) is a potential with harmonic support at{y}.

Remark 3.1. If f is a positive continuous function onU andGU is a Green function onU ,
thenG′

U(x, y)= f (y)GU(x, y), x, y ∈U , is also a Green function onU .

Theorem 3.4 [16, Theorem 18.2].Let Ω be a Brelot space satisfying the axiom
proportionality. Then there exists a Green functionG onΩ and every potentialP onΩ
admits a unique integral representation of the form

P(x)=Gµ(x)=
∫
Ω

G(x,y)dµ(y), x ∈Ω,

whereµ is a nonnegative measure onΩ .

The functionGµ is calledthe Green potential ofµ.
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Conversely (cf. [19, p. 68]), the function onU defined by the above integral is a poten
if it is finite at one point.

As a consequence, by splitting the potentials with harmonic point support at the ve
from those with harmonic point support inside edges, we obtain

Proposition 3.4. Every potential iñT admits a unique integral representation of the for

P =
∑
v∈T

avGv +
∑
v∼w

Gλv,w, (6)

whereav � 0, andλv,w is a (nonnegative) measure on(v,w). Conversely, the functio
on T̃ defined in(6) is a potential if it is finite at one point.

Corollary 3.3. If T is any tree, the Green potential of a measure onT̃ is either identically
infinity, or is finite everywhere.

Proof. By Proposition 3.4, the functionP in (6) is a potential (hence, superharmonic) i
is finite at one point. By Proposition 2.3, any superharmonic function onT̃ is finite-valued.
Thus, ifP is finite at one point, thenP must be finite everywhere.✷

In particular, this yields a noncombinatorial proof of Cartier’s Proposition 2.3
P = ∑

avGv is either finite everywhere or infinite everywhere. Cartier does this
showing that ify andz are vertices and[v0, . . . , vn] the path fromy to z, thenρ(y, z)=∏n
j=1p(vj−1, vj ) has the property that for any vertexx,

Gx(y)� ρ(y, z)Gx(z). (7)

Thus,P(y) � ρ(y, z)P (z), so thatP(y) finite implies thatP(z) is finite. We now prove
thatρ :T × T → (0,1] can be extended to a function oñT × T̃ , so that(7) holds for all
x, y, z ∈ T̃ .

Theorem 3.5. If T is any tree, then for anyx, y, z ∈ T̃ , there exists a positive consta
ρ(y, z) independent ofx such thatGx(y)� ρ(y, z)Gx(z).

Proof. As noted above in (7), ify, z ∈ T thenGx(y)� ρ(y, z)Gx(z) for all x ∈ T , where
ρ(y, z) is the product of the transition probabilities along the edges of the geodesic
from y to z. In particular, ify ∼ z thenρ(y, z)= p(y, z). We shall defineρ(y, z) for all
y, z ∈ T̃ so that (7) holds for allx ∈ T̃ .

We show first that for ally, z ∈ T , (7) is valid for allx ∈ T̃ . Supposex = (1− t)v+ tw

where 0< t < 1 andv ∼w. Then

Gx(y) = γt
[
p(v,w)(1 − t)Gv(y)+ p(w,v)tGw(y)

]
� γt

[
p(v,w)(1 − t)ρ(y, z)Gv(z)+p(w,v)tρ(y, z)Gw(z)

]
= ρ(y, z)Gx(z),

which proves the result in casey, z ∈ T .
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Next suppose thaty ∈ T̃ − T andz is a vertex one of whose edges containsy. Thus
y = (1− s)z+ sz′ wherez′ ∼ z and 0< s < 1. Let

Az,z′ = min
{
p(z, z′)Gz(z), p(z

′, z)Gz′(z)
}
.

Defineρ(y, z) andρ(z, y) as follows:

ρ(y, z)= p(z′, z), ρ(z, y)=
(

1+ 1

p(z, z′)
+ 1

Az,z′

)−1

.

Note that 0< ρ(z, y) < p(z, z′). To complete the proof in this case, we have to cons
the cases wherex /∈ (z, z′) andx ∈ (z, z′) separately.

First suppose thatx = (1 − t)v + tw, 0< t < 1, wherev,w are vertices with{v,w} �=
{z, z′}. Then(7) implies

Gv(y) = (1− s)Gv(z)+ sGv(z
′)� (1− s)Gv(z)+ sp(z′, z)Gv(z)

� p(z′, z)Gv(z) (8)

and

Gv(y)� (1− s)Gv(z)+ s
Gv(z)

p(z, z′)
� Gv(z)

p(z, z′)
,

so

Gv(z)� p(z, z′)Gv(y). (9)

We deduce from(8) that

Gx(y) = γt
[
p(v,w)(1 − t)Gv(y)+ p(w,v)tGw(y)

]
� γt

[
p(v,w)(1 − t)p(z′, z)Gv(z)+ p(w,v)tp(z′, z)Gw(z)

]
= p(z′, z)Gx(z)= ρ(y, z)Gx(z)

and a similar argument using(9) yields

Gx(z)� p(z, z′)Gx(y)� ρ(z, y)Gx(y).

This completes the casex /∈ (z, z′).
Suppose now thatx = (1 − t)z + tz′ and 0< s < t < 1. Sincez, z′ are neighboring

vertices, we obtain from the first argument of the proof that

Gx(z
′)� p(z′, z)Gx(z) and Gx(z)� p(z, z′)Gx(z

′). (10)

Now



728 I. Bajunaid et al. / Advances in Applied Mathematics 30 (2003) 706–745

ue

ne

f

Gx(y) = (1− s)Gx(z)+ sGx(z
′)+ s(1− t)γt � (1− s)Gx(z)+ sGx(z

′)

� (1− s)Gx(z)+ sp(z′, z)Gx(z)� p(z′, z)
[
(1− s)Gx(z)+ sGx(z)

]
= p(z′, z)Gx(z).

