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1. INTRODUCTION. The delight of finding unexpected connections is one of the
rewards of studying mathematics. In this paper we present connections that link the
following seven superficially unrelated entities:

(A) A function of the sort that calculus textbooks often use to show that a continu-
ous function need not have a derivative at each point (see Figure 1):

f (p) =



1 if p ∈ [0, 1/2],
1 − p

p
if p ∈ [1/2, 1]. (1)
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Figure 1.

(B) A series

∞∑
n=0

an

[
p(1 − p)

]n

that converges on the interval [0, 1] to a continuous function of p that fails to
be differentiable at p = 1/2.

(C) An infinite sequence 1, 1, 2, 5, 14, 42, 132, . . . that can be obtained from a tri-
angle with a Pascal-like addition rule. The numbers in the sequence are the
nonzero entries in the first column:

1
0 1
1 0 1
0 2 0 1
2 0 3 0 1
0 5 0 4 0 1
5 0 9 0 5 0 1

· · · · · · · · · · · · · · · · · · · · ·
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(D) A sequence an (n = 0, 1, . . .) that can be described by means of the recursion
formula

an+1 =
n∑

k=0

an−kak (n ≥ 0)

and the initial condition a0 = 1.

(E) The equation |z(1 − z)| = 1/4, or equivalently, (x2 + y2)[(1 − x)2 + y2] =
1/16, whose graph looks like a figure-eight (see Figure 2):
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Figure 2.

(F) The classical probability problem of the “drunkard’s walk,” which asks for the
probability that a path on the nonnegative integers starting at some point ends
up at 0.

(G) A functional equation of the form f (p) = (1 − p) + p f (p)2.

The numbers of the infinite sequence in (C), known as the Catalan numbers, have
many combinatorial interpretations [7]. They satisfy the recursion relation (D). In sec-
tion 3 we show that the Catalan numbers are the coefficients of the series in (B), whose
sum h(p) coincides with f (p)/(1 − p) on the interval [0, 1], where f is the function
described in (A). Thus, the series gives a single formula for the function defined piece-
wise in (1). If we regard the series as being defined over C and determine its set of
convergence K , we are led to the equation in (E), whose graph bounds K . The drunk-
ard’s walk (F) is the source of both f and its series representation. This function f
satisfies the functional relation (G).

In section 2 we introduce trees and random walks on trees. In section 3 we do all
the calculations that make precise the connections outlined in the previous paragraph.
In sections 4 and 5 we find an infinite sequence of entities analogous to (A), (B), (C),
(D), (E), (F), and (G) with exactly the same types of connections.

In particular, we introduce the “cautious drunkard’s walk,” which can be viewed
either as a random walk on the nonnegative integers with jumps or as a random walk
without jumps on a certain directed graph. We describe this directed graph, which
yields the probabilistic interpretation of the sequence introduced in section 4.

Furthermore, we describe a relation among the sequences of numbers given by (C)
and its generalizations. Finally, in section 6 we present the problem that led us to this
whole study.
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2. RANDOM WALKS ON TREES. We first recall some basic terminology. A
tree T is a connected graph with no loops such that each vertex is an endpoint of only
finitely many edges. Two distinct vertices v and w of T are called neighbors if there is
an edge connecting them, in which case we signify this relationship by writing v ∼ w.

A path in T is a finite or infinite sequence of vertices [v0, v1, . . .] such that vk ∼ vk+1

for all k. A path is called a geodesic if vk−1 
= vk+1 holds for k = 1, 2, . . . . An infinite
geodesic is called a ray emanating from its initial point v0. If u and v are vertices of
T , we denote by [u, v] the (necessarily unique) geodesic [w0, w1, . . . , wn] such that
w0 = u and wn = v.

It is frequently convenient to single out a specific vertex e of a tree and declare it to
be a root of the tree. There is a natural distance function d defined on the set of vertices
of a tree T : if u and v are vertices, d(u, v) is the number of edges in the geodesic from
u to v. The length |v| of a vertex v of a tree with root e is its distance d(v, e) from
e. The predecessor v− of a vertex v different from e is the next to last vertex of the
geodesic path from e to v. A descendant of a vertex v is a vertex u such that v is on
the path from e to u.

