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Abstract

Let D be a bounded symmetric domain in CN and let ψ be a complex-valued holomorphic function on D.
In this work, we determine the operator norm of the bounded multiplication operator with symbol ψ from
the space of bounded holomorphic functions on D to the Bloch space of D when ψ fixes the origin. If no
restriction is imposed on the symbol ψ, we have a formula for the operator norm when D is the unit ball or
has the unit disk as a factor. The proof of this result for the latter case makes use of a minimum principle for
multiply superharmonic functions, which we prove in this work. We also show that there are no isometries
among the multiplication operators when the domain does not have exceptional factors or the symbol fixes
the origin.
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1. Introduction

Let X and Y be Banach spaces of holomorphic functions on a domain Ω in CN (N ∈ N) and let ψ be
a complex-valued holomorphic function on Ω such that ψf ∈ Y whenever f ∈ X . The multiplication
operator with symbol ψ from X to Y is the operator Mψ defined by

Mψf = ψf, for f ∈ X .

Multiplication operators for the case in which X and Y are both equal to the Bloch space of the open unit
disk D have been studied in [8], [10], [3], and [1]. For the case of the Bloch space of a bounded homogeneous
domain in CN, see [4]. However, since multiplication operators are degenerate weighted composition oper-
ators, many operator theoretic results on multiplication operators, such as boundedness and compactness,
are subsumed in [23] and [26].
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The weighted composition operators between the Bloch space of D and the Hardy space H∞ of bounded
analytic functions on D were investigated in [22]. Characterizations of the boundedness and the compactness
of the weighted composition operators from the Bloch space to H∞ were given in [16] in the case of the unit
disk, and in [21] for the case of the ball. The study of the weighted composition operators from the Bloch
space, as well as related spaces known as α-Bloch spaces, to the Hardy space H∞ was carried out in [20] for
the polydisk case. The operator norm of the weighted composition operators from the Bloch space to the
weighted Hardy space H∞

µ (where µ is a weight) was determined in [25] for the case of the ball. In [5], the
operator norm of the weighted composition operators from the Bloch space to H∞ was determined in the
case of a general bounded homogeneous domain.

The study of the weighted composition operators from the Hardy space H∞ to the α-Bloch spaces was
carried out in [19] for the polydisk case, and [21] and [30] for the case of the ball. In [6] the bounded weighted
composition operators from H∞ to the Bloch space of a bounded homogeneous domain were characterized
and operator norm estimated were derived.

In this paper, we obtain sharper estimates on the operator norm of the multiplication operators from
H∞ to the Bloch space on a general bounded symmetric domain and determine such norm precisely in the
case when the symbol of the operator fixes the origin as well as when the domain is the ball or a bounded
symmetric domain that has the unit disk as a factor, up to a biholomorphic transformation, and the symbol
is not subjected to any restriction. We use this norm to show that for a large class of bounded symmetric
domains D there are no isometries among these multiplication operators, a result that was shown in [6]
(Theorem 6.2) only when D is the unit disk.

In Section 2, we present an overview of the Bloch space on a bounded homogeneous domain in CN , the
Cartan classification of bounded symmetric domains, and background results which we shall need in this
work.

In Section 3, we prove a minimum principle for multiply superharmonic functions.
In Section 4, we establish the main results of the paper. Specifically, in Theorem 4.2, we obtain new

estimates on the norm of a bounded multiplication operator Mψ from H∞ to the Bloch space on a bounded
symmetric domain, which allow us to determine exactly this norm in the special case when the symbol of the
operator fixes the origin. From these estimates, in Theorem 4.3 we also obtain a formula for the operator
norm without the above restriction on the symbol when the domain is the unit ball or has the unit disk as
a factor. Theorem 4.3 makes use of the minimum principle proved in the previous section.

Finally, in Section 5, we use Theorem 4.2 to prove that if the symbol ψ, defined on a bounded symmetric
domain D, fixes the origin, or if ψ is unrestricted but D does not have an exceptional factor, then the
operator Mψ cannot be an isometry.

2. Preliminaries

2.1. Background on the Bloch space
A homogeneous domain in CN (N ∈ N) is a domain D such that the group of biholomorphic trans-

formations Aut(D) mapping D onto itself acts transitively on D, that is, for any pair of points z, w ∈ D
there exists T ∈ Aut(D) such that T (z) = w. We call the elements of Aut(D) automorphisms of D.