Also

Gx(z) = γt
[
p(z, z′)(1− t)Gz(z)+p(z′, z)tGz′(z)

]
� γt min

{
p(z, z′)Gz(z),p(z

′, z)Gz′(z)
}

= γtAz,z′,

so

γt �
Gx(z)

Az,z′
.

Thus, by (10) we have

Gx(y) = (1− s)Gx(z)+ sGx(z
′)+ s(1− t)γt �Gx(z)+ Gx(z)

p(z, z′)
+ Gx(z)

Az,z′

= Gx(z)

ρ(z, y)
, (11)

so

Gx(z)� ρ(z, y)Gx(y).

If 0 < t < s < 1 the argument is similar. This completes the proof in casey ∈ T̃ − T

andz is a vertex one of whose edges containsy.
Now suppose thaty, z are in T̃ − T and lie on distinct edges. Thus there exist uniq

verticesv,w such thaty lies on an edge ofv, z lies on an edge ofw andd(v,w) is as small
as possible. Sinceρ(y, v), ρ(v,w), andρ(w, z) have already been defined, we may defi

ρ(y, z)= ρ(y, v)ρ(v,w)ρ(w, z).

Then for anyx ∈ T̃ ,

Gx(y) � ρ(y, v)Gx(v)� ρ(y, v)ρ(v,w)Gx(w)� ρ(y, v)ρ(v,w)ρ(w, z)Gx(z)

= ρ(y, z)Gx(z).

Supposey ∈ T̃ − T and z is a vertex none of whose edges containsy. Let v be
the unique vertex closest toz whose edge containsy. An argument similar to that o
the last paragraph shows that the result holds if we defineρ(y, z) = ρ(y, v)ρ(v, z) and
ρ(z, y)= ρ(z, v)ρ(v, y).
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Finally, supposey, z ∈ T̃ − T and both lie on the same edge(v,w). Define

ρ(y, z)= min
{
ρ(y, v)ρ(v, z), ρ(y,w)ρ(w, z)

}
.

Then for anyx ∈ T̃ ,

Gx(y)� ρ(y, v)Gx(v)� ρ(y, v)ρ(v, z)Gx(z)� ρ(y, z)Gx(z).

This completes the proof.✷
Observe that by Theorem 3.5, ifµ is a measure oñT , then by integratingGy andGz

againstµ we get

Gµ(y)� ρ(y, z)Gµ(z).

Thus we obtain another proof of the fact that eitherGµ is identically infinity or is finite
everywhere.

4. Trees as BS spaces

In this section, we study those trees whose corresponding nearest-neighbor tra
probability is recurrent.

Example 4.1. Let T be a homogeneous tree of degreeq + 1 (q � 2) rooted ate whose
corresponding nearest-neighbor transition probability is not isotropic but is defined ra
as follows. Letp(e, v) = 1/(q + 1) for |v| = 1, p(v−, v) = 1/(2q) for |v| � 2, p′ =
p(v, v−) = 1

2 for |v| � 1. The completioñT of T is a BS space. In order to see th
let us assume that the Green functionGe is finite. By symmetry with respect toe, Ge must
be radial, and thus, in order to be harmonic offe it must be of the formGe(v)=A+B|v|
for some constantsA,B. Since�Ge(e) < 0, it follows thatB < 0. Clearly, there is no
constantA such thatA+B|v|> 0 for all v ∈ T . Thus the Green function must be infinit

We recall (see Theorem 3.2 and the paragraph preceding it) that in a BP spaceΩ , as
well as in a tree whose underlying random walk is transient, ifg is a function defined on
the space and harmonic on the complement of a compact setK, theng = h+ b, whereh
is harmonic onΩ andb is bounded. This is not true on BS spaces, but we shall des
an obstruction, called theflux at infinity ofg (which we shall usually refer to just asthe
flux), so that when the flux ofg is zero, theng = h+ b as above. First we shall descri
the situation in a general BS space.

Definition 4.1. Let Ω be a BS space. A functionH harmonic off some compact set
called astandard forΩ if the following is true: given any functiong which is harmonic
off an arbitrary compact set, there exists a harmonic functionh on the whole space an
a unique real numberα such thatg − αH − h is bounded off a compact set. The const
α is then called theflux (at infinity) of g with respect toH .
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Observation 4.1. If g is harmonic on the whole space, then the flux ofg is 0 (takeh= g).
If g is bounded harmonic outside a compact setK, then the flux ofg is also zero (take
h= 0). Furthermore, the flux is linear and unchanged by addition of a function harm
on the whole space or a function which is bounded harmonic outside a compact set

Observation 4.2. Let Ω be a BS space,H a standard forΩ . If K1 andK2 are compac
sets inΩ andf is harmonic onΩ\(K1 ∩K2), then the flux off is independent of the
choice of the setK1 orK2. For, if α1, α2 are constants andh1, h2 are harmonic onΩ such
that f − hj − αjH is bounded off some compact setK containingKj (j = 1,2), then
(α1 − α2)H − (h1 − h2) is bounded outsideK, hence its fluxα1 − α2 is 0.

We shall see in Theorem 4.1 that standards for a BS space always exist.

Observation 4.3. The numberα depends on the choice ofH : Any nonzero multiple of
a standard forΩ is again a standard, but the value of the flux will change. Furthermo
H̃ is any function harmonic off some compact set with fluxα̃ �= 0 with respect toH , then
H̃ is itself a standard ofΩ : If g is harmonic off some compact set andα is its flux with
respect toH , then sinceH̃ − α̃H andg − αH are both the sum of a harmonic functi
onΩ and a bounded function, so is

g − α

α̃
H̃ = (g− αH)− α

ã

(
H̃ − ãH

)
.

