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Abstract. The Martin boundary for positive solutions of the Helmholtz equation inn-dimensional
Euclidean space may be identified with the unit sphere. Letv denote the solution that is represented
by Lebesgue surface measure on the sphere. We define a notion of thin set at the boundary and prove
that for each positive solution of the Helmholtz equation,u, there is a thin set such thatu/v has a
limit at Lebesgue almost every point of the sphere if boundary points are approached with respect to
the Martin topology outside this thin set. We deduce a limit result foru/v in the spirit of Nagel–Stein
(1984).
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1. Introduction

Let n be an integer greater than 1. LetS = Sn−1 = {x ∈ R
n : |x| = 1} denote

the unit sphere inRn . For b ∈ S, t > 0 let Bb,t = {x ∈ S: |x − b| < t} be the
intersection withS of an open ball inRn centered atb of radiust . We letσ denote
unit Lebesgue surface measure onS. Forµ a Borel measure onS, define

Kµ(x) =
∫
s

eλ〈x,b〉 dµ(b),

where〈x, b〉 = x1b1 + · · · + xnbn is the usual inner product onRn , andλ is the
positive constant that appears in the Helmholtz equation,1u = √λ ·u. All positive
solutions of the Helmholtz equation are of the formKµ for some positive Borel
measureµ on S ([6], Corollary to Theorem 4). For eachb ∈ S, let �b denote
an unbounded subset ofRn that converges tob at∞ in the sense that if{xk} is a
sequence in�b such that|xk| → ∞, thenxk/|xk| → b. We denote this by ‘xk → b

at∞’.

DEFINITION 1. {�b: b ∈ S} is called acollection of approach regionsif for each
b ∈ S,�b converges tob at∞ and the convergence is uniform in the sense that for
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384 KOHUR GOWRISANKARAN AND DAVID SINGMAN

all ε > 0 there existsT such that for allb ∈ S and|x| > T , we have| x|x| − b| < ε

if x ∈ �b.
We define the concept ofthinnessas follows:

DEFINITION 2. LetE ⊂ Rn , α > 0. Let

3(E) = inf

{ ∞∑
i=1

σ(Bbi,ti ):E ⊂
∞⋃
i=1

Gα(bi, ti)

}
,

where

Gα(b, t) =
{
x ∈ Rn : x|x| ∈ Bb,t , |x| > α

2t−2

}
.

If α = 1, we writeG(b, t) instead ofG1(b, t). We say thatE is thin at the boundary
with respect to measureif

lim
t→∞ 3(E ∩ {x ∈ R

n : |x| > t}) = 0.

It is easy to see the definition is independent ofα.

We show in Theorems 1 and 2 that for any positive solutionKµ of the Helmholtz
equation, and any collection{�b} of approach regions, there exists a setE thin at
the boundary with respect to measure such that forσ -a.e.b in S, (Kµ/Kσ)(x)
converges to(dµ/dσ)(b) asx → b at∞, x ∈ �b − E.

In Theorem 4 we deduce from the above result an almost everywhere point-
wise boundary behavior result for an ‘admissible collection’ of approach regions
{�b: b ∈ S} (‘admissible collection’ is defined in Definition 5). The basic theorem
of this type that is known is the following:

THEOREM (Korányi–Taylor) [9]:Letµ be a positive, Borel measure onS. Letα
be a given positive real number. Then

lim
x→b at∞,x∈Pα(b)

Kµ

Kσ
(x) = dµ

dσ
(b)

for σ − a.e.b ∈ S, where

Pα(b) = {x ∈ Rn : |x − |x|b| 6 α
√|x|} = {x ∈ Rn : ∣∣∣∣ x|x| − b

∣∣∣∣ 6 α√|x|
}

is the paraboloid of apertureα.

We will define what it means for a family of approach regions{�b: b ∈ S}
to beadmissible(see Definition 5) and show that for such a family and a given set
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E thin with respect to measure at the boundary,σ -a.e.b ∈ S has the property that
E ∩ �b∩ {|x| > T } = ∅ for all T large enough (Theorem 3). Theorem 4 then
follows immediately. The family of paraboloids in the Korányi–Taylor theorem
forms an admissible collection, in fact the only admissible collection such that
�b is invariant under all unitary transformations ofRn which fix b. However, in
Section 5 we show how to generate examples of admissible collections�b which
cannot be contained inPα(b) for any fixed aperture,α.

