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Abstract. The Martin boundary for positive solutions of the Helmholtz equation-dimensional
Euclidean space may be identified with the unit spherevldsnote the solution that is represented

by Lebesgue surface measure on the sphere. We define a notion of thin set at the boundary and prove
that for each positive solution of the Helmholtz equatienthere is a thin set such thafv has a

limit at Lebesgue almost every point of the sphere if boundary points are approached with respect to
the Martin topology outside this thin set. We deduce a limit result forin the spirit of Nagel-Stein

(1984).
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1. Introduction

Let n be an integer greater than 1. L&t= §"! = {x € R":|x| = 1} denote
the unit sphere iR". Forb € S,t > OletB,, = {x € S:|x — b| < t} be the
intersection withS of an open ball ifR" centered ab of radiust. We leto denote
unit Lebesgue surface measureSri-or 1 a Borel measure ofi, define

Ku(x) = / e du(b),

where(x, b) = x1by + --- + x,b, is the usual inner product dr’, anda is the

positive constant that appears in the Helmholtz equation= /% - u. All positive

solutions of the Helmholtz equation are of the foku for some positive Borel
measurew on S ([6], Corollary to Theorem 4). For eadh € S, let 2, denote
an unbounded subset Bf that converges té at oo in the sense that ifx,} is a

sequence iR, such thatx,| — oo, thenx, /|xi| — b. We denote this by, — b

atoo’.

DEFINITION 1. {€2,:b € S} is called acollection of approach regioni§ for each
b € §, ©, converges t@ atoo and the convergence is uniform in the sense that for
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384 KOHUR GOWRISANKARAN AND DAVID SINGMAN
all ¢ > 0 there existg" such that for alb € S and|x| > T, we have|‘§—‘ —bl<e
if x € SZb.

We define the concept diiinnessas follows:

DEFINITION 2. LetE C R",a > 0. Let

A(E) = inf {ZG(BM): Ec|JGab z,»)} ,

i=1 i=1

where

Go(b, 1) = {x e R": |x—| € By, x| > aztz} .
X

If « = 1, wewriteG (b, t) instead 0iG1(b, 1). We say that isthin at the boundary

with respect to measuié

lim A(EN{x e R':[x| > 1)) =0,

It is easy to see the definition is independeni of

We show in Theorems 1 and 2 that for any positive solukignof the Helmholtz
equation, and any collectioff2,} of approach regions, there exists a Eethin at
the boundary with respect to measure such thavfae.b in S, (Ku/Ko)(x)
converges t@duw/do)(b) asx — batoo,x € Q, — E.

In Theorem 4 we deduce from the above result an almost everywhere point-
wise boundary behavior result for an ‘admissible collection’ of approach regions
{Q: b € S} (‘admissible collection’ is defined in Definition 5). The basic theorem
of this type that is known is the following:

THEOREM (Koranyi—Taylor) [9]: Let u be a positive, Borel measure ¢hLeta
be a given positive real number. Then

Ku
—(x) =
x—batoo,xePy(b) Ko

du
o ()

foro —a.e.b € S, where

X o
Pa(b):{xeR”:|X—|x|b|ga\/|x|}={xeR”: ——b‘g }

|x] Vx|
is the paraboloid of aperture.

We will define what it means for a family of approach regidss,:» < S}
to beadmissible(see Definition 5) and show that for such a family and a given set
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THIN SETS AND BOUNDARY BEHAVIOR 385

E thin with respect to measure at the boundarg.e.b € S has the property that
EN QN {|x|] > T} = @ for all T large enough (Theorem 3). Theorem 4 then
follows immediately. The family of paraboloids in the Koranyi-Taylor theorem
forms an admissible collection, in fact the only admissible collection such that
Q,, is invariant under all unitary transformations ®f which fix 5. However, in
Section 5 we show how to generate examples of admissible collecipmaich
cannot be contained iR, (b) for any fixed aperturey.

The result of Theorem 4 is analogous to the main result in [14] where the Fatou
theorem for positive harmonic functions on a half-spad&in' is improved by re-
placing cones with a more general family of ‘non-nontangential’ approach regions.
For subsequent developments, see [3], [5], [8], [10-13], [15-16].