We now show that the uniqueness ofα and of α̃ leads to the uniqueness ofα/α̃. If α′
is a constant such thatg − α′H̃ is the sum of a harmonic function onΩ and a bounded
function off a compact set, sinceα′(H̃ − α̃H ) is the sum of a global harmonic functio
and bounded function off a compact set, then so is

g− α′α̃H = (
g− α′H̃

)+ α′(H̃ − α̃H
)
.

By the uniqueness of the flux with respect toH , α′α̃ = α. Thusα′ = α/α̃.

The following theorem is Theorem 1.17 of [2], together with the note follow
Lemma 2 of [5].

Theorem 4.1. LetΩ be a BS space,K ⊂Ω compact, outer regular, and not locally pola
Then there exists a harmonic functionH � 0, not identically0, which is unbounded offK
and tending to0 on ∂K. FurthermoreH is a standard forΩ .

Theorem 4.2. Let Ω be a BS space,K a nonempty compact subset. Then any pos
harmonic function onΩ\K which tends to zero on∂K is a standard forΩ .

Proof. Let H be a positive harmonic function onΩ\K tending to zero on∂K. By
Theorem 4.1, there exists a standard forΩ . By Observation 4.3, we need only show th
the flux ofH with respect to that standard is nonzero. Assume to the contrary that th
of H is zero. Then there exists a harmonic functionh onΩ such thatH −h is bounded off
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a compact set. ExtendH to all ofΩ by letting it be 0 onK. This extension is continuou
since we assumed thatH tends to 0 on∂K. Let x0 ∈ ∂K. Then every relatively compac
regular neighborhoodU of x0 has some boundary point outsideK (whereH is positive).
Thus ∫

∂U

H dρUx0
> 0 =H(x0),

soH is subharmonic but not harmonic. LetM > 0 be a constant which is an upper bou
for H − h on all ofΩ . ThenM − (H − h) is a positive superharmonic function onΩ ,
hence it is a constant by Proposition 2.1 and Theorem 1.2. ThenH − h is constant soH is
harmonic everywhere, a contradiction.✷
Proposition 4.1. LetT be a BS tree rooted ate. If h is nonnegative bounded harmonic ofe
andh(e)= 0, thenh must be identically0.

Proof. Let M be an upper bound ofh. Sinceh is subharmonic onT , M − h is positive
superharmonic onT , hence constant by Theorem 1.2. Thush= 0. ✷
Proposition 4.2. LetT be a BS tree rooted ate. There exists a functionH onT positive and
harmonic offe, unbounded, constant on siblings(i.e., if u− = w−, thenH(u)= H(w)),
such thatH(e) = 0 and �H(e) = 1. In particular, the linear extension ofH to T̃ is
a standard.

Proof. DefineH(v) by induction on|v|. SetH(e) = 0, andH(v) = 1 for |v| = 1. Let
|v| = n > 1 and label the vertices on the geodesic path frome to v as v0, v1, . . . , vn.
AssumeH has already been defined atvn−1 andvn−2. Define

H(vn)= 1

1− p(vn−1, vn−2)
H(vn−1)− p(vn−1, vn−2)

1− p(vn−1, vn−2)
H(vn−2).

This definition corresponds to the harmonicity condition atvn−1:

H(vn−1)= p(vn−1, vn−2)H(vn−2)+
(
1− p(vn−1, vn−2)

)
H(vn).

ThusH(vn) is the solution to the second-order linear recurrence relation

xn+1 = 1

1− rn
xn − rn

1− rn
xn−1,

wherern = p(vn, vn−1), with initial conditionsx0 = 0 andx1 = 1. Observe thatxn is an
increasing sequence, since

xn+1 − xn = rn
(xn − xn−1), (12)
1− rn
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andx0 < x1. Thus, the functionH is necessarily unbounded by Proposition 4.1.✷
Let εn = rn/(1 − rn). Then(12) becomesxn+1 − xn = εnεn−1 . . . ε1, whence using the

initial conditionx1 = 1 by induction, we obtainxn+1 = 1+∑n
k=1 ε1 . . . εk . Thus ifv ∈ T ,

n� |v|, lettingεn(v)= p(vn, vn−1)/(1− p(vn, vn−1)), we get

H(v)= 1+
|v|−1∑
k=1

ε1(v) · · · εk(v). (13)

Let us analyze the case whenrn is the constantr ∈ [1/2,1). If r > 1/2, then

xn = 1

ε − 1
(εn − 1), whereε = r

1− r
.

If r = 1/2, thenxn = n. Thus

H(v)=
{

1

ε − 1

(
ε|v| − 1

)
if r > 1/2,

|v| if r = 1/2.

Brelot theory tells us that every harmonic functionf defined outside a finite set o
vertices in a BS treeT can be written as the sum of a function harmonic onT , a certain
multiple ofH , and a bounded harmonic function. Our aim is to give explicit formulas
this representation off . As a first step we have

Theorem 4.3. Let T be a BS tree rooted ate and letH be as in Proposition4.2. For
v ∈ T let v0, . . . , vn be the vertices on the geodesic path frome to v. Letαe = 1 andαv =
pn−1 · · ·p0/(rn · · · r1) for |v| = n� 1, wherepj = p(vj , vj+1) andrj = p(vj , vj−1). For
eachv ∈ T there existsHv � 0 (unique up to an additive constant) harmonic except atv
such that�Hv(v)= 1, andHv − αvH takes on a finite number of values. Thus

flux(Hv)= αv.