The result of Theorem 4 is analogous to the main result in [14] where the Fatou
theorem for positive harmonic functions on a half-space inR

n+1 is improved by re-
placing cones with a more general family of ‘non-nontangential’ approach regions.
For subsequent developments, see [3], [5], [8], [10–13], [15–16].

The idea of the definition of thin set as well as the idea of proving Theorem 4
using a notion of thin set is inspired by H. Aikawa. In [1] and [2] he defines a
notion of thin set on a half-space inRn+1 and deduces the result of Nagel–Stein
[14] for positive harmonic functions on this half-space. In this paper we adapt his
proof to our setting. Significant difficulties arise due to a very different definition
of ‘admissible collection’ and the lack of a group structure onSn−1.

The idea of a set of approach regions{�b: b ∈ Sn−1} being an ‘admissible col-
lection’ is inspired by the analogous definition in [15]. However, our definition is
less restrictive. We merely require a control over theσ -measure of the�-projection
(see Definition 3) of the tents over those balls which are bounded away from a
fixed closed setF in S of σ -measure 0, rather than over all balls. As we show in
Proposition 4, this is due to the fact that for the natural examples of admissible
collections (other than the ones consisting of paraboloids as in the Korányi–Taylor
Theorem), there is necessarily a setF for which there are balls with centers inF
such that it is impossible to control theσ -measure of the�-projection of tents over
these balls.

A result analogous to Theorem 4 was considered in Theorem A of [4]. There,
‘admissible’ was given a much less restrictive definition. However, there is a gap
in the proof of that result. Specifically, the use of Theorem 1.1 of [15] was not
justified. With the more restrictive definition of admissible one might be able to
apply the technique of [4] to deduce our Theorem 4. However, in this article we
prove a stronger result (Theorem 3) and show that Theorem 4 follows as a corollary.

We shall make use of the following covering lemma. It is stated slightly differ-
ently from the covering lemma in [7]. However, the proof is the same and so we
omit it. RecallS denotes the unit sphereSn−1.

LEMMA 1. LetE be a subset ofS. For eachx ∈ E, let 0 < r(x) 6 2 be chosen.
Letω = ∪{Bx,r(x): x ∈ E}. Pickk > 4. Then there exists a sequence{xi} ⊂ E such
that the balls{Bxi,rxi } are pairwise disjoint,E ⊂ ∪Bxi,k·rxi , ω ⊂ ∪Bxi,(2+k)rxi , and
for everyx ∈ E, there existsi such thatx ∈ Bxi,k·rxi , andrxi > r(x)/2.

In what follows,c denotes a real value that may vary from line to line but does
not depend in an important way on the parameters of interest.
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2. Weaktype Inequality

PROPOSITION 1.There exists a constantc such that for every Borel measureµ
onS and eachε > 0,

3

{
x ∈ Rn : Kµ

Kσ
(x) > ε

}
6 c · ‖µ‖

ε
.

Proof.Define the maximal functionMµ on {x ∈ Rn : |x| > 1} by

Mµ(x) = sup

{
µBx/|x|,t
σBx/|x|,t

:2> t > 1/
√|x|} .

We first show that

Kµ

Kσ
(x) 6 c ·Mµ(x), (2.1)

wherec is independent ofx,µ. Let |x| > 1. SinceKσ(x) ≈ eλ|x||x|(1−n)/2 as
|x| → ∞ ([4], Lemma 4.1), we have

Kµ

Kσ
(x) 6 c · |x|(n−1)/2 · e−λ|x|

∫
eλ|x|〈

x
|x| ,b〉 dµ(b)

= c · |x|(n−1)/2
∫

e−λ(|x|/2)|
x
|x| −b|2 dµ(b)

6 c · |x|(n−1)/2
[√|x|]∑
k=0

∫
k√|x|6

∣∣∣ x|x| −b∣∣∣6 k+1√|x|
e
−λ(|x|/2)

∣∣∣ x|x| −b∣∣∣2 dµ(b)

+
∫

16
∣∣∣ x|x| −b∣∣∣64

c · |x|(n−1)/2 e
−λ(|x|/2)

∣∣∣ x|x| −b∣∣∣2 dµ(b)

6

[√|x|]∑
k=0

e−λ
k2
2 · (k + 1)n−1 · µBx/|x|,(k+1)/

√|x|
((k + 1)/

√|x|))n−1
+ c · µBx/|x|,4

σBx/|x|,4

6

[
c ·
( ∞∑
k=0

e−λk
2/2(k + 1)n−1

)
+ d

]
·Mµ(x)

= c ·Mµ(x),
proving Equation (2.1).