Let f be a complex-valued holomorphic function on a bounded homogeneous domain D in CN . For

u, v ∈ CN , let 〈u, v〉 =
N∑
k=1

ukvk, and for z ∈ D, let (∇f)(z)u = 〈(∇f)(z), u〉, where (∇f)(z) is the gradient

of f at z. For z ∈ D, let Hz be the Bergman metric on D at z. Thus, it is a positive definite Hermitian
form which is invariant under automorphisms of D. This means that for S ∈Aut(D) and u ∈ CN

HS(z)(JS(z)u, JS(z)u) = Hz(u, u), (1)

where JS(z) is the Jacobian matrix of S at z and JS(z)u is the usual matrix product where u is viewed as
a column vector.
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A Bloch function on D is a holomorphic function f on D such that

Qf = sup
z∈D

Qf (z)

is finite, where

Qf (z) = sup
u∈Cn\{0}

|(∇f)(z)u|
Hz(u, u)1/2

.

Denote by B(D) the space of Bloch functions on D. The map f 7→ Qf is a semi-norm on B(D), which by (1)
is invariant under right composition of automorphisms. Fixing any point z0 ∈ D, the set B(D) is a Banach
space, called the Bloch space, under the norm

‖f‖B = |f(z0)|+Qf .

Throughout this paper we shall assume that 0 ∈ D and z0 = 0. The Bloch space contains the space H∞(D)
of bounded holomorphic functions on D [27].

Useful references on Bloch functions include [7] for the one-dimensional case, and [14], [27] and [28] for
the multi-variable case. Bloch functions have been defined on more general classes of bounded domains,
such as strongly pseudo-convex domains [18]. These domains, however, are not as suitable for the study of
operator theoretic problems due to their sparse, and possibly trivial, automorphism groups.

2.2. Cartan’s classification of bounded symmetric domains
A domain D in CN is said to be symmetric if for each a ∈ D, there exists an involutory automorphism

S of D that has a as an isolated fixed point. Symmetric domains are homogeneous (see [15], pp. 170, 301).
Examples of symmetric domains are the unit ball

BN = {z = (z1, . . . , zN ) ∈ CN : ‖z‖ < 1},

where ‖z‖ denotes the Euclidean norm of z, and the unit polydisk

DN = {z = (z1, . . . , zN ) ∈ CN : |zj | < 1, j = 1, . . . , N}.

Cartan [11] proved that any bounded symmetric domain is biholomorphically equivalent to a finite
product of irreducible bounded symmetric domains, unique up to rearrangement of the factors. He then
classified all the irreducible domains we call Cartan domains into four classes RI , RII , RIII , RIV , described
below with their Bergman metrics, called classical domains, and two classes RV and RV I , each containing
a single domain of dimension 16 and 27, respectively, called exceptional domains. For a description of
the latter domains see [13]. The classical domains are discussed in [17].

For M,N ∈ N, denote by MM,N the set of M ×N matrices over C, let MN = MN,N and let the symbol
> in connection with matrices denote positive definiteness. Let IN ∈ MN be the identity matrix and let
Z∗ be the adjoint of Z. Then

RI = {Z ∈MM,N : IM − ZZ∗ > 0}, for N ≥M ≥ 1,

HZ(U, V ) =
M +N

2
Trace[(IM − ZZ∗)−1U(IN − Z∗Z)−1V ∗],

RII = {Z ∈MN : Z = ZT , IN − ZZ∗ > 0}, for N ≥ 2,

HZ(U, V ) =
N + 1

2
Trace[(IN − ZZ∗)−1U(IN − Z∗Z)−1V ∗],

RIII = {Z ∈MN : Z = −ZT , IN − ZZ∗ > 0}, for N ≥ 5,

HZ(U, V ) =
N − 1

2
Trace[(IN − ZZ∗)−1U(IN − Z∗Z)−1V ∗],

RIV =
{
z ∈ CN :

∣∣∣∑ z2
j

∣∣∣2 + 1− 2‖z‖2 > 0,
∣∣∣∑ z2

j

∣∣∣2 < 1
}
, for N 6= 5,

Hz(u, v) = NAu[A(IN − zT z) + (IN − zT z)Z∗z(IN − zT z)]v∗,
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where zT is the transpose of z and A = |
∑N
j=1 z