Proof. For v = e, letHv =H . By definition of flux,He has the required properties. No
assumev ∈ T , |v| = n � 1. Let α,b0, . . . , bn be constants to be determined later and
Hv be defined by

Hv(u)= αH(u)− bk

if u is vk or a descendant ofvk which is not a descendant ofvk+1 for k = 0, . . . , n− 1, or
u is v or a descendant ofv in the casek = n. SinceHv is clearly harmonic off the pat
[e, v], the problem reduces to finding constantsα,b0, . . . , bn such thatHv is harmonic at
eachvk , k = 0, . . . , n− 1, and�Hv(v)= 1. In order forHv to be harmonic ate, we need
(1−p0)Hv(u)+ p0Hv(v1)−Hv(e)= 0, whereu∼ e, u �= v1. Thus

(1− p0)
(
αH(u)− b0

)+ p0
(
αH(v1)− b1

)+ b0 = 0.
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Since�H(e)= 1, we obtain

p0b0 − p0b1 + α = 0.

BecauseH is harmonic at eachvk , k = 1, . . . , n− 1, harmonicity ofHv at vk yields the
conditionrkbk−1 + pkbk+1 + (1− rk − pk)bk = bk, whence

rkbk−1 − (rk + pk)bk +pkbk+1 = 0, for 1 � k � n− 1.

Furthermore, the condition�Hv(v)= 1 yields

rn
(
αH(vn−1)− bn−1

)+ (1− rn)
(
αH(u)− bn

)− (
αH(v)− bn

)= 1, (14)

whereu is any descendant ofv. SinceH is harmonic atv, (14) reduces to

rnbn−1 − rnbn = −1.

Thus we obtain a system consisting ofn+1 equations in then+2 unknownsb0, . . . , bn,α

whose augmented matrix is given by

p0 −p0 0 0 · · · 0 0 0 1 0
r1 −(r1 + p1) p1 0 · · · 0 0 0 0 0
0 r2 −(r2 + p2) p2 · · · 0 0 0 0 0
...

0 0 0 0 · · · rn−1 −(rn−1 + pn−1) pn−1 0 0
0 0 0 0 · · · 0 rn −rn 0 −1

 .

By an elementary row reduction we see that the system is consistent and thatbn is a free
variable. The general solution is given by

bk =


bn − 1

rn

(
1+

n−1∑
m=k+1

n−1∏
j=m

pj

rj

)
for 0 � k � n− 2,

bn − 1

rn
for k = n− 1,

α = pn−1 · · ·p1p0

rn · · · r2r1 = αv.

In particular, if we choosebn � 0, thenHv is positive. Notice thatHv − αvH is bounded
and so the flux ofHv equalsαv . ✷

We can now calculate the flux at infinity of a functionf which is harmonic outside
a complete finite setK.
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Theorem 4.4. Under the hypotheses of Theorem4.3, let f be harmonic outside a finit
complete subtreeK. Then

flux(f )=
∑
v∈∂K

[
αv

∑
u∼v, u/∈K

p(v,u)f (u)+ (
αṽp(ṽ, v)− αv

)
f (v)

]
,

whereṽ is the unique vertex inK which is a neighbor ofv. If we extendf to be0 insideK,
we obtain

flux(f )=
∑

v∈∂K∪K̃
�f (v)αv, (15)

whereK̃ = {ṽ: v ∈ ∂K}.
Proof. The extended functionf is harmonic except on∂K ∪ K̃ . Thus the functionf −∑

v∈∂K∪K̃ �f (v)Hv is harmonic everywhere and so by Observation 4.1 and Theorem
we get

flux(f )=
∑

v∈∂K∪K̃
�f (v)flux(Hv)=

∑
v∈∂K∪K̃

�f (v)αv.

Now, for v ∈ ∂K,

�f (v)=
∑

u∼v, u/∈K
p(v,u)f (u)− f (v), (16)

and forw ∈ K̃ ,

�f (w)=
∑

v∈∂K, ṽ=w
p(w,v)f (v). (17)

The result follows from(16) and(17). ✷
Using Theorem 4.1, we can now get explicit constructions of all the parameters

definition of flux. Observing that by Theorem 4.3,Hv −αvH takes on finitely many value
we get

Corollary 4.1. Letf be harmonic in the complement of a complete finite set of verticK
and extendf to be0 onK. Set

α =
∑

v∈∂K∪K̃
�f (v)αv, h= f −

∑
v∈∂K∪K̃

�f (v)Hv, and

b =
∑

v∈∂K∪K̃
�f (v)(Hv − αvH).

Thenh is harmonic onT , b is bounded, andf − h− αH = b.
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Proof. Extendf insideK by definingf |K̊ = 0. In the proof of Corollary 4.4, we saw th
the function

h= f −
∑

v∈∂K∪K̃
�f (v)Hv

is harmonic onT . Setαv = flux(Hv) andα = flux(f ). SinceHv − αvH is bounded, by
(15) we see that

f − h− αH =
∑

v∈∂K∪K̃
�f (v)(Hv − αvH),

a bounded function. ✷
We end the section with an interesting result on the growth of positive superhar

functions on a BS tree.

Theorem 4.5. Let T̃ be a BS tree and letK be a finite set of vertices. Lets be a function
onT which is positive superharmonic onT \K. Thens is increasing along each ray in th
complement ofK. That is, if[v0, v1, . . .] is a ray not intersectingK, thens(vj )� s(vj+1)

for all j � 0. Furthermore, ifs(vj )= s(vj+1) for somej , thens must be constant in th
sector determined by[vj , vj+1].