Thus to finish the proof, it is enough to show that

3{x ∈ Rn :Mµ(x) > ε} 6 c · ‖µ‖
ε
. (2.2)
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Let E denote the set in inequality (2.2). For eachx ∈ E, there existstx such that
2> tx > 1/

√|x| and

µBx/|x|,tx > ε · σBx/|x|,tx .

Thus {Bx/|x|,tx : x ∈ E} is a collection of balls onS, so by Lemma 1, there is a
countable, pairwise disjoint subset of them{Bxi/|xi |,ti } such that{Bxi/|xi |,c·ti } cov-
ers the original collection, wherec depends only onn. Again, by Lemma 1 and
Definition 2, it follows

E ⊂
⋃
x∈E

G

(
x

|x| , tx
)
⊂
⋃
i

G

(
xi

|xi | , c · txi
)
,

and so

3(E) 6
∑

σB xi|xi | ,c·txi
6 c ·

∑
σB xi|xi | ,txi

6
c

ε
·
∑

µB xi|xi | ,txi
6
c

ε
· ‖µ‖,

which is (2.2). 2

3. Relative Limits of Solutions of the Helmholtz Equation

We study the boundary behavior of functions of the formKµ/Kσ by looking
separately at the case whereµ is singular and absolutely continuous.

THEOREM 1. Letµ be a measure onS that is singular with respect toσ . Then
there exists a setE thin at the boundary with respect to measure such thatKµ/Kσ

(x)→ 0 as |x| → ∞, x 6∈ E.
Proof. Let ε > 0. We claim that{x: Kµ

Kσ
(x) > ε} is thin at the boundary with

respect to measure.
In order to show this, we start by choosingη > 0. Sinceµ is singular, there

exists a sequence of ballsBi = Bbi,ri such that
∑
σ(Bi) < η andµ has support in

∪Bi. For each positive integerj , letµ = µj + νj , whereµj is the restriction ofµ
to ∪{Bi:1 6 i 6 j}. Since‖νj‖ → 0 asj → ∞, we deduce from Proposition 1
that there existsj such that

3

{
x: Kνj
Kσ

(x) > ε/2
}
6
c

ε
· ‖νj‖ < η.

Fix this j value. Letr2 = min{r2
1, . . . , r

2
j }. Chooset such thatt > r−2 and for

all |x| > t , c′|x|(n−1)/2 e−(λ/2)|x|r2‖µ‖ < ε/2, wherec′ is a constant such that

136523.tex; 6/06/1995; 14:49; p.5



388 KOHUR GOWRISANKARAN AND DAVID SINGMAN

Kσ(x) 6 c′ eλ|x||x|(1−n)/2 for all x. If |x| > t andx/|x| 6∈ ∪{Bbi,2ri :1 6 i 6 j},
then (recall the first string of inequalities in the proof of Proposition 1)

Kµj

Kσ
(x) 6 c′ · |x|(n−1)/2

∫
∪{Bi : 16i6j}

e
−(λ|x|/2)

∣∣∣ x|x| −b∣∣∣2 dµj(b)

6 c′ · |x|(n−1)/2 e−(λ|x|/2)r
2‖µ‖

< ε/2,

so

3

{
Kµ

Kσ
> ε, |x| > t

}

6 3

{
Kνj

Kσ
> ε/2, |x| > t

}
+3

{
Kµj

Kσ
> ε/2, |x| > t

}

6 3

{
Kνj

Kσ
> ε/2

}
+3

{
Kµj

Kσ
> ε/2, |x| > t, x/|x| ∈⋃j

1Bbi,2ri

}
6 η +3

{
x: |x| > r−2, x/|x| ∈⋃j

1Bbi,2ri

}
6 η + c ·

∑
σBbi,2ri

< c · η.
This proves the claim.

Let εj , ηj be sequences of real numbers decreasing to 0 such that
∑
ηj < ∞.

Let

Ej =
{
Kµ

Kσ
> εj

}
.

By what we have just proved, there existstj ↗∞ such that

3(Ej ∩ {|x| > tj }) < ηj .
Let

E =
⋃
{Ej ∩ {tj 6 |x| 6 tj+1}}.