The idea of the definition of thin set as well as the idea of proving Theorem 4
using a notion of thin set is inspired by H. Aikawa. In [1] and [2] he defines a
notion of thin set on a half-space &i'*! and deduces the result of Nagel-Stein
[14] for positive harmonic functions on this half-space. In this paper we adapt his
proof to our setting. Significant difficulties arise due to a very different definition
of ‘admissible collection’ and the lack of a group structuressn?.

The idea of a set of approach regidig®,: b € S"~} being an ‘admissible col-
lection’ is inspired by the analogous definition in [15]. However, our definition is
less restrictive. We merely require a control overdhmeasure of th&-projection
(see Definition 3) of the tents over those balls which are bounded away from a
fixed closed sef’ in S of o-measure 0, rather than over all balls. As we show in
Proposition 4, this is due to the fact that for the natural examples of admissible
collections (other than the ones consisting of paraboloids as in the Koranyi—Taylor
Theorem), there is necessarily a $efor which there are balls with centers in
such that it is impossible to control themeasure of th&-projection of tents over
these balls.

A result analogous to Theorem 4 was considered in Theorem A of [4]. There,
‘admissible’ was given a much less restrictive definition. However, there is a gap
in the proof of that result. Specifically, the use of Theorem 1.1 of [15] was not
justified. With the more restrictive definition of admissible one might be able to
apply the technique of [4] to deduce our Theorem 4. However, in this article we
prove a stronger result (Theorem 3) and show that Theorem 4 follows as a corollary.

We shall make use of the following covering lemma. It is stated slightly differ-
ently from the covering lemma in [7]. However, the proof is the same and so we
omit it. RecallS denotes the unit sphesg 1,

LEMMA 1. LetE be a subset of. For eachx € E, let0 < r(x) < 2 be chosen.
Letw = U{B, ,):x € E}. Pickk > 4. Then there exists a sequerfeg} C E such
that the balls{B,, , } are pairwise disjointE C UBy, k., @ C UBy, 241y, and
for everyx € E, there existg such thatx € By, kor, andry, > r(x)/2.

In what follows,c denotes a real value that may vary from line to line but does
not depend in an important way on the parameters of interest.

136523.tex; 6/06/1995; 14:49; p.3



386 KOHUR GOWRISANKARAN AND DAVID SINGMAN

2. Weaktype Inequality

PROPOSITION 1.There exists a constaatsuch that for every Borel measure
on S and eache > 0,

K
A{XERnIK—M(X)>8}<c.M.
o

Proof. Define the maximal functiod i on{x € R": |x| > 1} by

Mu(x) = Sup{m:Z 1> 1/,/|x|} .

O Dx/|x|.t

We first show that
K
"Ry <o Mu), (2.1)
Ko

wherec is independent of, . Let [x| > 1. SinceKo (x) ~ eWl|x|3=/2 as
|x] — oo ([4], Lemma 4.1), we have

%(x) <e |x|<"—1)/2-e‘“’"/ e)»lxl(ﬁ,b) du(b)
o

X 2
—c. |x|<n1>/2f eIt g ()

WVIxTl

2
< - |x|D/2 Z efx<|x|/2>mfb\ duu(b)
kX _plg kLl
k=0 Y 7 S| )\m
2
+/ .. |x|(nfl)/Ze*)L(\X\/2)m*b) du(b)
1< ﬁ—b‘@
[Vl
2 KByl b1, PBrjiaig

< —A% k41 n-1
; & D e D Ry T 0By

< [C' (Z e M2 4 1)”‘1> + d} - M p(x)
k=0

= ¢ - Mp(x),

proving Equation (2.1).
Thus to finish the proof, it is enough to show that

[l

Afx e R':Mu(x) >¢}<c- (2.2)
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THIN SETS AND BOUNDARY BEHAVIOR 387

Let E denote the set in inequality (2.2). For eacle E, there exists, such that
2>t >1//|x| and