Proof. Since the random walk associated withT is recurrent, the functionF on T ×
T defined before Proposition 1.1 is identically 1. The first part of the result fol
immediately from part (a) of Proposition 1.2 applied to a sector inT \K ∪ ∂K. If s(vj )=
s(vj+1) < s(w) for somej , wherevj+1 ∈ [vj ,w], then by the first part the mean value os
at the neighbors ofvj+1 would be bigger thans(vj+1), contradicting superharmonicit
Thuss(vj )= s(vj+1)= s(w). Hences must be constant on the sectorS(vj , vj+1). ✷

Potential theory on BS trees has received less attention in the literature than po
theory on BP trees. In a future paper [6], we shall extend and expand the results
section.

5. Conditions for transience on a tree

Given a treeT rooted ate, letω be a boundary point ofT which is not a terminal vertex
Let us denote byωn the vertex of lengthn in the unique geodesic path frome in the classω.
For eachn� 1, set

εn(ω)= p(ωn,ωn−1)

1− p(ωn,ωn−1)
.

DefineH ∗(ω) = 1 + ∑∞
k=2 ε1(ω)ε2(ω) · · ·εk−1(ω) = limn→∞H(ωn), whereH is the

function in (13).
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proof
Theorem 5.1. (a) If T is a tree whose random walk is transient, then there exists s
ω ∈ ∂T such thatH ∗(ω) <∞.

(b) If H ∗ is bounded, then the random walk onT is transient.

Proof. The random walk onT is transient if and only if̃T is a BP space. As in the proo
of Proposition 4.2,H is harmonic except ate and�H(e)= 1. ExtendH linearly to T̃ .

Assume that̃T is a BP space. Then by Theorem 3.2,H = h+ b whereh is harmonic
everywhere andb is bounded. LetBn = {v ∈ T : |v|< n}. Then

h(e)=
∫
∂Bn

H dρBne −
∫
∂Bn

bdρBne .

Sinceb is bounded and constants are harmonic,
∫
∂Bn

H dρBne is bounded. In particular
if vn is a minimum point forH on ∂Bn, then{H(vn)} is bounded. By the compactne
of T ∪ ∂T and the fact thatT is discrete, there is anω ∈ ∂T which is the limit of some
subsequence of{vn}, whenceH ∗(ω) <∞, proving (a).

Next, assume thatH ∗ is bounded by some constantM. ThenM − H is a positive
nonconstant superharmonic function. Thus,T̃ is a BP space by Theorem 1.2.✷

The following theorem is clearly much stronger than (b) of Theorem 5.1. The re
we left Theorem 5.1 as it stands is that it is a purely combinatorial statement, yet its
is purely Brelot theoretic.

Theorem 5.2. If H ∗ is finite on an interval, then the random walk onT is transient.

Proof. First we show that ifH ∗ is bounded on an interval, then the random walk onT is
transient. AssumeH ∗ is bounded onIv , wherev is a vertex of lengthN . LetT0 be the tree
consisting of the descendants ofv. OnT0 define the transition probabilities

p0(w,u)=
{
p(w,u) if w �= v,

p(w,u)

1− p(w,w−)
if w = v.

LetH0 be the analogue of the functionH onT0 viewed as a tree rooted atv, letw ∈ T0 be
a descendant ofv at distancem. Then

H(w) = 1+
N+m∑
k=2

ε1(w) · · · εk−1(w)

= 1+
N∑
k=2

ε1(w) · · · εk−1(w)+ ε1(w) · · ·εN (w)
(

1+
N+m∑
k=N+2

εN+1(w) · · · εk−1(w)

)
= A+BH0(w),
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whereA and B are constants. SinceH ∗ is bounded onIv , H ∗
0 is bounded on the

nonterminal vertices of∂T0. By Theorem 5.1, the random walk onT0 is transient. Thus
letting F andF0 be the functions corresponding to the treesT and T0 defined before
Proposition 1.1, we obtain thatF0(v, v) < 1. But

F(v, v)= p(v, v−)F (v−, v)+
∑
w−=v

p(v,w)F (w,v),

by part (d) of Proposition 1.1. SinceF0(w,v)= F(w,v) for w− = v, we have

F0(v, v)=
∑
w−=v

p0(v,w)F (w,v) =
∑
w−=v

p(v,w)

1− p(v, v−)
F (w,v),

so
∑

w−=v p(v,w)F (w,v) = (1− p(v, v−))F0(v, v). Thus

F(v, v)= p(v, v−)F (v−, v)+ (
1− p(v, v−)

)
F0(v, v) < p(v, v−)+ 1− p(v, v−)= 1.

Therefore, the random walk onT is transient.
Next, assumeH ∗ is finite but unbounded onIv for somev ∈ T , and that the random

walk on T is recurrent. SinceH ∗ is unbounded onIv , H is unbounded onSv , the set
of descendants ofv. Pick v1 ∈ Sv such thatH(v1) � 1. Since the random walk onT is
recurrent, by the first part of the proofH ∗ is unbounded onIv1. ThusH is unbounded
onSv1 and so there existsv2 ∈ Sv1 such thatH(v2)� 2. Inductively, we obtain a sequen
{vn}n∈N such thatvn+1 is a descendant ofvn for all n andH(vn) � n. Let ω be the
equivalence class of the ray[v1, v2, . . .]. Then

H ∗(ω)= lim
n→∞H(vn)= ∞,

which is a contradiction. Consequently, ifH ∗ is finite onIv , then the random walk onT
must be transient. ✷
Corollary 5.1. LetT be a tree rooted ate and letr ∈ (0,1/2). Assume there existsv0 ∈ T
such that for each descendantu of v0, p(u,u−)� r. ThenT is transient.

Proof. For every descendantu of v0, we have

εn(u)� r

1− r
< 1 for all n� |v0|.

