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Abstract. Let Lk be the Weinstein operator on the half space, Rn+. Suppose
there is a sequence of Borel sets Aj ⊂ Rn+ such that a certain tangential

projection of Aj onto Rn−1 forms a pairwise disjoint subset of the boundary.
Let ν be a finite test measure on the boundary for a specific non-isotropic
Hausdorff measure. The measure ν is carried back to a measure λ on a subset
of
⋃
Aj by the projection. We give an upper bound for the Weinstein potential

corresponding to the measure dλ/xn in terms of a universal constant and a
Weinstein subharmonic function. We use this upper bound to deduce a result
concerning tangential behavior of Weinstein potentials at the boundary with
the exception of sets on the boundary of vanishing non-isotropic Hausdorff
measure.

1. Introduction and statement of results

Let Rn+ = {x = (x1, . . . , xn) = (x′, xn) ∈ Rn : xn > 0} denote the upper
halfspace in Rn, n ≥ 2. The boundary of this set is Rn−1. It is a well-known result
due to Privalov [P] that the classical Green’s potentials on Rn+ have perpendicular
limit zero for Lebesgue almost every boundary point in Rn−1. One way to prove
this is to make use of maximal function techniques. J.L. Doob introduced a different
approach in his proof of the Privalov theorem ([D], pp. 223-225). His aim was to
show that the theorem follows as a consequence of the general minimal fine theory
which asserts in particular that potentials have minimal fine limit zero at Lebesgue
almost every boundary point. The minimal fine theory is available in quite general
harmonic spaces. The key ingredient in his proof of the Privalov theorem is the
following “projection theorem”:

Theorem A. Let {cj} be a sequence of positive real numbers. Let, for each j, Aj
be a Borel subset of the horizontal slab {x ∈ Rn+ : xn = cj} with the property that
the orthogonal projections onto Rn−1 of the Aj ’s form a pairwise disjoint sequence
of subsets of Rn−1. Let λ be the measure on

⋃
Aj induced by the Lebesgue measure

on Rn−1. Then there exists a constant c independent of the choice of {cj} and the
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sets Aj such that for all x ∈ Rn+,∫
G(x, y)
yn

dλ(y) ≤ c,(1)

where G is the Green’s function for the Laplacian on Rn+.

The theorem is quite natural if one views the integrand as being an approxima-
tion to the Poisson kernel, and so it is plausible that the integral is bounded by a
multiple of the harmonic measure at x of the orthogonal projection of the union of
the Aj ’s. Since the projections are pairwise disjoint, this harmonic measure is at
most 1.

T.J. Lyons et al. [LMT] made use of Doob’s method in their proof of a Privalov
type theorem for potentials on a rank 1 symmetric space. Their proof also involves
a projection theorem and the minimal fine theory. However, in the literature, the
technique has not as yet been used to deduce tangential boundary behavior results
for potentials. Recently we proved a minimal fine limit result for a class of potentials
on a halfspace such that the associated exceptional set is of a certain Hausdorff
measure zero rather than Lebesgue measure zero ([GS2]). It is our aim in this paper
to show that Doob’s technique can be adapted so that we can deduce tangential
behavior results for this class of potentials as a consequence of our minimal fine
theorem. Of course the key step is a suitable projection theorem (Theorem 1 below).

The differences between our theorem and Doob’s can be outlined as follows:
whereas he was interested in perpendicular limits, our interest in tangential limits
implies our Aj ’s have pairwise disjoint projections on the boundary with respect
to a certain tangential projection; whereas his exceptional sets turned out to be of
Lebesgue measure zero while ours are of Hausdorff measure zero, the measure λ
which we place on

⋃
Aj is induced by a test measure ν for Hausdorff measure on

Rn−1; whereas the potential defined in (1) was bounded by a multiple of 1 (which
is the Poisson integral of the Lebesgue measure), the potential we construct in
Theorem 1 (defined in (2) below) is bounded by a multiple of a function related to
the Poisson integral of ν. Again, Theorem 1 is plausible, since the integrand of the
potential we construct is an approximation to the Poisson kernel, and so we expect
the integral to be bounded by a multiple of the ν-harmonic measure at x of the
tangential projections of the Aj ’s. Since these projections are disjoint, the latter is
bounded by the Poisson integral of ν evaluated at x.

We shall prove our results in the more general setting of Weinstein harmonic
spaces. More precisely, for k ∈ R, the Weinstein equation with parameter k is
Lk(f) = 0 where

Lk(f) =
n∑
j=1

∂2f

∂x2
j

+
k

xn

∂f

∂xn
= 0.