2
j |2 +1−2‖z‖2. The dimensional restrictions imposed above

guarantee the membership of a Cartan domain to a unique class. In the special case of the unit ball, the
Bergman metric at z ∈ BN is given by

Hz(u, v) =
N + 1

2
|(1− ‖z‖2)〈u, v〉+ 〈u, z〉〈z, v〉|

(1− ‖z‖2)2
,

where u, v ∈ CN . Indeed, the ball BN is in RI with M = 1, and for Z = [z1 · · · zN ],

(IN − Z∗Z)−1
j,k =

zjzk + δj,k(1− ‖Z‖2)
1− ‖Z‖2

,

where δj,k is the Kronecker delta. In particular, in the case of the unit disk, for z ∈ D and u, v ∈ C, we have

Hz(u, v) =
uv

(1− |z|2)2
.

Note that the description of RI in [17] does not include the restriction N ≥M . However, if W ∈ RI as
defined in [17] has more rows than columns, then Z = W ∗ is in RI as defined by us. This follows from the
fact that for any M ×N matrix Z, IM − ZZ∗ > 0 if and only if IN − Z∗Z > 0.

A bounded symmetric domain D is said to be in standard form if it has the form D = D1 × · · · ×Dk,
where each Dj is a Cartan domain.

Throughout the remainder of the paper, D shall denote a bounded symmetric domain in standard form.
Define the Bloch constant of D as

cD = sup{Qf (z) : f ∈ H∞(D), ‖f‖∞ ≤ 1, z ∈ D}.

By Theorem 2 of [12] and Theorem 3 of [29], if D is a Cartan domain, then

cD =



√
2/(M +N) if D ∈ RI ,√
2/(N + 1) if D ∈ RII ,√
1/(N − 1) if D ∈ RIII ,√
2/N if D ∈ RIV ,

1/
√

6 if D = RV ,

1/3 if D = RV I .

(2)

In particular, if D is the unit ball BN , then cD =
√

2/(N + 1).
Furthermore, by Theorem 3 of [12] extended to include the exceptional domains, if D = D1 × · · · ×Dk

is in standard form, then

cD = max
1≤j≤k

cDj , (3)

so that cD < 1 except when D has the unit disk as a factor, in which case cD = 1.

Remark 2.1. If f is a holomorphic function mapping a bounded symmetric domain D into D and Qf = cD,
then ‖f‖∞ = 1. Indeed, if f is a nonconstant holomorphic function such that ‖f‖∞ < 1, then the function
g = f/‖f‖∞ maps D into D so that Qg ≤ cD, whence Qf ≤ cD‖f‖∞ < cD.

The following results will be used in Section 5 to show that there are no isometries among the multipli-
cation operators from H∞(D) to B(D) whose symbol fixes the origin.

Theorem 2.1. (Theorem 7 of [12]) Let D = D1 × · · · × Dk, with D1, . . . , Dk irreducible and let f ∈
H∞(D) with ‖f‖∞ = 1 such that Qf = cD. Then, for each w0 ∈ D, there exists a sequence {Tn}n∈N of
automorphisms of D such that {f ◦ Tn} converges locally uniformly to a holomorphic function F ∈ H∞(D)
such that ‖F‖∞ = 1 and QF (w0) = cD.
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Theorem 2.2. (Theorem 6 of [12] and Theorem 4 of [29]) Let D = D1 × · · · ×Dk be a bounded symmetric
domain, with D1, . . . , Dk irreducible and let f ∈ H∞(D) such that ‖f‖∞ = 1 and Qf (w) = cD for some
w ∈ D. Then cD = cDm

for some m ∈ {1, . . . , k}, and there exist xm ∈ ∂Dm and an automorphism S of
Dm such that

f(z1, . . . , zm−1, S(zxm), zm+1, . . . , zk) = z

for all z ∈ D and zj ∈ Dj , for j 6= m.

Using Theorem 2.1 with w0 = 0 and Theorem 2.2, we deduce the following result.

Corollary 2.1. Let D = D1 × · · · × Dk with D1, . . . , Dk irreducible, and let f ∈ H∞(D) such that
‖f‖∞ = 1 and Qf = cD. Then, cD = cDm for some m ∈ {1, . . . , k}, and there exist a sequence {Tn}n∈N of
automorphisms of D, xm ∈ ∂Dm and an automorphism S of Dm such that

lim
n→∞

f ◦ Tn(z1, . . . , zm−1, S(zxm), zm+1, . . . , zk) = z

for all z ∈ D and zj ∈ Dj , for j 6= m, where the convergence is uniform on compact subsets of D.