ThusH ∗ is bounded onIv0. The conclusion follows at once from Theorem 5.2.✷
The next example shows that finiteness of the functionH ∗ at a single boundary poin

does not guarantee transience.



738 I. Bajunaid et al. / Advances in Applied Mathematics 30 (2003) 706–745

es

s.

e

Example 5.1. Let T be a homogeneous tree of degree 3 rooted ate whose transition
probabilities are as follows. Fixp ∈ (0,1/3] and an infinite rayρ = [v0 = e, v1, . . .).
Definep(vn, vn−1) = 1/3, p(vn, vn+1) = p, p(vn,w) = q for w ∼ vn, w /∈ ρ, for n� 1,
p(e, v)= 1/3 for |v| = 1, p(v−, v) = 1/4,p(v, v−)= 1/2 for all other values ofv. Thus
p+ q + 1/3= 1. For eachn ∈ N, letwn be the neighbor ofvn which does not lie onρ.

Let T2 be the tree of Example 4.1 withq = 2. Observe that except for the probabiliti
starting alongρ, T2 andT are exactly the same. Since for allv /∈ ρ, Γ ′

v,v− with respect toT

is the same as the corresponding set with respect toT2, F(v, v−) is the same for both set
But the random walk onT2 is recurrent, soF(v, v−)= 1. In particular,F(wn, vn)= 1 for
all n ∈ N.

Next observe that the subtree consisting of the descendants ofvn is isomorphic to the
subtree of descendants ofvn+1. ThusF(vn+1, vn)= F(vn+2, vn+1) for all n� 0. Call this
common valueβ .

By the multiplicative property ofF ,

F(vn+1, vn)= 1

3
+ pF(vn+2, vn+1)F (vn+1, vn)+ qF(wn+1, vn+1)F (vn+1, vn),

or β = 1/3 + pβ2 + qβ . Sinceq = 2/3 − p, we obtainβ = 1 or β = 1/(3p). But β � 1
and 1/(3p)� 1, thus we must haveβ = 1. Thus for every neighborv of v0, F(v, v0)= 1
and so by part (d) of Proposition 1.1, we getF(v0, v0)= 1 and thus the random walk onT
is recurrent.

Observe that since(1/3)/(1− 1/3)= 1/2, if ω is the equivalence class ofρ, then

H ∗(ω)=
∞∑
k=1

(
1

2

)k−1

<∞.

In a forthcoming note, we shall show that for 1/3 < p < 2/3, β = 1/(3p) < 1, so
that the random walk onT is transient. On the other hand, the functionsH andH ∗ are
independent ofp.

6. Other Brelot structures on a tree

We now consider other harmonic structures on a tree. Fixa > 0 and consider the
functions onT which are the eigenfunctions of the Laplacian with eigenvaluea2: �f (v)=
a2f (v) for all v ∈ T . These correspond to theλ-harmonic functions of Definition 1.3 wher
λ= a2 + 1. Defining the operatorL=�− a2I , theharmonic functionsthat we study now
are the elements of the kernel ofL. If Lf = 0, extendf on each edge[v,u] by means of
the solution to the Helmholtz equationy ′′ = a2y given by:

f
(
(1− t)v + tu

)= ξ(1− t)f (v)+ ξ(t)f (u),
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where for 0� t � 1,

ξ(t)= eat − e−at

ea − e−a .

Notice thatξ ′′(t)= a2ξ(t). Extendingf gives us anL-harmonic function oñT .
We now give the local definition ofL-harmonic. LetU be an open set iñT and

f a continuous function onU . Assume firstx = (1 − t0)v + t0u, with 0 < t0 < 1,
v,u ∈ T . Definef to beL-harmonic atx if there existb, c ∈ R and ε > 0 such that
f ((1 − t)v + tu) = ξ(1 − t)b + ξ(t)c for all t , |t − t0| < ε. Observe that the functio
g(t) = f ((1 − t)v + tu) satisfies the equationg′′(t) = a2g(t) (in fact, this is equivalen
toL-harmonicity on the edge).

If x = v ∈ T , v not a terminal vertex, we say thatf isL-harmonic atv if for someε > 0
and for allt ∈ (0, ε)

f (v)= 1

α(t)

∑
u∼v

p(v,u)f
(
(1− t)v + tu

)
,

whereα is the function on[0,1] mapping 0 to 1 and 1 toλ given by

α(t)= ξ(1− t)+ λξ(t).

We now say thatf is L-harmonic onU if it is L-harmonic at eachx ∈ U , x not
a terminal vertex ofT . The first Brelot space axiom clearly holds.

Consider the base of domains defined by theε-balls as in Section 2. We show that w
can solve the Dirichlet problem on each such domain. Fixing a vertexv, for any neighbor
u of v, let ut = (1 − t)v + tu. Let us first solve the Dirichlet problem on a neighborho
of x = ut0, with v,u ∈ T , 0< t0 < 1 by taking this neighborhood to beBε(x), where
ε � min{t0,1− t0}. If f is defined on∂Bε(x)= {ut0±ε}, thenf can be extended as follow

f (ut )= 1

ξ(2ε)

[
ξ(ε + t0 − t)f (ut0−ε)+ ξ(ε − t0 + t)f (ut0+ε)

]
for |t − t0| � ε. By construction,f isL-harmonic insideBε(x).

Next, let x = v ∈ T , where v is a nonterminal vertex. For 0< ε � 1, ∂Bε(x) =
{uε : u∼ v}. If f is defined on∂Bε(x), then let

f (v)= 1

α(ε)

∑
u∼v

p(v,u)f (uε) (18)

and

f (ut )= 1

ξ(ε)

[
ξ(ε − t)f (v)+ ξ(t)f (uε)

]
, for 0 � t � ε.