Since3 is countably subadditive,

3(E ∩ {|x| > t}) 6
∑
tj+1>t

3(Ej ∩ {|x| > tj }) 6
∑
tj+1>t

ηj ,
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THIN SETS AND BOUNDARY BEHAVIOR 389

and the latter goes to 0 ast →∞, proving thatE is thin at the boundary with re-
spect to measure. Finally, if|x| > tk andx 6∈ E then(Kµ/Kσ)(x) 6 max{εl: l >
k} → 0 ask→∞. 2

In order to study the absolutely continuous case, we need the following extension
of Lusin’s theorem.

PROPOSITION 2. Let f ∈ L1(S). Then for eachε > 0 there is a continuous
functiong such thatσ {f 6= g} < ε and‖f − g‖1 < ε.

Lusin’s theorem gives all but the condition that‖f − g‖1 < ε, and this follows
from a careful use of the triangle inequality. We omit the proof.

We next show that the solution of the Dirichlet problem is uniformly continuous.

PROPOSITION 3. Let f be a continuous function onS. Extendf to R
n by

(Kf/Kσ)(x) for |x| 6= 1. Let ε > 0. Then there existδ > 0,M < ∞ such
that for all b ∈ S and all x ∈ R

n , if |x| > M and |x/|x| − b| < δ, then
|(Kf/Kσ)(x)− f (b)| < ε.

Proof. Sincef is uniformly continuous, we can chooseδ > 0 such that for all
b, b′ ∈ S, |b− b′| < 2δ implies|f (b)− f (b′)| < ε/2. Fixb0 ∈ S, and letx satisfy
|x/|x| − b0| < δ. Then

|(Kf/Kσ)(x)− f (b0)| 6
∫

eλ〈x,b〉|f (b)− f (b0)|dσ∫
eλ〈x,b〉 dσ

= I + II,

where in the numerator we integrate over|b − b0| < 2δ, |b − b0| > 2δ in I and II,
respectively. Note that

I 6 (ε/2) ·
∫

eλ〈x,b〉dσ∫
eλ〈x,b〉 dσ

= ε/2,

and

II 6 c · |x|(n−1)/2
∫
|b−b0|>2δ

e−λ|x| eλ〈x,b〉|f (b)− f (b0)|dσ(b)

6 c · |x|(n−1)/2 · ‖f ‖∞
∫
|b−b0|>2δ

e
−(λ|x|/2)

∣∣∣b− x
|x|
∣∣∣2 dσ(b)

6 c · |x|(n−1)/2‖f ‖∞ e−(λ|x|/2)δ
2

6 ε/2 if |x| > M,
whereM is chosen such thatc ·M(n−1)/2 · e−λMδ2/2‖f ‖∞ < ε/2. 2
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THEOREM 2. Let f ∈ L1(S), and{�b} any set of approach regions. Then there
existsE thin with respect to measure at the boundary andF ⊂ R

n with σ(F) = 0
such that for everyb ∈ S − F , (Kf/Kσ)(x)→ f (b) as|x| → ∞, x ∈ �b − E.

Proof.Let εk, ηk ↘ 0,
∑
ηk <∞. By Proposition 2, there existfk continuous

onS such thatσ {f 6= fk} < ηk and‖f − fk‖1 < εkηk. Let

F =
∞⋂
j=1

∞⋃
k=j
{b ∈ S: f (b) 6= fk(b)}

Thenσ(F) = 0, since
∑
ηk <∞. Proposition 1 implies

3

{
K(f − fk)

Kσ
> εk

}
6 c · ‖f − fk‖1

εk
< c · ηk.

By Proposition 3, there existsrk ↘ 0 such that for allb ∈ S, if |y| > r−2
k and

|y/|y| − b| < rk (that is, ify ∈ G(b, rk)), then∣∣∣∣KfkKσ
(y)− fk(b)

∣∣∣∣ < εk. (3.1)

Since�b → b uniformly at∞ (recall Definition 1), we can chooseTk ↗∞ such
that for allb ∈ S and for allk,�b∩DTk−1 ⊂ G(b, rk), whereDTk = {x ∈ Rn : |x| >
Tk}. It follows

�b ∩DTk−1 ⊂
⋃
j>k

(G(b, rj )−DTj ).