The C2 functions that satisfy the Weinstein equation form a strong Brelot harmonic
space [He]. We shall use terms such as harmonic functions, potentials, reduced
functions, domination principle, etc. referring to the potential theoretical concepts
corresponding to these harmonic spaces. There is a correspondence principle which
associates all of the potential theoretical concepts and formulae of the case k < 1
to that of k > 1 ([GS1], page 636). Using this principle, it is easy to deduce results
in the case k > 1 from analogous results for the case k < 1. In this paper we shall
restrict ourselves to the case k < 1.
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We now recall ([GS1], Proposition 1) that the potential with pole at y is the
function

Gk(x, y) = an,k x
1−k
n yn

∫ π

0

sin1−k t

[|x− y|2 + 2xnyn(1− cos t)](n−k)/2
dt,

where

an,k =
Γ
(
n−k

2

)
2πn/2Γ

(
2−k

2

) for k ≤ 1.

Let µ be a measure (we use the term measure to indicate a nonnegative Radon
measure) on Rn+. The function Gkµ(x) =

∫
Gk(x, y) dµ(y) is a potential (i.e. Gkµ

not identically ∞) on Rn+ if µ verifies the condition
∫
Rn+

yn
(1+|y|)n−k dµ(y) < ∞

([GS1], Proposition 2).
Let τ ≥ 1 and let us define on Rn−1 the pseudodistance

dτ (x, y) =

√√√√(x1 − y1)2τ +
n−1∑
j=2

(xj − yj)2.

Let Bτ (x, r) = {y ∈ Rn−1 : dτ (x, y) < r} denote the dτ -open balls. We also define
the P τ -projection of x = (x1, . . . , xn) in Rn+ to Rn−1 by

P τ (x) = (x1 − x1/τ
n , x2, . . . , xn−1).

Suppose Γτ0 is the graph of the curve in the (x1, xn)-plane through the origin and
of degree of tangency τ given by Γτ0 = {(t, 0, . . . , 0, tτ ) : t ≥ 0}. For each x ∈ Rn+
consider the tangential path which connects x to P τ (x) whose graph is ΓτP τ (x) =
(P τ (x), 0) + Γτ0 . Note that P τ -projection carries any point along this path to the
“base point” P τ (x). We shall refer to the limiting behavior of functions along these
curves as Γτ limiting behavior.

Theorem 1. Let 0 < ω ≤ 1 and 1 ≤ τ ≤ 1/ω. Let ν be a measure on Rn−1

such that for every non-isotropic ball Bτ (x, r) with r > 0, the measure verifies
ν(Bτ (x, r)) ≤ rn−2+ω . Let {xj} be a sequence of points in Rn+. Let, for each j,
Aj be a Borel subset of {x ∈ Rn+ : x1 = xj1} with the property that {P τ (Aj)}j is a
pairwise disjoint sequence of subsets of Rn−1. Let λ be the measure on

⋃
Aj which

is the inverse image of ν under P τ . (Note: P τ is one-to-one and bi-continuous on⋃
Aj.) Then there exists a constant c independent of the choice of xj and the sets

Aj such that for all x ∈ Rn+,∫
Gk(x, y)
yn

dλ(y) ≤ c

x1−ω
n

.(2)

Let us recall the definition of the non-isotropic Hausdorff measure Hτ
α of subsets

of Rn−1 corresponding to τ ≥ 1 and α > 0 [GS1]:

Hτ
α(F ) = supε>0

inf

∞∑
j=1

rαj : ∀j, rj < ε, ∃xj such that F ⊂
⋃
j

Bτ (xj , rj)


 .

It is easily seen that when τ = 1, H1
α is the usual α-dimensional Hausdorff measure.

We also note that when α = n−2 + 1
τ , the corresponding Hτ

α measure is a multiple
of the Lebesgue measure on Rn−1. We recall
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Theorem B ([GS1], Theorem 1). Let τ ≥ 1 and 0 < α ≤ n − 2 + 1
τ . Let K be

a compact subset of Rn−1. Then Hτ
α(K) > 0 if and only if there exists a non-

trivial measure σ supported by K such that for every x ∈ Rn−1 and every r > 0,
σ(Bτ (x, r)) ≤ rα.