Thus the second axiom of Brelot is satisfied.
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If all the neighbors ofv and the corresponding edges are contained inU , (18) implies
thatλf (v)=∑

u∼v p(v,u)f (u).
The proof of the third axiom of Brelot is almost identical to that which was given in

proof of Theorem 2.1. Thus theL-harmonic functions give a Brelot structure oñT .
Notice that under this structure,̃T is not a BH space since the nonzero constants are

L-harmonic. In the remainder of this section we shall assume that the harmonic str
on T̃ is induced by the operatorL=�− a2I , for a > 0.

Observation 6.1. By Observation 1.2, ifs is L-superharmonic oñT , v ∼ w ∈ T , x, y ∈
[v,w], and 0< t < 1, then

s
(
(1− t)x + ty

)
� h

(x,y)
s|{x,y}

(
(1− t)x + ty

)= ξ(1− t)s(x)+ ξ(t)s(y).

Moreover, for anyv ∈ T , and 0< t < 1,

s(v) � h
Bt
s|∂Bt (v)= 1

α(t)

∑
u∼v

p(v,u)s
(
(1− t)v + tu

)
� 1

α(t)

∑
u∼v

p(v,u)
(
ξ(1− t)s(v)+ ξ(t)s(u)

)
= 1

α(t)

(
ξ(1− t)s(v)+ ξ(t)

∑
u∼v

p(v,u)s(u)

)
,

whenceλs(v)�
∑

u∼v p(v,u)s(u). In particular,s|T is λ-superharmonic onT .

Proposition 6.1. Lets beλ-superharmonic(respectively,λ-harmonic) on any treeT . Then
the extension ofs defined on the edges by

s
(
(1− t)v + tw

)= ξ(1− t)s(v)+ ξ(t)s(w), for all t ∈ (0,1), v,w ∈ T

isL-superharmonic(respectively,L-harmonic) on T̃ .

Proof. First observe thats restricted to the interior of each edge isL-harmonic, hence
L-superharmonic there. Next, letv ∈ T and 0< ε < 1. Then∑

u∼v
p(v,u)s

(
(1− ε)v + εu

) =
∑
u∼v

p(v,u)ξ(1 − ε)s(v)+
∑
u∼v

p(v,u)ξ(ε)s(u)

= ξ(1− ε)s(v)+ ξ(ε)
∑
u∼v

p(v,u)s(u)

� ξ(1− ε)s(v)+ λξ(ε)s(v)= α(ε)s(v), (19)

provingL-superharmonicity at each vertexv. If s is λ-harmonic, the inequality in (19) i
an equality, provingL-harmonicity oñT . ✷
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Definition 6.1. We shall call the extension ofs in Proposition 6.1 theξ -extensionof s.

Proposition 6.2. If s isL-superharmonic oñT , thens is finite-valued.

Proof. First, assumes(v)= ∞ for somev ∈ T . Then for eachu∼ v and eacht ∈ (0,1),

s
(
(1− t)v + tu

)
� ξ(1− t)s(v)+ ξ(t)s(u),

sos is identically infinity on[v,u). On the other hand, by Observation 6.1,

λs(u)�
∑
w∼u

p(u,w)s(w)= ∞,

sincev is a neighbor ofu ands(v) = ∞. Thus,s is identically infinity on the whole edg
[v,u]. By connectedness,s = ∞ on T̃ , contradictingL-superharmonicity.

Next, assumes(x) = ∞, for somex in the interior of the edge[v,u]. Then, for each
t ∈ (0,1), s((1− t)v + tx)� ξ(1− t)s(v)+ ξ(t)s(x)= ∞. Similarly, s((1− t)u+ tx)�
ξ(1 − t)s(u) + ξ(t)s(x) = ∞. So s is infinity on (v,u). Again byL-superharmonicity
s(v)� (1/α(ε))

∑
w∼v p(v,w)s((1 − ε)v + εw)= ∞. Thus,s(v)= ∞. By the first case

we get a contradiction, completing the proof.✷
Proposition 6.3. LetT be any tree. Then the spacẽT under the harmonic structure induce
byL=�− a2I has potentials.

Proof. As above, letλ = a2 + 1. Observe that the positive constants are positiveL-
superharmonic but notL-harmonic. Thus, by Theorem 1.2,̃T has potentials. ✷

LetT be a homogeneous tree of degreeq+1 and, as in Section 1.1, letα = ((q+1)λ−√
(q + 1)2λ2 − 4q)/(2q) which is the smaller positive root of the quadratic equa

associated with the recurrence relation (1), and letβ be the larger.

Proposition 6.4. The functionp(v) = α|v|, v ∈ T , is a potential onT with harmonic
support at{e} with respect to the structure induced byL.

Proof. Assumev ∈ T , |v| = n > 0. Then

µ1p(v)= qαn+1 + αn−1

q + 1
= qα+ α−1

q + 1
p(v)= λp(v).

ThusLp(v) = 0 for all v �= e. Furthermore,µ1p(e) = α, soLp(e) = α − λ, a negative
number. Thusp is positive λ-superharmonic andλ-harmonic off e. Assume h is
a nonnegativeλ-harmonic function such thath� p. Let h̃ be the radialization ofh, i.e.,

h̃(v)= 1

c|v|

∑
h(w),
|w|=|v|
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where cn is the number of vertices of lengthn. Sinceh is nonnegative, 0� h̃ � p.
Furthermore,̃h is λ-harmonic.