3. A minimum principle for multiply superharmonic functions

In this section we digress from the topic of multiplication operators to establish a potential theoretic
result which we need in order to prove one of our main results, Theorem 4.3. The key result of this section,
Theorem 3.1, can be easily stated and is very natural, but we have not been able to locate it in the literature,
even in the classical potential theory of Euclidean space. While intuitively one would expect to prove it
easily, we could not come up with a completely elementary argument. Our proof makes use of a topology
we refer to as the Cartan-Brelot topology, which is distinct from the well-known Cartan-Brelot fine topology.
It was introduced in [9]. We merely quote the basic properties of this topology that will be needed. For
details, see [24].

Let U be a bounded open subset of Rm. Let S+(U) denote the set of nonnegative superharmonic
functions on U . We define an equivalence relation ∼ on S+(U) × S+(U) as follows: (u1, v1) ∼ (u2, v2) if
and only if u1 − v1 = u2 − v2. Denote by [(u, v)] the equivalence class of (u, v) and by S the set of all
equivalence classes S+(U)/ ∼, endowed with the obvious linear space structure. We identify S+(U) with
the set {[(u, 0)] : u ∈ S+(U)}.

Let ω be an open ball in Rm and let x ∈ ω. Denote by ρωx the harmonic measure on ∂ω corresponding to x.
Thus the sub-mean-value property for a superharmonic function v at x can be formulated as

∫
v dρωx ≤ v(x).

Let O denote the set of all open balls in Rm with rational radii, and let X be any countable dense subset
of Rm. For ω ∈ O and x ∈ ω ∩X, define the functional Πω,x on S by

Πω,x[(u, v)] =
∣∣∣∣∫ u dρωx −

∫
v dρωx

∣∣∣∣ .
Then Πω,x is a well-defined seminorm, and the countable family of all such seminorms defines a metrizable,
locally convex, topological vector space structure on S. We call this topology the Cartan-Brelot topology.
In the following result we summarize the main properties of the Cartan-Brelot topology which we require.

Proposition 3.1. (a) The Cartan-Brelot topology is Hausdorff and S+(U) is closed.
(b) The mapping f : S+(U)× U → R ∪ {∞} defined by f(v, x) = v(x) is lower semicontinuous.
(c) Every uniformly locally bounded sequence in S+(U) has a subsequence converging in the Cartan-Brelot

topology.

Let Ω = U × V , where U and V are domains in Rm and Rn, respectively. An extended real-valued
function v on Ω is said to be 2-superharmonic on Ω if the following four properties hold:

(i) v is not identically ∞;
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(ii) v(x) > −∞ for all x ∈ Ω;
(iii) v is lower semicontinuous;
(iv) for each fixed x1 ∈ U and x2 ∈ V , v(x1, ·) is hyperharmonic on V and v(·, x2) is hyperharmonic on U

(i.e. either superharmonic or identically ∞).

We call v 2-subharmonic if−v is 2-superharmonic. The set of all (respectively, nonnegative) 2-superharmonic
functions on U is denoted by 2-S(U) (respectively, 2-S+(U)). Such functions satisfy the following properties.

Proposition 3.2. (a) If v1, v2 ∈ 2-S(Ω) and α1, α2 > 0, then α1v1 + α2v2 and min (v1, v2) are in 2-S(Ω).
(b) (Minimum Principle) Let v ∈ 2-S(Ω). If lim inf

z→x
v(z) ≥ 0 for all x ∈ ∂Ω, then v ≥ 0 on Ω.

Our main result of this section is the following theorem, which is an improvement of the above minimum
principle.

Theorem 3.1. Let ω1 and ω2 be relatively compact open sets in Rm and Rn, respectively. Let v ∈ 2-
S(ω1 × ω2) and bounded below. If

lim inf
(z,z′)→(x,y)

v(z, z′) ≥ 0, (4)

for all (x, y) ∈ ∂ω1 × ∂ω2, then v ≥ 0 on ω1 × ω2.

Proof. By the Minimum Principle, it suffices to show that (4) holds for all (x, y) ∈ (∂ω1×∂ω2)∪(∂ω1×ω2)∪
(ω1 × ∂ω2). Due to the hypothesis, by symmetry, we only need to prove this for a fixed (x0, y0) ∈ ω1 × ∂ω2.