UBy)ixt > € -0 Byjjx) 1,

Thus{B,,.,:x € E}is a collection of balls orf, so by Lemma 1, there is a
countable, pairwise disjoint subset of thé®,, /., .} such that{B,, | ¢} COV-
ers the original collection, where depends only om. Again, by Lemma 1 and
Definition 2, it follows

X X;
ECUG(m,tx)cuG(m,c-tx[),

xeE

and so
< < <€ <€
A(E) < E UB‘i:‘,C-fx, Lc- UB‘ﬁ:ﬁ‘,tx[ ST E ’uBéfo[ ST el

which is (2.2). O

3. Relative Limits of Solutions of the Helmholtz Equation

We study the boundary behavior of functions of the fokfm/Ko by looking
separately at the case wherés singular and absolutely continuous.

THEOREM 1. Let 1 be a measure off that is singular with respect te. Then
there exists a sdf thin at the boundary with respect to measure such fhay K o
(x) > 0as|x| > o0, x ¢ E.

Proof. Let ¢ > 0. We claim that{x: %(x) > ¢} is thin at the boundary with
respect to measure.

In order to show this, we start by choosing> 0. Sinceu is singular, there
exists a sequence of balls = B, ,, such thatd o (B;) < n andu has support in
UB;. For each positive integer, let u = 1 ; + v;, wherep ; is the restriction ofs
toU{B;: 1 < i < j}. Since|lv;|| — 0as;j — oo, we deduce from Proposition 1
that there existg such that

™o

Ko j( ) /21 < vl
A {x: >e/27 < — - vill <.
X X V; n

Fix this j value. Letr? = min{r2, ..., r]?}. Chooser such thatt > r—2 and for
all |x| > t, c'|x|"~D2e=/211%) 4| < ¢/2, wherec' is a constant such that
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388 KOHUR GOWRISANKARAN AND DAVID SINGMAN

Ko(x) </ elx|@m/2for all x. If |x| > ¢ andx/|x| € U{By, 2:1 < i < j},
then (recall the first string of inequalities in the proof of Proposition 1)

Ku; _ P
| &2l gy, )

Ko V(B 1< <)
2
< - |x|(n*1)/2 e (Mxl/2)r el
< ¢/2,

SO

K
A{—M>e,|x|>t}
Ko

Ko

Kv,
gA{ﬁ>s/2,|x|>t}+A{ >8/2,|x|>t}
Ko

Kv;: Ku: .
<A{—L>¢e/2} +A ad > e/2, |x| > t,x/|x| € ] Bp 2

Ko Ko '
< Al > 12 x/1x) € UlBy 2 )

<n+c- ZUBb;,Zr[
<c-n.
This proves the claim.

Lete;, n; be sequences of real numbers decreasing to 0 such that< oco.
Let

E; = {% > ej} .
By what we have just proved, there exists” oo such that
ACE; N {lx| = t;}) < n;.
Let
E = JtE; n{t; < Ix] < tj51)).
SinceA is countably subadditive,

AEN{xI 2tH < Y AEN{xI =)< D ny,

tjy12t tiy12>t
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THIN SETS AND BOUNDARY BEHAVIOR 389

and the latter goes to 0 as— oo, proving thatE is thin at the boundary with re-
spect to measure. Finally, jif| > # andx € E then(Ku/Ko)(x) < maXe;:l >
k} — 0ask — oc. |

In order to study the absolutely continuous case, we need the following extension
of Lusin’s theorem.

PROPOSITION 2.Let f € L1(S). Then for eacte > 0 there is a continuous
functiong such thato { f # g} <eand|f — gl < e.

Lusin’s theorem gives all but the condition thigt — g||1 < ¢, and this follows
from a careful use of the triangle inequality. We omit the proof.
We next show that the solution of the Dirichlet problem is uniformly continuous.

PROPOSITION 3. Let f be a continuous function of. Extend f to R" by
(Kf/Ko)(x) for |x| # 1. Lete > 0. Then there exis8 > 0, M < oo such
that forallb € Sand allx € R*, if |x] > M and |x/|x| — b| < §, then
(Kf/Ko)(x) — f(D)| <e.