LetEj = {K|f − fj |/Kσ > εj } −DTj ,E = ∪Ej . LetT > 1. Then

3(E ∩DT ) 6
∑
Tj>T

3{K|f − fj |/Kσ > εj } 6
∑
Tj>T

c · ηj → 0

asT →∞. ThusE is thin at the boundary with respect to measure.
Letb ∈ S−F, ε > 0. Pickk such thatεk < ε/2, andfj(b) = f (b) for all j > k.

Let y ∈ DTk−1 ∩�b−E. Then there existsj > k such thaty ∈ G(b, rj )−DTj , so

|(Kf/Kσ)(y)− f (b)| 6 |(Kf/Kσ)(y)− (Kfj/Kσ)(y)|
+|(Kfj/Kσ)(y)− fj(b)| + |fj(b)− f (b)|

< εj + εj + 0

< ε 2
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4. Admissible Sets and Pointwise Results

In order to define what is an admissible collection of approach regions, we make
the following definitions.

DEFINITION 3. Let {�b: b ∈ S} be a collection of approach regions. LetX be a
subset ofRn . We define the�-projection ofX to be

�∗(X) = {b ∈ S:�b ∩X 6= ∅}.

DEFINITION 4. LetB = Bc,r be an open ball onS, andα a fixed positive constant.
Let {Pα(b)} be the parabolic family of approach regions (recallPα(b) = {x ∈
R
n : |x/|x| − b| 6 α|x|−1/2}). Define thetent, Tα(B), overB to be the set whose

projection with respect to this parabolic family isB.

The reader can check that

Tα(B) =
{
x ∈ Rn :B x

|x| ,
α√|x| ⊂ B

}
.

We refer to the point(α2/r2)c as thevertexof the tent.

DEFINITION. 5. Fixα > 0. We say the collection of approach regions{�b: b ∈ S}
is anadmissible collectionif (1) each set�b is starlike with respect to the origin,
and (2) there exists a closed setF of σ -measure 0 having the following property:
for everyε > 0 andγ > 1 there existsc = cε,γ such that for every ballB = Bx,r
for which the distance ofBx,γ r to F is greater thanε, we have

σ(�∗(Tα(B))) 6 c · σ(B).
Thus we only ask for control of the�-projection of tents over balls that stay away
from F .

Using the covering lemma, it is easy to show that the definition is independent
of α.

After a few more definitions, we show how to write the definition ofadmissible
collectionin an equivalent way.

DEFINITION 6. Let� be any subset ofRn . Let t > 0. The t-sectionof � is
defined to be�(t) = {b ∈ S: bt ∈ �}.

DEFINITION 7. Letb ∈ S, andr, α given positive numbers. LetSα(b, r) = {c ∈
S:Bb,r ∩�c(α2r−2) 6= ∅}. If α = 1, denote it byS(b, r).

We leave it to the reader to show that forBb,r a ball onS,

�∗(Tα(Bb,r )) ⊂ Sα(b, r) ⊂ �∗(Tα(Bb,2r)).
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Thus we may replaceσ(�∗(Tα(B))) by σ(Sα(B)) in Definition 5.

THEOREM 3. Let {�b: b ∈ S} be an admissible collection, withF its associated
closed set of measure 0. LetE be thin with respect to measure at the boundary.
Then forσ -a.e.b ∈ S, E lies eventually outside�b in the sense that there exists
T = T (b) such that for ally with |y| > T, y 6∈ �b ∩ E.

We deduce immediately from Theorems 1, 2 and 3 the following

THEOREM 4. Letµ be a positive regular Borel measure onS. Let{�b: b ∈ S} be
an admissible collection. Then there is a subsetH of S havingσ -measure 0 such
that for all b ∈ S − H , (Kµ)/(Kσ)(y) converges to(dµ/dσ)(b) as |y| → ∞,
y ∈ �b.

Proof of Theorem3. For eachε > 0, let

Bε =
⋃
b∈F

Bb,ε,Gε =
⋃
b∈F

G(b, ε),Eε = E −Gε.