Let us first make the assumption that v is also bounded above. Arguing by contradiction, suppose (4)
fails at (x0, y0). Then there exists a positive real number ε and a sequence {(zk, z′k)}k∈N in ω1×ω2 converging
to (x0, y0) with

v(zk, z′k) < −ε for all k ∈ N. (5)

For each k ∈ N, the mapping vk : z 7→ v(z, z′k) defined on ω1 yields a positive uniformly bounded sequence
in S(ω1). Choose M ∈ R such that vk(z) +M ≥ 0 for all k ∈ N and z ∈ ω1. By assumption, {vk +M} is
uniformly bounded above on ω1. By parts (a) and (c) of Proposition 3.1, there is a subsequence {vkj

+M}j∈N
converging in the Cartan-Brelot topology to a function w1 ∈ S+(ω1). It follows that {vkj

} converges in the
Cartan-Brelot topology to w = w1 −M .

We claim that w ≥ 0 on ω1. Indeed, let x1 be any point in ∂ω1 and γ a positive real number. Then,
from (4) applied to (x1, y0) ∈ ∂ω1 × ∂ω2, we deduce there exist relatively compact neighborhoods U of x1

and V of y0 such that
v(z, z′) ≥ −γ for all (z, z′) ∈ (U × V ) ∩ (ω1 × ω2).

Without loss of generality, we may assume z′kj
∈ V for all j ∈ N. Thus

v(z, z′kj
) ≥ −γ for every z ∈ U ∩ ω1 and every j ∈ N.

Now let x2 ∈ U ∩ω1 and let {δ`}`∈N be a sequence of balls of O such that for each `, δ`+1 ⊂ δ` ⊂ δ` ⊂ U ∩ω1

and
⋂
`∈N δ` = {x2}. Then for every ` ∈ N, we have∫

w(z) dρδ`
x2

(z) = lim
j→∞

∫
vkj (z) dρ

δ`
x2

(z)

= lim
j→∞

∫
v(z, z′kj

) dρδ`
x2

(z)

≥ −γ
∫
dρδ`
x2

(z).

Letting `→∞ yields w(x2) ≥ −γ. Since this holds for all x2 ∈ U∩ω1, letting γ → 0, we get lim inf
z→x1

w(z) ≥ 0.

This holds for all x1 ∈ ∂ω1, and so it follows from the Minimum Principle that w is indeed nonnegative on
ω1.
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By Proposition 3.1(b), the mapping f : S+(ω1)× ω1 → R defined by f(s, x) = s(x) is lower semicontin-
uous if S+(ω1) is equipped with the Cartan-Brelot topology. Thus

lim inf
j→∞

v(zkj , z
′
kj

) = lim inf
j→∞

vkj (zkj ) ≥ w(x0) ≥ 0,

contradicting (5). Therefore the result holds in case when v is bounded above.
The general case follows from part (a) of Proposition 3.2 by applying the special case just proved to

wk = min{v, k} and letting k go to ∞.

4. Operator norm of Mψ : H∞(D) → B(D)

In [6] the following result was shown.

Theorem 4.1. (Theorem 3.1 of [6]) Let ψ be holomorphic on D. Then Mψ : H∞(D) → B(D) is bounded
if and only if ψ ∈ H∞(D). If Mψ is bounded, then

max{‖ψ‖B, cD‖ψ‖∞} ≤ ‖Mψ‖ ≤ ‖ψ‖B + cD‖ψ‖∞.

We improve the above estimates and determine the norm under some restrictions on the symbol or the
domain.

In [12] and [29] it was shown that if D a Cartan domain, then there exists a holomorphic function f
mapping D into D such that f(0) = 0 and Qf (0) = cD. On the other hand, if D = D1 × · · · ×Dk, with Dj

irreducible for all j ∈ {1, . . . , k}, then cD = cDm
for some m = 1, . . . , k. Thus, the function fm on D defined

by fm(z1, . . . , zk) = f(zm) (where zj ∈ Dj , j = 1, . . . , k), satisfies the properties fm(0) = 0, fm(D) ⊂ D,
and Qfm(0) = cD. By Remark 2.1, it follows that ‖fm‖∞ = 1. Therefore, the set

F = {f ∈ H∞(D) : f(0) = 0, ‖f‖∞ = 1, Qf (0) = cD}

is nonempty.
For a ∈ D, define

M(a) = sup{|f(a)| : f ∈ F}.