Proof. Since f is uniformly continuous, we can choo8e> 0 such that for all
b,b €S, |b—>b'| <25 implies|f(b) — f(b)| < &/2. Fixbg € S, and letx satisfy
|x/|x| — bol < 8. Then

J €5P|f(b) — f(bo) do
[ &bl do

I(Kf/Ka)(x) — f(bo)| < =1+1I,

where in the numerator we integrate oller— bg| < 28, |b — bg| > 25 in land I,
respectively. Note that

[ €thdo

1<(8/2)'m

=¢g/2,

and

1< e x| / &5 @158 | £ () — f(bo)] dor ()

|b—bo|>258

do (b)

N

—1)/2 —(Alx|/2) b=
¢ x|/ -||f||oof g /2]
lb—bo|>25

-1)/2 —(A|x|/2)82
¢ x| TP f oo €M

N

< g/2if x| > M,

whereM is chosen such that M @172 e M8/2|| ¢|| < ¢/2. ]
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390 KOHUR GOWRISANKARAN AND DAVID SINGMAN

THEOREM 2. Let f € L1(S), and{$2,} any set of approach regions. Then there
existsE thin with respect to measure at the boundary d@hd: R* witho (F) =0
such that forevery € S — F, (Kf/Ko)(x) — f(b)as|x| > oo, x € Q, — E.

Proof. Let e, nx \( 0, Y nx < oo. By Proposition 2, there exigf, continuous
onSsuchthat{f # fi} < neand|l f — fillL < exni. Let

F=Utbes:r®) # fub)}

j=1lk=j
Theno (F) = 0, since)_ nx < co. Proposition 1 implies

A{K(f_fk) >ek}<c- If = frlla o

Ko Ek

By Proposition 3, there existg \, 0 such that for alb € S, if |y| > rk‘2 and
ly/ly| — b| < ri (thatis, ify € G(b, 1)), then

K
‘_ka (y) — fk(b)‘ < &. (3.1)
o

Since2, — b uniformly atoo (recall Definition 1), we can choosg ' co such
that for allb € S and for allk, 2, Dy, , C G(b, ry), whereDy, = {x € R": x| >
T:}. It follows

Q,N Dy, € | J(Gb. 7)) — Dr)).
jk

LetEj ={K|f—f1|/KO' >8j}—DT].,E=UEj.LetT > 1. Then
AEND) < Y MKIf— fil/Ko >e}< Y c-nj—0
T;>T T;>T

asT — oo. ThuskE is thin at the boundary with respect to measure.
Letb € S—F, e > 0. Pickk suchthat, < /2, andf;(b) = f(b) forall j > k.
Lety € Dy,_, N — E. Then there exist$ > k such thaty € G(b, r;) — Dr;, SO

I((Kf/Ko)(y) — f(B)] < [(Kf/Ko)(y) — (Kfj/Ko)(y)l
+(Kfj/Ko)(y) — fiD|+1f; ) — f(b)]
< 8.,-+£.,-+0

< & O

136523.tex; 6/06/1995; 14:49; p.8



THIN SETS AND BOUNDARY BEHAVIOR 391

4. Admissible Sets and Pointwise Results

In order to define what is an admissible collection of approach regions, we make
the following definitions.

DEFINITION 3. Let{€2,:b € S} be a collection of approach regions. Léthe a
subset ofR”. We define the2-projection ofX to be

Q(X)=1{beS:QNX #0).

DEFINITION 4. LetB = B, , be an open ball ofi, andx a fixed positive constant.
Let {P,(b)} be the parabolic family of approach regions (red@llb) = {x €
R": |x/|x| — b| < a|x|~¥?}). Define thetent T, (B), over B to be the set whose
projection with respect to this parabolic family#s

The reader can check that

T,(B) = {x €R":B: o C B}.

We refer to the pointa?/r?)c as thevertexof the tent.

DEFINITION. 5. Fixe > 0. We say the collection of approach regi¢fs: b € S}

is anadmissible collectiornif (1) each sek, is starlike with respect to the origin,
and (2) there exists a closed gef o-measure 0 having the following property:
for everye > 0 andy > 1 there exists = ¢, , such that for every balB = B, ,
for which the distance 0B, ,, to F is greater tham, we have

o (QY(Tu(B))) < c-o(B).