Now fix ε > 0 once and for all. Let{ck} be any decreasing, summable sequence
of positive real numbers. SinceE, and henceE2e, are thin with respect to measure
at the boundary, there existsT1 < T2 < · · · with limk→∞ Tk = ∞ such that for
everyk there is a sequence of balls{Bbk,j ,rk,j }j with E2ε ∩ {|x| > Tk} ⊂ ⋃∞

j=1

G(bk,j , rk,j ) and
∑∞

j=1 σBbk,j ,rk,j < ck. We may assume thatc1 is small enough
so that for eachk andj , rk,j < ε/3 andE2ε ∩ Gbk,j ,rk,j 6= ∅ (otherwise we may
discardBbk,j ,rk,j ).

Let b ∈ Bbk,j ,2rk,j , c ∈ F, z ∈ G (bk,j , rk,j ) ∩ E2ε. Notice∣∣∣∣c − z

|z|
∣∣∣∣ > 2ε,

since if not, |z| > r−2
k,j > 9ε−2 > (2ε)−2 would imply z ∈ G(c,2ε) ⊂ G2ε,

contrary to our assumption thatz ∈ E2ε. Thus∣∣∣∣ z|z| − b
∣∣∣∣ 6 ∣∣∣∣ z|z| − bk,j

∣∣∣∣+ |bk,j − b| < rk,j + 2rk,j = 3rk,j < ε,

and so

2ε 6

∣∣∣∣c − z

|z|
∣∣∣∣ 6 |c − b| + ∣∣∣∣b − z

|z|
∣∣∣∣ < |b − c| + ε,

implying |b − c| > ε. It follows Bbk,j ,2rk.j is at least a distance ofε from F . Since
the approach regions form an admissible family, there existscε such that for all
k, j , σ(S(bk,j , rk,j )) 6 cεσ (Bbk,j ,rk,j ).
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Let Sk =⋃∞j=1 S(bk,j , rk,j ). Since

∞∑
k=1

σ(Sk) 6
∑
k,j

σ (S(bk,j , rk,j )) 6 cε
∑
k,j

σ (Bbk,j,rk,j ) 6 cε
∑∞
k=1 ck<∞,

σ (lim Sk) = 0, wherelim Sk = ⋂∞k=1

⋃∞
l=k Sl.

Let b ∈ (Sn−1−B3ε)− lim Sk. Then there existsk0 such that for allk > k0 and
all j , b 6∈ S(bk,j , rk,j ), so

Bbk,j ,rk,j ∩�b(r−2
k,j ) = ∅. (4.1)

We claim there does not existy in E2ε ∩�b for |y| > Tk0. For if there were such a
y, theny ∈ G(bk,j , rk,j ) for somek > k0, and a positive integerj . By definition,
|y| > 1/r2

k,j . Since�b is starlike with respect to the origin,

y

|y| ∈ Bbk,j ,rk,j ∩�b(|y|) ⊂ Bbk,j ,rk,j ∩�b(r
−2
k,j ),

which contradicts (4.1). It follows that as we approachb at∞ within �b, we
eventually leaveE (since forb ∈ Sn−1 − B2ε, it is impossible for a sequence
contained inG2ε to approachb at∞). Sinceε is an arbitrarily chosen positive
number, the theorem follows. 2

5. Examples of Admissible Collections

In this section, we fix a positive apertureα once and for all. We describe a way to
generate examples of admissible collections inR

3 other than the paraboloids of the
Korányi–Taylor theorem.

For eachθ1, θ2 with 0 6 θ1 6 π , and 0 6 θ2 < 2π , define the unitary
transformationUθ1,θ2 whose matrix with respect to the standard bases is given by
the product

1 0 0

0 cosθ2 − sin θ2

0 sin θ2 cosθ2




cosθ1 − sin θ1 0

sin θ1 cosθ1 0

0 0 1

 .
ThusUθ1,θ2 first rotates byθ1 in the first two coordinates (fixing the third), then
rotates the resulting point byθ2 in the second and third coordinates (fixing the
first).

Consider the mapping

U : (0, π)× [0,2π)→ S
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given by

U(θ1, θ2) = Uθ1,θ2(1,0,0) = (cosθ1, sinθ1 cosθ2, sinθ1 sinθ2).

Notice thatU is one-to-one and maps ontoS − {(±1,0,0)}; {(±1,0,0)} corre-
sponds to the image of the set whereθ1 is 0 orπ . The surface measureσ is given
by

dσ = sinθ1 dθ1 dθ2. (5.1)

We identify each pointb of S − {(±1,0,0)} with (θ1, θ2), its preimage underU
and occasionally we will writeUb instead ofUθ1,θ2.