Theorem 4.2. Let ψ be a bounded holomorphic function on a bounded symmetric domain D. Then

sup
a∈D

(|ψ(0)|M(a) + cD|ψ(a)|) ≤ ‖Mψ‖ ≤ |ψ(0)|+ cD‖ψ‖∞.

In particular, if ψ(0) = 0, then
‖Mψ‖ = cD‖ψ‖∞.

Proof. To prove the upper estimate, let f ∈ H∞(D) with ‖f‖∞ = 1. Then ψf ∈ H∞(D) and ‖ψf‖∞ ≤
‖ψ‖∞. Since by definition of cD, Qg(z) ≤ cD‖g‖∞ for each g ∈ H∞(D) and each z ∈ D, we obtain

‖ψf‖B ≤ |ψ(0)||f(0)|+ cD‖ψf‖∞.

Taking the supremum over all such functions f , we obtain

‖Mψ‖ ≤ |ψ(0)|+ cD‖ψ‖∞.

To prove the lower estimate, fix a ∈ D and let Sa be an involutory automorphism of D mapping 0 to a,
which exists by the results in [15], pp. 170, 301, and 311. Let f ∈ F . By the invariance of the Bergman
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metric under biholomorphic maps and recalling that (f ◦ Sa)(a) = f(0) = 0, we have

Qψ(f◦Sa) ≥ Qψ(f◦Sa)(a)

= sup
u 6=0

|(f ◦ Sa)(a)∇ψ(a)u+ ψ(a)(∇(f ◦ Sa))(a)u|
Ha(u, u)1/2

= |ψ(a)| sup
u 6=0

|(∇(f ◦ Sa))(a)u|
Ha(u, u)1/2

= |ψ(a)| sup
u 6=0

|(∇f)(0)JSa(a)u|
H0(JSa(a)u, JSa(a)u)1/2

= |ψ(a)| sup
v 6=0

|(∇f)(0)v|
H0(v, v)1/2

= |ψ(a)|Qf (0) = cD|ψ(a)|.

Therefore, ‖ψ(f ◦ Sa)‖B ≥ |ψ(0)||f(a)|+ cD|ψ(a)|. Taking the supremum over all f ∈ F , we get

‖Mψ‖ ≥ |ψ(0)|M(a) + cD|ψ(a)|.

Finally, taking the supremum over all a ∈ D, we obtain the lower estimate.

Our next objective is to obtain a formula for ‖Mψ‖ when ψ does not fix the origin. We will be able
to accomplish this under some restrictions on the domain D. We shall need the following two results.
Lemma 4.1 makes use of Theorem 3.1.

Lemma 4.1. Let u be a function defined on the Cartesian product of two bounded domains D1 and D2 in
Cn and Cm, respectively. Assume that u is bounded above and 2-subharmonic. Let M = sup

z∈D1×D2

u(z). Then

M = max
λ∈∂D1×∂D2

lim sup
z→λ

u(z). (6)

Proof. Define f(λ) = lim sup
z→λ

u(z) for λ ∈ ∂D1× ∂D2. Then f is upper semicontinuous on a compact set, so

it achieves its maximum value. Thus, the right side of (6) exists. Denote it by M ′. By Theorem 3.1 applied
to M ′ − u, we deduce that u(z) ≤ M ′ for all z ∈ D1 × D2. Thus M ≤ M ′. As the reverse inequality is
obvious, the proof is complete.

Lemma 4.2. (a) If D = BN , then M(a) ≥ ‖a‖ for all a ∈ D.
(b) If D = D1 × · · · ×Dk, where D1, · · · , Dk are irreducible and Dm = D for some m ∈ {1, . . . , k}, then

M(a) ≥ |am| for all a ∈ D, a = (a1, . . . , ak), with aj ∈ Dj, j = 1, . . . , k.

Proof. To prove (a), fix λ = (λ1, . . . , λN ) ∈ ∂BN and for z ∈ BN , define pλ(z) =
∑N
j=1 λjzj . By the Cauchy-

Schwarz inequality, we see that |pλ(z)| ≤ ‖z‖ < 1, so pλ is a polynomial mapping BN into D. Moreover,
pλ(0) = 0 and (∇pλ)(0) = λ, so that by (2),

|(∇pλ)(0)λ|
H0(λ, λ)1/2

=

√
2

N + 1
= cBN

.