Thus we only ask for control of th@-projection of tents over balls that stay away
from F.

Using the covering lemma, it is easy to show that the definition is independent
of a.

After a few more definitions, we show how to write the definitioradmissible
collectionin an equivalent way.

DEFINITION 6. Let be any subset oR". Lett > 0. Ther-sectionof Q is
defined to be(r) = {b € S: bt € Q}.

DEFINITION 7. Letb € §, andr, o given positive numbers. L&k, (b, r) = {c €
S: By, N Q(a’r=?) £ @}. If « = 1, denote it byS(b, r).

We leave it to the reader to show that By, a ball onS,

QY (Tu(By,r) C Sa(b, 1) C 2 (To(Bp2))-
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392 KOHUR GOWRISANKARAN AND DAVID SINGMAN
Thus we may replace (2* (T, (B))) by o (S,(B)) in Definition 5.

THEOREM 3. Let{Q2,:b € S} be an admissible collection, with its associated
closed set of measure 0. LEtbe thin with respect to measure at the boundary.
Then foro-a.e.b € S, E lies eventually outsid&, in the sense that there exists
T = T (b) such that for ally with |y| > T,y & Q, N E.

We deduce immediately from Theorems 1, 2 and 3 the following

THEOREM 4. Let 1 be a positive regular Borel measure SnLet{2,:b € S} be
an admissible collection. Then there is a sub8etf S havingo-measure 0 such
thatforallb € S — H, (Ku)/(Ko)(y) converges tqdu/do)(b) as|y| — oo,
y € Qp.

Proof of Theoren8. For eachr > 0, let

B. = | By Ge = | JG(b. o). E: = E G
beF beF

Now fix ¢ > 0 once and for all. Letc,} be any decreasing, summable sequence
of positive real numbers. Sindg, and hence,,, are thin with respect to measure
at the boundary, there exists < T, < --- with lim;_, o, T, = oo such that for
everyk there is a sequence of ball8;, ; ., ;}; with Eo. N {|x| > Tz} C U;?il
G(b,j, i, j) and Z?ilO'Bbk,j,rk,j < ¢r. We may assume that is small enough
so that for eaclt and j, r ; < ¢/3 andEz. N Gy, , ., # ¥ (otherwise we may
discardBy, ; , .)-

Letb e Bbk,_/,zrk,_/’ ceF,zeG (bk,jv rk)j) N Ey,. Notice

Z
c— —

2| = %

since if not,|z| > r; 2 > %2 > (20)~2 would imply z € G(c,2¢) C Gz,
contrary to our assumption that E,,. Thus

Z
— — b

+ b, j — bl <rij+2r; =3 <&,

28<‘c—|z—|‘<|c—b|+‘b—ﬁ <|b—c|+e,
Z Z

implying |b — ¢| > e. It follows By, ; 2, ; is at least a distance effrom F. Since
the approach regions form an admissible family, there exjstich that for all

ka jv U(S(bkja rk,j)) < CSO'(Bbk,j,rk,j)'

136523 .tex; 6/06/1995; 14:49; p.10



THIN SETS AND BOUNDARY BEHAVIOR 393

Let Sy = U2y S(br.j» 7x.j)- Since

o0
D 0 (S0 <Y 0 (Sbijh i) < e Y 0By jin)) < oy qrzoos
k=1 k,j k,j

o (lim S) = 0, wherelim S, = (M2 Ui, Si-
Letbh € (8”1 — Bs,) — lim Si. Then there existk, such that for alk > ko and
aH.j,b ¢ S(bkj,rhj),so

Bovjny O () = 0. (4.1)

We claim there does not existin E,. N €2, for |y| > Ty,. For if there were such a
y, theny € G(b j, ri,;) for somek > ko, and a positive integej. By definition,
|yl > 1/rf ;. SinceQ, is starlike with respect to the origin,

y _
o1 € By, V(YD) C By, N (15,

which contradicts (4.1). It follows that as we approdctat co within 2, we
eventually leaveE (since forb e $"% — By, it is impossible for a sequence
contained inG,, to approachb at co). Sincee is an arbitrarily chosen positive
number, the theorem follows. O

5. Examples of Admissible Collections

In this section, we fix a positive apertureonce and for all. We describe a way to
generate examples of admissible collection®irother than the paraboloids of the
Koranyi—Taylor theorem.