Let us define the τ -radius rτ (E) = r(E) of a set E ⊂ Rn−1 to be the infimum of
the set of all r > 0 such that there exists an x ∈ Rn−1 with E ⊂ Bτ (x, r). Let us
further introduce the following five set functions. For each δ > 0 let

ωδ(F ) = inf

∑ rαj : rj < δ, ∃xj ∈ Rn−1 with F ⊂
⋃
j

Bτ (xj , rj)

 ,

σδ(F ) = inf

∑(r(Sj))α : r(Sj) < δ, ∃Sj ⊂ Rn−1 with F ⊂
⋃
j

Sj

 .

Define µδ (respectively νδ) to be the number obtained as in σδ(F ) by restricting the
sets Sj to be open (respectively closed). Finally, we get τδ(F ) as in σδ(F ) except
we require the stricter condition that

⋃
j Sj = F . The following lemma is proved

in a routine way.

Lemma. Let 0 < δ < ε, F ⊂ Rn−1. Then µε(F ) ≤ ωε(F ) ≤ νδ(F ) = σδ(F ) =
τδ(F ) ≤ µδ(F ). Hence when ε decreases to 0, the supremum (limit) of each of the
numbers µε(F ), ωε(F ), νε(F ), σε(F ), and τε(F ) is exactly Hτ

α(F ) introduced above.

Theorem 2. If F is any Borel set contained in Rn−1 with Hτ
α(F ) > λ > 0 for

some real number λ, then there exists a compact set K ⊂ F such that Hτ
α(K) > λ.

The proof of the above result is far from routine or easy. It follows exactly on
the same lines as that of the rather difficult proof of inner regularity of Hausdorff
measures defined using a metric as found in [R]. The fact that τ is a pseudodistance
and not a metric does not create any substantial difficulties. The result is proved
by adapting the proof of the case of the metric space ([R], pages 26-39, 44-52, 84-
99). The adaptation of the proofs in that book to our case of pseudodistance is
facilitated by the above lemma.

The next result was proved in [GS1] using techniques of maximal functions. Here
we deduce the result as a consequence of the projection result, Theorem 1.

Theorem 3. Let 0 < ω ≤ 1 and 1 ≤ τ ≤ 1/ω. Let µ be a measure on Rn+ for which
Gkµ is a potential. Let, in addition, µ satisfy the growth condition

∫
F y

ω
n dµ < ∞

for all Borel sets F ⊂ Rn+ such that F is bounded in Rn. Then, for all x ∈ Rn−1

except for x in a set F such that Hτ
n−2+ω(F ) = 0, the Γτx-limit of Gkµ = 0.

2. Proof of Theorem 1

Let us first briefly recall some notations and results from [GS1]. Accordingly,
we denote the Euclidean ball in Rn+ of radius r and center x by B(x, r) and the
non-isotropic (i.e. dτ ) ball in Rn−1 centered at y and of radius r by Bτ (y, r). We
also have the following inclusion for x ∈ Rn+ and r > 0:

P τ (B(x, r)) ⊂ Bτ (P τ (x), 2(τ− 1
2 )r).(3)
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We claim that for all x ∈ Rn+ and r > 0, the measure λ verifies the following
inequality:

λ(B(x, r)) ≤ c · rn−2+ω .(4)

Here and in what follows, we shall use the letter c to represent a quantity that may
vary from line to line but does not depend in an important way on the parameters
of interest.

From the definition of the measure λ and our disjointness assumption on
{P τ(Aj)}j , we have

λ(B(x, r)) =
∑
j

λ[B(x, r) ∩Aj ]

=
∑
j

ν(P τ [B(x, r) ∩Aj ])

≤
∑
j

ν[P τ (B(x, r)) ∩ P τ (Aj)]

= ν[P τ (B(x, r)) ∩ (
⋃
j

P τ (Aj))]

≤ ν[P τ (B(x, r))]
≤ c · rn−2+ω by (3),

proving the claim.
For the remainder of the proof, let us fix an x ∈ Rn+. Consider the poten-

tial p(x) =
∫
Gk(x, y)(1/yn)dλ(y) = I + II, where I and II are obtained re-

spectively by performing the integral on the set of all y where |x − y| > xn/2
and on the complement of that set. We first estimate I using the inequality
Gk(x, y) ≤ c x1−k

n yn/|x− y|n−k ([GS1], page 639).

I ≤ c

∫
|x−y|>xn/2

x1−k
n

|x− y|n−k dλ(y)

≤ c

∞∑
m=0

∫
2m−1xn≤|x−y|≤2mxn

x1−k
n

|x− y|n−k dλ(y)

≤ c

∞∑
m=0

x1−k
n

(2m−1xn)n−k
λ[B(x, 2mxn)]

≤ c

∞∑
m=0

x1−n
n

(2m)n−k
(2mxn)n−2+ω from (4)

≤ c

x1−ω
n

∞∑
m=0

(2m)k+ω−2

≤ c

x1−ω
n

,(5)

since the geometric sum above is convergent by virtue of the assumptions k < 1
and ω ≤ 1.
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To estimate II, we first consider the case when n ≥ 3. In this case, we recall the

following estimate for Gk (page 639, [GS1]): Gk(x, y) ≤ c x
−k/2
n y

k/2
n

|x− y|n−2
.