DEFINITION 8. Letx ∈ Rn , x 6= 0. Define the ‘α-balloon set’

Cα(x) =
{
y ∈ Rn :0< |y| 6 |x|and

∣∣∣∣ y|y| − x

|x|
∣∣∣∣ 6 α( 1

|y| −
1

|x|
)1/2

}
.

Let {xk} be a sequence inR3 chosen so that|xk| is an increasing sequence with
limit ∞, xk converges toe = (1,0,0) at∞, and{xk/|xk|} lies in thex1x2-plane
and is of the form (cosθk, sinθk,0), for someθk ∈ (0, π). Suppose in addition we
have√|xk| ∣∣∣∣ xk|xk| − e

∣∣∣∣→∞ (5.2)

and √|xk| ∣∣∣∣ xk+1

|xk+1| − e
∣∣∣∣ 6 M, (5.3)

for some constantM. The meaning of (5.2) is that{xk} is not contained in a
paraboloidPα(e) for any fixed apertureα. We can construct such a sequence as
follows. Consider the curvesC1: t 7→ (t,

√
t ,0),C2: t 7→ (t, t3/4,0), for t > 0. Let

x1 be any point onC2. Pick a pointy1 onC1 for which |y1| = |x1|. Let x2 be the
point on the intersection ofC2 with the line that contains the origin andy1. If we
continue this procedure, we generate the sequence{xk}.

Define

� = �e =
∞⋃
k=1

Cα(xk),

and forb ∈ S, define

�b = Ub(�).
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PROPOSITION 4. The set{�b: b ∈ S} is an admissible collection of approach
regions. The associated closed set ofσ -measure0 is F = {e} = {(1,0,0)}. In
addition, there exists a sequence{rk} of radii decreasing to0 such that

σ(�∗(Tα(Be,rk)))/r
2
k →∞ask→∞.

The last part of the statement shows why we must include the exceptional setF in
our definition of admissible collection. The key to the proof of the first part of the
proposition is the following lemma which essentially shows that we may replace
the tent in Definition 5 by its vertex.

LEMMA 2. Fix a ballB = Bc,r , andγ > 1. Choose a positive integerk such that
r > α√

(1−γ−1)|xk|
. Suppose|x| = |xk| andCα(x) ∩ Tα(Bc,r) 6= ∅. Thenα2r−2c ∈

C2
√
γ α(x).

Proof of Lemma.Let y ∈ Cα(x) ∩ Tα(Bc,r ). Then∣∣∣∣ y|y| − x

|x|
∣∣∣∣ 6 α

√
1

|y| −
1

|x| and By/|y|,α/√|y| ⊂ Bc,r

(so|y| > α2r−2). Thus∣∣∣∣c − x

|x|
∣∣∣∣ 6 ∣∣∣∣c − y

|y|
∣∣∣∣+ ∣∣∣∣ y|y| − x

|x|
∣∣∣∣

6 r + α
√

1

|y| −
1

|x|

6 r + α√|y|
6 2r

= 2
√
γα

√
r2

α2
− r

2(1− γ −1)

α2

6 2
√
γα

√
r2

α2
− 1

|x| ,

and soα2r−2c ∈ C2
√
γα(x). 2

Proof of the Proposition.It is easy to show that theα-balloons are starlike with
respect to the origin, hence so is�b for eachb ∈ S.

Let B = Bc,r be a ball onS, γ̄ > 1, and suppose the distance ofBc,γ̄ r to
e = {(1,0,0)} is positive. We need to show there is a constant,c, such that

σ(�∗((Tα(B))) 6 c · σ(B),
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wherec depends only onα, γ̄ ,M (recall 5.3), and the above distance.
Let γ = γ̄ 2

γ̄ 2−1
. Suppose theα-balloonCα(x) intersects the tentTα(Bc,r). Then

|x| > α2r−2 = α2(γ̄ r
√

1− γ −1)−2. Also ∅ 6= Cα(x)∩ Tα(Bc,r ) ⊂ Cα(x) ∩
Tα(Bc,γ̄ r ). We deduce (using the lemma withr replaced byγ̄ r) that

�∗(Tα(B)) = {b:�b ∩ Tα(B) 6= ∅} ⊂ {b:α2(γ̄ r)−2c ∈ �′b},
where

�′b = Ub
( ∞⋃
k=1

C2
√
γ α(xk)

)
.