If vn is any vertex of lengthn, then

q

q + 1
h̃(vn+1)+ 1

q + 1
h̃(vn−1)= λh̃(vn)

(which is the recurrence relation (1)) forn � 2, and h̃(v1) = λh̃(e). Thus h̃(vn) =
c0β

n + c1α
n and 0� c0β

n + c1α
n � αn for all n. Sinceβ > α, it follows that c0 = 0,

so h̃ is a multiple ofp. On the other hand, sincep is not harmonic ate, c1 = 0. Thush̃ is
identically 0, whenceh= 0. Thereforep is a potential. ✷
Observation 6.2. In this homogeneous case, the Green function for theL operator is given
by

G(u,v)=Gv(u)= 1

λ− α
αd(u,v).

Let T be any tree,a � 0, λ= a2 + 1. Define the operatorG on the space of function
onT by

G=
∞∑
j=0

1

λj+1µ
j
1,

whereµj1 is thej -fold composition of the operatorµ1 with itself. Notice that fora > 0,
λ > 1 and so by Observation 1.1,G is a bounded operator of norm‖G‖ � 1/(λ − 1).
Furthermore

I +µ1G= I +Gµ1 = λG. (20)

Proposition 6.5. Let f be a nonnegative function on a treeT . Then either there is n
nonnegative solutions to Ls = −f , or Gf is a nonnegative solution and any nonnegat
solutions toLs = −f satisfies the inequalitys �Gf .

Proof. Assume there existss :T → [0,∞) such thatLs = −f . Thenµ1s − λs = −f , so

1

λ
µ1s + 1

λ
f = s.

Composing withµ1 yields

1

λ
µ2

1s + 1

λ
µ1f = µ1s = λs − f,

whence

s = 1
f + 1

µ1f + 1
µ2

1s.
λ λ2 λ2
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By induction, it follows that for alln ∈ N

s = 1

λ
f + 1

λ2µ1f + · · · + 1

λn+1µ
n
1f + 1

λn+1µ
n+1
1 s � 1

λ
f + 1

λ2µ1f + · · · + 1

λn+1µ
n
1f.

Lettingn→ ∞, we deduces �Gf . ThusGf <∞ and by (20),LGf = −f . ✷
We now show thatG induces the Green function onT × T .

Proposition 6.6. Let v ∈ T . Then the function onT defined byGv = Gδv is a potential
on T with harmonic support at{v}. Furthermore, every potential with harmonic supp
at v is a positive multiple ofGv .

Proof. SinceLGv = −δv � 0, Gv is positiveL-superharmonic onT andL-harmonic
on T \{v}. If h is an L-harmonic minorant ofGv , then L(Gv − h) = −δv , so by
Proposition 6.5,Gv − h�Gv . It follows thath� 0. ThusGv is a potential.

Let p be a potential with harmonic support atv. By scaling, it suffices to show
that if Lp(v) = −1, thenp = Gv . Thus, assumingLp(v) = −1, Lp = −δv. Applying
Proposition 6.5 tof = δv ands = p, we obtainp �Gv . But h= p −Gv is nonnegative
L-harmonic andh� p. Thush= 0, whencep =Gv . ✷

Recall the axiom of proportionality (Definition 1.14).

Theorem 6.1. Let T be any tree. Then the axiom of proportionality holds forT̃ under the
Brelot structure given byL.

Proof. If p1 andp2 are potentials oñT with harmonic support atv ∈ T , thenp1|T and
p2|T are potentials onT with the same harmonic point support. Thus, by Proposition
they are multiples of one another. So assumep1 andp2 are potentials oñT with harmonic
support atx ∈ (v,w), wherev,w ∈ T . Thenp1 andp2 are potentials onT which are
L-harmonic except possibly atv,w. Thus off [v,w], pj = αjGv + βjGw, for some

αj ,βj � 0, j = 1,2. LetGξ
v be theξ -extension ofGv . Nearv, defineG̃ξ

v to beGξ
v off

(v,w), while for y = (1− s)v + sw, 0� s � 1, define

G̃ξ
v(y)= ξ(1− s)Gv(v)+ ξ(s)G̃v(w),

whereG̃v(w) is the quantity defined by

λGv(v)=
∑
u �=w

p(v,u)Gv(u)+ p(v,w)G̃v(w).

DefineG̃w(v) by reversing the roles ofv andw. Then forj = 1,2,

pj =
{
αj G̃

ξ
v + βjG

ξ
w on [v, x],

α G
ξ + β G̃

ξ on [x,w].
j v j w
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So forx = (1− t)v + tw, 0� t < 1, we have

pj (x)= αj G̃
ξ
v(x)+ βjG

ξ
w(x)= αjG

ξ
v(x)+ βj G̃

ξ
w(x).

This fixesαj /βj , j = 1,2. Moreover

αj
[
ξ(1− t)Gv(v)+ ξ(t)G̃v(w)

]+ βj
[
ξ(1− t)Gw(v)+ ξ(t)Gw(w)

]
= αj

[
ξ(1− t)Gv(v)+ ξ(t)Gv(w)

]+ βj
[
ξ(1− t)G̃w(v)+ ξ(t)Gw(w)

]
.

Thus

αjξ(t)
[
G̃v(w)−Gv(w)

]= βj ξ(1− t)
[
G̃w(v)−Gw(v)

]
.

Consequently,

α1

β1
= α2

β2
= ξ(1− t)

ξ(t)

[
G̃w(v)−Gw(v)

G̃v(w)−Gv(w)

]
,

proving proportionality. ✷
By Theorem 6.1 and Theorem 3.4, we know that there is a Green function onT̃ . By

Observation 3.1, we obtain

Corollary 6.1. If T is any tree, then the Green functionG on T̃ under the structure
inherited by the operatorL can be chosen so that its restriction toT ×T equals the Green
function of Proposition6.6.
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