II =
∫
|x−y|≤xn/2

Gk(x, y)
yn

dλ(y)

≤ c

∫
|x−y|≤xn/2

x
−k/2
n y

k/2
n

yn

1
|x− y|n−2

dλ(y)

≤ c

∫
|x−y|≤xn/2

1
xn|x− y|n−2

dλ(y),

since 2/3 ≤ xn/yn ≤ 2. Hence,

II ≤ c

xn

∞∑
m=1

∫
xn

2m+1≤|x−y|≤
xn
2m

1
|x− y|n−2

dλ(y)

≤ c

xn

∞∑
m=1

2(m+1)(n−2)

xn−2
n

λ[B(x, xn/2m)]

≤ c

xn−1
n

∞∑
m=1

2m(n−2)(
xn
2m

)n−2+ω

=
c

x1−ω
n

∞∑
m=1

2−mω

≤ c

x1−ω
n

.

This completes the proof in the case n ≥ 3.
Now consider the case n = 2. For this we have the following estimate for

the Green function (page 639, [GS1]): Gk(x, y) ≤ c x−k/22 y
k/2
2

[
1 +

∣∣∣∣log
√
x2y2

|x− y|

∣∣∣∣] .
In this case the contribution from the second integral satisfies

II =
∫
|x−y|≤xn/2

Gk(x, y)
1
y2

dλ(y)

≤ c

∫
|x−y|≤xn/2

x
−k/2
2

y
1−k/2
2

[
1 + | log

√
x2y2

|x− y| |
]
dλ(y)

and as before,

≤ c

x2

∞∑
m=1

[1 + log (2m+1)] λ[B(x, x2/2m)]

≤ c

x2

∞∑
m=1

[1 + (m+ 1) log 2](x2/2m)ω

=
c

x1−ω
2

[ ∞∑
m=1

2−mω + log 2
∞∑
m=1

(m+ 1)2−mω
]

≤ c

x1−ω
2

.

This concludes the proof of Theorem 1.
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3. Proof of Theorem 3

Let µ be a measure on Rn+ verifying the growth condition stated in Theorem 3.
Let Gµ be the potential corresponding to µ. Let E = {x : Gµ(x) > 1} and let Em
be the set E ∩{x : xn < 1/m}. Note that the set F of P τ -limit points of E consists
precisely of those x′ ∈ Rn−1 such that (P τ )−1({x′}) ∩ Em 6= ∅ for all m ≥ 1. F is
also obtained by taking the intersection over m of the P τ image of Em. Since P τ is
an open map, F is a Gδ set and therefore Borel. To prove the theorem, it suffices
by Theorem 2 to show that Hτ

n−2+ω(K) = 0 for arbitrary compact subsets K of F .
To do this, we have to show that ν(K) = 0 for every measure ν supported by K
and verifying the inequality ν(Bτ (x′, r)) ≤ rn−2+ω for all x′ ∈ Rn−1 and all r > 0
(Theorem 1, [GS1]). Accordingly, let us fix such a measure ν on a fixed compact
subset K ⊂ F .

For each x ∈ Em, we associate two positive numbers s(x) and t(x), 0 < t(x) <
s(x), to satisfy the specifications below. In view of the easily verified fact

lim
s→0+

(xn + s)1/τ − (xn − s)1/τ

2s
=

1

τx
(τ−1)/τ
n

,(6)

we can choose s(x) > 0 such that for all t satisfying 0 < t < s(x), the following
inequality is valid:

1
τ

t

x
(τ−1)/τ
n

≤ (xn + t)1/τ − (xn − t)1/τ <
3
τ

t

x
(τ−1)/τ
n

.(7)

Let t(x) = x
(τ−1)/τ
n s(x). We further assume that s(x) is chosen sufficiently small

so that the following rectangular set

R(x) = {(y1, . . . , yn) : y1 = x1, |xj − yj| ≤ s(x) ∀j = 2, . . . n− 1, |yn − xn| ≤ t(x)}
is contained in Em. We observe that

P τ [R(x)] =
{

(x1 − y1/τ
n , y2, . . . , yn−1) : y ∈ R(x)

}
.