For eachd,, 6, with 0 < 0; < 7, and 0 < 6, < 2m, define the unitary
transformationUy, », whose matrix with respect to the standard bases is given by
the product

1 0 0 cosy; —sing; O
0O cosf, —sinbH, sin 64 C0Ss 6, 0
0 siné, C0S 6, 0 0 1

Thus Uy, 4, first rotates byv; in the first two coordinates (fixing the third), then
rotates the resulting point b in the second and third coordinates (fixing the
first).

Consider the mapping

U.0,7)x[02r) > S
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394 KOHUR GOWRISANKARAN AND DAVID SINGMAN
given by
U (61, 62) = Uy, 5,(1,0,0) = (cosb1, Sinby COSHz, Sinby Sinb,).

Notice thatU is one-to-one and maps onfb— {(£1, 0, 0)}; {(£1, 0, 0)} corre-
sponds to the image of the set whéidas 0 orxr. The surface measuteis given

by
do = sin6; do; dos. (51)

We identify each poinb of S — {(£1, 0, 0)} with (64, 6,), its preimage undet/
and occasionally we will writé/, instead ofUy, ¢, .

DEFINITION 8. Letx € R, x # 0. Define the &-balloon set’

()]
Iyl Ix]
Let {x;} be a sequence iR3 chosen so thdty| is an increasing sequence with
limit oo, x; converges te = (1,0, 0) at oo, and{x;/|x,|} lies in thexx,-plane

and is of the form (co8,, siné,, 0), for somey; € (0, 7). Suppose in addition we
have

Y

Iyl x|

Cy(x) = {y e R":0 < |y| < |x|land

X
Vx| é —e| > 00 (5.2)
and
Vi |22 e < m, (5.3)
X4l

for some constani. The meaning of (5.2) is thdtx,} is not contained in a
paraboloid P, (e) for any fixed aperture.. We can construct such a sequence as
follows. Consider the curveS,: t — (¢, /1, 0), Co:t — (¢, t3/4,0), fort > 0. Let
x1 be any point orC,. Pick a pointy; on C; for which |y;| = |x1]. Let x, be the
point on the intersection af’, with the line that contains the origin and. If we
continue this procedure, we generate the sequgnge

Define

Q=0 =JCuw),
k=1

and forb € S, define

Qp = Up(2).
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THIN SETS AND BOUNDARY BEHAVIOR 395

PROPOSITION 4.The set{2,: b € S} is an admissible collection of approach
regions. The associated closed seefmeasurel is F = {e¢} = {(1,0,0)}. In
addition, there exists a sequengg} of radii decreasing t® such that

o (Q*(Ty(B,.,)))/ 17 — oo ask — oo.

The last part of the statement shows why we must include the exceptiormairset
our definition of admissible collection. The key to the proof of the first part of the
proposition is the following lemma which essentially shows that we may replace
the tent in Definition 5 by its vertex.

LEMMA 2. Fixaball B = B.,, andy > 1. Choose a positive integérsuch that

o _ 2.-2
r>= m Supposéx| = |x¢| and Cy(x) N T, (B.,) # ?. Thenar—<c €
C2 e (X).

Proof of Lemma.Lety € C,(x) N T,(B.,). Then

1 1
<o ol T and By, /iy C Be.r

(soly| > a?r~?). Thus

A« ‘C_ Y=
x| [yl Iyl Ix]
1 1
<r+o/—-——
Iyl Ix]
n o
~ r -
VIl
< 2
r2 21—y
= 2Jre a? a?
r2 1
<2 — - —,
P T
and sow?r%c € Ca fq(x). 0

Proof of the Proposition It is easy to show that the-balloons are starlike with
respect to the origin, hence soStg for eachb € S.