Hence Qpλ
(0) = cBN

. By Remark 2.1, it follows that ‖pλ‖∞ = 1, so pλ ∈ F . Thus, M(a) ≥ |pλ(a)| for each
a ∈ BN . Taking the supremum over all λ ∈ ∂BN , we obtain M(a) ≥ ‖a‖.

To prove (b), let pm : D → D be the projection map pm(z) = zm. Then pm(0) = 0, ‖pm‖∞ = 1, and

Qpm
(0) = sup

u 6=0

|(∇pm)(0)u|
H0(u, u)1/2

= sup
u 6=0

|um|(∑k
j=1H

Dj

0 (uj , uj)
)1/2

= sup
um 6=0

|um|
HD

0 (um, um)1/2
= 1 = cD,
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where HDj

0 denotes the Bergman metric at 0 relative to the domain Dj .
Therefore, pm ∈ F , so M(a) ≥ |pm(a)| = |am| for each a ∈ D.

Theorem 4.3. If D is the unit ball in CN or a bounded symmetric domain in CN that has D as a factor,
then

‖Mψ‖ = |ψ(0)|+ cD‖ψ‖∞ =

{
|ψ(0)|+

√
2

N+1‖ψ‖∞ if D = BN ,
|ψ(0)|+ ‖ψ‖∞ otherwise.

Proof. By Theorem 4.2, it suffices to show that

‖Mψ‖ ≥ |ψ(0)|+ cD‖ψ‖∞. (7)

Suppose D = BN . Then by Lemma 4.2 and Theorem 4.2, we have

sup
a∈BN

(|ψ(0)|‖a‖+ cBN
|ψ(a)|) ≤ ‖Mψ‖. (8)

If ψ is constant, (7) follows immediately from (8). If ψ is nonconstant, then by the Maximum Modulus
Principle, if {zn}n∈N is a sequence in D such that supn∈N |ψ(zn)| = ‖ψ‖∞, then ‖zn‖ → 1 as n→∞. Thus,
(8) yields (7).

Let us now suppose D is a bounded symmetric domain that has D as a factor. As we observed in
Section 2, cD = 1. Without loss of generality, we may assume D = D ×D2, for some bounded symmetric
domain D2. By Lemma 4.2 and Theorem 4.2, we see that

‖Mψ‖ ≥ sup
a∈D

(|ψ(0)||a1|+ |ψ(a)|) . (9)

On the other hand, applying Lemma 4.1 to the functions a 7→ |ψ(0)||a1|+ |ψ(a)| and a 7→ |ψ(a)| gives that
the right-hand side of (9) equals |ψ(0)|+ ‖ψ‖∞, verifying (7) in this case. This completes the proof.

Remark 4.1. Using (3) and (2) as well as the proof of Theorem 4.3, it is straightforward to see that
‖Mψ‖ = |ψ(0)| + cD‖ψ‖∞ also when D has the unit ball Bn as a factor provided that Bn and the other
irreducible factors Dj of D satisfy the following dimensional restrictions

• Dj ∈ RI with Dj ∈Mmj ,nj
and mj + nj ≥ n+ 1;

• Dj ∈ RII with Dj ∈Mnj
and nj ≥ n;

• Dj ∈ RIII with Dj ∈Mnj and nj ≥ n+ 2;

• Dj ∈ DIV with Dj ∈ Cnj and nj ≥ n+ 1;

• Dj = RV with n ≤ 11;

• Dj = RV I with n ≤ 17.

Thus, we conclude the section by posing the following

Conjecture. Let D be a bounded symmetric domain. If ψ ∈ H∞(D), then

‖Mψ‖ = |ψ(0)|+ cD‖ψ‖∞.

9



5. Isometries

In [6] it was shown that there exist no isometries among the multiplication operators from H∞(D) to
B(D). We next apply Theorem 4.2, to extend this result to a large class of domains in CN .

Theorem 5.1. (a) If D is a bounded symmetric domain in standard form, then there are no isometric
multiplication operators from H∞(D) to B(D) whose symbol fixes the origin.

(b) If D is a bounded symmetric domain in standard form without exceptional factors, then there exist
no isometric multiplication operators from H∞(D) to B(D).