This is a closed rectangular set in Rn−1 and the length of its sides in the y2, . . . , yn−1

variables is 2s(x), and in the direction of the first axis it is (xn + t(x))1/τ −
(xn− t(x))1/τ . This last number lies between s(x)/τ and 3s(x)/τ by (7). It follows
that the ratios of the length of sides of the rectangle P τ [R(x)] lies between two
(non-zero) positive numbers that depend only on τ . We also note that in the above
choice of s(x), we have the freedom to replace it with any smaller positive number.

It is simple to verify from the formula for the Green function that for all y′ ∈ K
and all x ∈ Rn+,

lim
z→y′

Gk(x, z)
zn

= c
x1−k
n

|x− y′|n−k = cK(x, y′)

for a constant c independent of y′ ∈ K and x ∈ Rn+, where K(x, y′) is the Martin
kernel with pole at y′. Let us now fix ξ ∈ Rn+ and ε > 0. Using the compactness of
K, we may find a δ > 0 such that for all z ∈ Rn+ with |z − y′| < δ and y′ ∈ K, we
have ∣∣∣∣Gk(ξ, z)

zn
− cK(ξ, y′)

∣∣∣∣ < ε.(8)

Now, for each y′ ∈ K, we have necessarily a point x = x(y′) ∈ Em such that
P τ (x) = y′. Choose such a point to satisfy the additional condition that |x− y′| <
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1/2. Now, assign a rectangle Rm(x) as above ensuring that s(x) is chosen so small
that Rm(x) ⊂ Em ∩ B(y′, δ). Let Γm(y′, x) = P τ (Rm(x)). Then the mapping
y′ → Γm(y′, x(y′)) of K into subsets of Rn−1 verifies all the conditions of the Morse
covering theorem [M] as described on page 6 of [Guz] (see also [L]). We conclude
that there is a number Θ depending only on the dimension (n−1) with the following
property: there are at most Θ subfamilies of {Γm(y′, x)}y′∈K forming a cover of K
with the property that each subfamily consists of a countable number of mutually
disjoint sets of the above collection.

Let us take p between 1 and Θ and the corresponding subfamily {Γm,p(y′l, xl)}∞l=1.
Let us denote the corresponding rectangles centered at xl by Rmp (xl). Let λm,pl be
the measure on Rmp (xl) which is obtained by transporting ν backwards as described
in the statement of Theorem 1. Let λm,p =

∑∞
l=1 λ

m,p
l . (Note that for fixed p, the

sets Rmp (xl) are mutually disjoint.) By Theorem 1, there is a constant c independent
of m and p such that

qm,p(x) =
∫
Gk(x, y)
yn

dλm,p(y) ≤ c

x1−ω
n

.(9)

This potential qm,p is locally bounded because of (9) and further its support is
contained in Em. We conclude by using the Domination Principle (Axiom D) that

qm,p(x) ≤ cRE
xω−1
n

for all x ∈ Rn+.(10)

Also, the method of construction of the measure λm,p shows that

qm,p(x) =
∫
Gk(x, z)
zn

dλm,p(z)

=
∫
Ap

φm,p(y′) dν(y′),

where Ap is the disjoint union
⋃
l Γ

m,p(y′l, xl) and for y′ ∈ Γm,p(y′l, xl), φm,p(y
′) =

Gk(x, z)/zn with z = (P τ )−1(y′)∩Rm,p(xl). Hence, from inequality (8) we deduce
that

qm,p(ξ) ≥ c

∫
Ap∩K

[K(ξ, y′)− ε] dν(y′).

Hence, for this ξ,

qm,p(ξ) ≥ c

∫
Ap∩K

K(ξ, y′) dν(y′)− ε‖ν‖.

Using the finite subadditivity of measures we conclude that∑
p

qm,p(ξ) ≥ c

∫
K

K(ξ, y′) dν(y′)− ε‖ν‖.(11)

We now combine inequalities (10) and (11) and note that we can let ε → 0 to get
the inequality

RE
xω−1
n

(ξ) ≥ c

∫
K

K(ξ, y′) dν(y′).(12)

Evidently, this inequality is true for all ξ ∈ Rn+. We note that the function on
the right side of (12) is a positive Lk-harmonic function with canonical Martin
representing measure cν [BCB1]. Also, it is proved in the proof of Theorem 1 in
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[GS2] that the function RE
xω−1
n

is an Lk-potential. It follows that the function on
the right side of the inequality (12) is identically zero; hence ν ≡ 0. This concludes
the proof.
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