Let B = B., be a ball onS, y > 1, and suppose the distance Bf;, to
e ={(1,0,0)} is positive. We need to show there is a constajguch that

o (Q*((Tu(B))) < c-0(B),
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396 KOHUR GOWRISANKARAN AND DAVID SINGMAN

wherec depends only or, y, M (recall 5.3), and the above distance.
Lety = Vg—fl Suppose the-balloonC, (x) intersects the teri, (B, ,). Then

x| > a?r™? = @?(pryl—y D72 Also @ # Co(x)N Ty(B.,) C Cq(x) N
T, (B 7). We deduce (using the lemma withreplaced byyr) that

Q (T, (B)) = {b: Q) N T,(B) # ¥} C {b:a*(yr) %c € Q) },
where
Q, =U, (U C2ﬁa(xk)) :
k=1

Let y be chosen ir2, such thatly| = o?(yr)~2. Pick a positive integeko such
that

25 -2
[Xko—1l < [yl = (yYr) ™= < |xgl.

Theny € Cz 74 (x) for somek > ko. Suppose > ko + 1. Then

1 1 2
l—i<2ﬁa — - —< ﬁa’
vl Il vl Il Iyl

and so
2
BRI P L ‘
|yl VIl |k |
2
< e, M
VIl Vlxe-al
2
< ﬁa+ M
VIYE
2/va+M
Vil

The second inequality above follows from (5.3). Thuds in the paraboloid
P> j7arm(e), and so

y _
{b}—|3)’ e Q, |yl = a?(yr) 2} C B1U By,
where

B1=B, QyFati) 5 s By = By, jixigl 2771
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It follows

2
QY(Ty(B)) C {b: (U,,)—1<(;‘r)2c> € 9;}

= {b:(Up)"Xc) € QL(@*(7r)72)

C {b: (Uy)Y(c) € B1U By).

In order to move: (via Ub‘l) to a point of B, U B; (first by a rotationly g, then by
a rotationUy, o) the only control we have over the third coordinate of the inverse
image is withd, (sinceUs, o does not change the third coordinate). It follows that
6> must lie in an interval of length the order of andé, lies in the union of two
intervals each of length the order of and so, using (5.1), we seg2*(T,(B))
is bounded by a multiple of?. This completes the proof that the collection is
admissible.

We now show how to choose the sequefigg, described in the proposition.
Fix a positive integerk. Choosey, = v/2a/+/xc]. We have

Q*(Ta(Be,rk)) = {b €s: Qb N Ta(Be,rk) 75 @} (54)
O {b: Up(Co(x0)) > ()1 %e}, (5.5)

sinceazr,jze is in T, (B, ,,) (it is the vertex). Thus it suffices to show th@T2
multiplied by theo-measure of the last set tends to infinitykas> oc.

Supposey € C,(xp), |y| = oezr,jz, andy/|y| can be written (cog, sing, 0),
(that is, it projects onto the equator). A simple computation shows.

y Xk

= 2|sin(@ — 6,)/2].
vl Il

Sincey € C,(x) and|y| = o?r %,

2/sin@ — 6,)/2)| < o
— oy —5=—.
k @’ 20% /2

It follows that
Q*(Ty(Bes)) D {b:Up(Co(xp)) 3 a?r %e)
S {b:b = (cog—0), sin(—0), 0), | SiNB — 0)/2] < 1/ (2V2)}.

Call the latter seiB. Note thatB is essentially an interval along the equator hav-
ing linear measure the order gf and distance to e abolit, /|x;| — e|. For any
b € B, operate orU,(C,(x¢)) by Ug, for any6,. Let b’ be the image ob. Then
Uy (Co(x1)) D a?r; %, sincee is fixed by Ugg,. It follows that Q*(7,(B..,))
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contains the annular region consisting of the imageé ainder all unitary trans-
formations fixinge. This set hasr-measure of the ordgw,/|x;| — e|rc. If we
divide by r? and replace, by v/2a|x;|~? we see that the-measure is of the
order of |x;/|xx| — e|+/]xx], which by (5.2) tends tec ask — co. This completes
the proof. O
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