Let y be chosen in�′e such that|y| = α2(γ̄ r)−2. Pick a positive integerk0 such
that

|xk0−1| 6 |y| = α2(γ̄ r)−2 < |xk0|.
Theny ∈ C2

√
γ α(xk) for somek > k0. Supposek > k0 + 1. Then

∣∣∣∣ y|y| − xk

|xk|
∣∣∣∣ 6 2
√
γα

√
1

|y| −
1

|xk| <
2
√
γ α√|y| ,

and so∣∣∣∣ y|y| − e
∣∣∣∣ 6 2

√
γα√|y| +

∣∣∣∣ xk|xk| − e
∣∣∣∣

6
2
√
γα√|y| +

M√|xk−1|

6
2
√
γα√|y| +

M√|xk0|

6
2
√
γα +M√|y| .

The second inequality above follows from (5.3). Thusy is in the paraboloid
P2
√
γ α+M(e), and so{

y

|y| : y ∈ �
′
e, |y| = α2(γ̄ r)−2

}
⊂ B1 ∪ B2,

where

B1 = Be, (2√γα+M)α γ̄ r
, B2 = Bxk0/|xk0|,2√γ γ̄ r .
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It follows

�∗(Tα(B)) ⊂
{
b: (Ub)−1

(
α2

(γ̄ r)2
c

)
∈ �′e

}
= {b: (Ub)−1(c) ∈ �′e(α2(γ̄ r)−2)}
⊂ {b: (Ub)−1(c) ∈ B1 ∪ B2}.

In order to movec (viaU−1
b ) to a point ofB1 ∪B2 (first by a rotationU0,θ2 then by

a rotationUθ1,0) the only control we have over the third coordinate of the inverse
image is withθ2 (sinceUθ1,0 does not change the third coordinate). It follows that
θ2 must lie in an interval of length the order ofr, andθ1 lies in the union of two
intervals each of length the order ofr, and so, using (5.1), we seeσ(�∗(Tα(B))
is bounded by a multiple ofr2. This completes the proof that the collection is
admissible.

We now show how to choose the sequence{rk}, described in the proposition.
Fix a positive integer,k. Chooserk =

√
2α/
√|xk|. We have

�∗(Tα(Be,rk )) = {b ∈ S:�b ∩ Tα(Be,rk ) 6= ∅} (5.4)

⊃ {b:Ub(Cα(xk)) 3 (α2)r−2
k e}, (5.5)

sinceα2r−2
k e is in Tα(Be,rk ) (it is the vertex). Thus it suffices to show thatr−2

k

multiplied by theσ -measure of the last set tends to infinity ask→∞.
Supposey ∈ Cα(xk), |y| = α2r−2

k , andy/|y| can be written (cosθ , sin θ , 0),
(that is, it projects onto the equator). A simple computation shows.∣∣∣∣ y|y| − xk

|xk|
∣∣∣∣ = 2| sin(θ − θk)/2|.

Sincey ∈ Cα(xk) and|y| = α2r−2
k ,

2| sin(θ − θk)/2)| 6 α
√
r2
k

α2
− r2

k

2α2
= rk√

2
.

It follows that

�∗(Tα(Be,rk )) ⊃ {b:Ub(Cα(xk)) 3 α2r−2
k e}

⊃ {b: b = (cos(−θ), sin(−θ),0), | sin(θk − θ)/2| 6 rk/(2
√

2)}.
Call the latter setB. Note thatB is essentially an interval along the equator hav-
ing linear measure the order ofrk and distance to e about|xk/|xk| − e|. For any
b ∈ B, operate onUb(Cα(xk)) by U0,θ2 for anyθ2. Let b′ be the image ofb. Then
Ub′(Cα(xk)) ⊃ α2r−2

k e, sincee is fixed byU0,θ2. It follows that�∗(Tα(Be,rk ))

136523.tex; 6/06/1995; 14:49; p.15



398 KOHUR GOWRISANKARAN AND DAVID SINGMAN

contains the annular region consisting of the image ofB under all unitary trans-
formations fixinge. This set hasσ -measure of the order|xk/|xk| − e|rk. If we
divide by r2

k and replacerk by
√

2α|xk|−1/2 we see that theσ -measure is of the
order of|xk/|xk| − e|√|xk|, which by (5.2) tends to∞ ask→∞. This completes
the proof. 2
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