Proof. (a) Suppose D = D1 × · · · ×Dk, with Dj irreducible for all j = 1, . . . , k, and Mψ : H∞(D) → B(D)
is an isometry with ψ ∈ H∞(D) such that ψ(0) = 0. We shall obtain a contradiction. Since ‖Mψ‖ = 1,
then by Theorem 4.2, we have

cD‖ψ‖∞ = 1. (10)

Next, observe that ‖ψ2‖B = ‖Mψψ‖B = ‖ψ‖∞, so that by (10),

1 =
∥∥∥∥ ψ2

‖ψ‖∞

∥∥∥∥
B

= Qψ2/‖ψ‖∞ ≤ cD‖ψ‖∞ = 1.

Hence Qψ2/‖ψ‖2∞ = 1/‖ψ‖∞ = cD. By Corollary 2.1 applied to f = ψ2

‖ψ‖2∞
, we see that there exist a sequence

{Tn} of automorphisms of D, m ∈ {1, . . . , k}, xm ∈ ∂Dm and S an automorphism of Dm such that cD = cDm

and

lim
n→∞

ψ2(Tn(z1, . . . , zm−1, S(zxm), zm+1, . . . , zk) = z‖ψ‖2∞ (11)

for each z ∈ D, zj ∈ Dj , j 6= m. Since the set {(ψ ◦Tn)/‖ψ‖∞ : n ≥ 0} is a normal family, some subsequence
{(ψ ◦ Tnι

)/‖ψ‖∞}ι∈N converges locally uniformly to a holomorphic function h. Fixing zj ∈ Dj , for each
j 6= m, it follows from (11) that

h(z1, . . . , zm−1, S(zxm), zm+1, . . . , zk)2 = z, (12)

for all z ∈ D. It follows that h(z1, . . . , zm−1, S(0), zm+1, . . . , zk)2 = 0. Differentiating (12) with respect to z
and substituting z = 0 then gives 0 = 1. This contradiction shows that Mψ cannot be an isometry.

(b) Suppose D = D1×· · ·×Dk, with Dj irreducible but not an exceptional domain for all j = 1, . . . , k. If
at least one of the domains D1, . . . , Dk, say Dj , is of type RI , RII or RIII , then letting p` be the projection
map of D given by p`(z) = z`, where

∑j−1
ι=1 dim(Dι) ≤ ` ≤

∑j
ι=1 dim(Dι), we obtain

Qψp`
= ‖ψp`‖B = ‖p`‖∞ = 1.

Yet, since ‖ψp`‖∞ ≤ ‖ψ‖∞, by definition of cD we have Qψp`
≤ cD‖ψ‖∞. Hence

1 ≤ cD‖ψ‖∞. (13)

On the other hand, since ‖Mψ‖ = 1, by Theorem 4.2 we obtain

cD‖ψ‖∞ ≤ sup
a∈D

(|ψ(0)|M(a) + cD|ψ(a)|) ≤ 1. (14)

Therefore, from (13) and (14) we obtain cD‖ψ‖∞ = 1 and

sup
a∈D

(|ψ(0)|M(a) + cD|ψ(a)|) = 1.
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Let δ be a small positive number such that the ball Bδ centered at 0 of radius δ is properly contained
in D and let Dδ = D\Bδ. The Maximum Modulus Principle implies that supa∈Dδ

|ψ(a)| = ‖ψ‖∞. By
Proposition 4.1 of [2], Qp`

(0) = cD so that |a`| ≤M(a). Thus

|ψ(0)|δ + 1 = |ψ(0)|δ + cD‖ψ‖∞ ≤ sup
a∈Dδ

|ψ(0)||a`|+ cD|ψ(a)| ≤ 1.

Consequently, ψ(0) = 0. By part (a), we obtain a contradiction. Therefore Mψ cannot be an isometry.
If all factors of D are of type IV , then for r and s distinct in {1, . . . , N}, let p+

r,s and p−r,s be the
functions from D to D defined by p+

r,s(z) = zr + izs and p−r,s(z) = zr − izs. Again by Proposition 4.1 of [2],
Qp+r,s

(0) = Qp−r,s
(0) = cD so that |ar ± as| ≤ M(a). Proceeding as above for the case of the projections p`,

we obtain ψ(0) = 0, and hence Mψ cannot be an isometry.

We end the paper by posing the following conjecture.

Conjecture. There exist no isometries among the bounded multiplication operators from the Hardy space
H∞(D) to the Bloch space of any bounded symmetric domain D.
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