Let p be a nearest-neighbor transition probability on T , that is, p(v, u) ≥ 0 if v

and u are neighboring vertices, p(v, u) = 0 if v and u are not neighbors, and, for
all vertices v,

∑
u∼v p(v, u) = 1. If γ = [v0, . . . , vn] is a finite path, we define the

probability of γ relative to p by

p(γ ) =
n∏

j=1

p(v j−1, v j ),

with p([v0]) = 1. This defines a random walk on T as follows.
Let W be the set of all infinite paths. For each finite path γ let the cylinder W (γ )

be the set of all paths in W whose initial segment is γ . Fix a vertex v. Let Fv be the
σ -algebra generated by the cylinders W (γ ) for which γ is a path beginning at v (Fv

is the smallest collection of subsets of W containing all such cylinders that is closed
under countable unions and complements). Then there exists a unique probability mea-
sure Pv on Fv such that Pv(W (γ )) = p(γ ) for each such γ [2, sec. 3.1]. The random
walk on T associated with p consists of the set of all paths in W together with each
Pv . We can calculate the probability that a path satisfies a given property by evaluating
some Pv on the set of all paths with this property, provided that such a set is in Fv .

For vertices v and w of T , 
v,w denotes the set of finite paths of positive length
from v to w that visit w after the first step only once (i.e., 
v,w is the set of all paths
[v = v0, . . . , vn = w] with n ≥ 1 and v j 
= w when 0 < j < n). Let Wv,w be the set
of all infinite paths beginning at v and containing w. Observe that Wv,w is the disjoint
union of all the cylinders W (γ ), where γ lies in 
v,w. Thus Wv,w belongs to Fv, so
F(v, w) = Pv(Wv,w) is defined. This is the probability that a random walk beginning
at v visits w in positive time. Notice that

F(v, w) =
∑

γ∈
v,w

p(γ ). (2)

A random walk on T is recurrent if F(v, w) = 1 for all vertices v and w. A nonre-
current random walk is transient. Transient random walks have the property that with
probability one an infinite path will visit any particular vertex only finitely many times.

There is a simple test for transience of a random walk on an arbitrary tree T rooted
at e with a nearest-neighbor transition probability p. If ρ = [e = w0, w1, . . .] is a ray
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starting at e, let

εn(ρ) =



p(wn, wn−1)

1 − p(wn, wn−1)
if n ≥ 1,

1 if n = 0,

and let

H ∗(ρ) =
∞∑

k=0

ε0(ρ)ε1(ρ) · · · εk(ρ).

In [1] (see Theorems 5.1(a) and 5.2), the authors established the following test for
transience:

Theorem 2.1.

(a) If a random walk on a tree T rooted at e is transient, then H∗(ρ) < ∞ for some
ray ρ emanating from e.

(b) If there exists a geodesic path c = [e = w0, . . . , wn] such that H ∗(ρ) < ∞ for
all rays ρ beginning with c, then the random walk on T is transient.

In particular, we have:

Proposition 2.1. Let T be a tree rooted at e, and let r belong to (0, 1/2). Assume that
there exists a vertex v0 of T such that p(u, u−) ≤ r for each descendant u of v0. Then
the random walk on T corresponding to p is transient.

We show in section 6 that Theorem 2.1 is sharp (i.e., H ∗ by itself does not always
determine transience). The function F defined in (2) exhibits the following easily ver-
ified, but very useful properties (see [2, secs. 2.3 and 2.4]):

Proposition 2.2. Let v and w be distinct vertices of a tree T , and let [v0, . . . , vn] be
the geodesic path with v0 = v to vn = w. Then the following statements are true about
the function F given by (2):

(a) F(v, w) = ∏n−1
k=0 F(vk, vk+1);

(b) F(v, v) = ∑
u∼v p(v, u)F(u, v);

(c) If v ∼ w, then F(v, w) = p(v, w) +∑
u∼v,u 
=w p(v, u)F(u, w).

It turns out that the transience of a random walk is equivalent to the condition that
F(v, v) < 1 for all vertices v:

Proposition 2.3. If F(v0, v0) = 1 for some vertex v0 of T , then the random walk on T
associated with F is recurrent.

Proof. Let

r(v) =
∞∑

n=0

F(v, v)n ≤ ∞.

Then r(v) is the expected number of all visits to v starting at v. Indeed if F(v, v) = 1
this is obvious. If F(v, v) < 1, since F(v, v)n is the probability that a path starting at
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v returns at least n times, the expected number of visits to v is

∞∑
n=1

n
[
F(v, v)n−1 − F(v, v)n

] =
∞∑

n=0

(n + 1)F(v, v)n −
∞∑

n=0

nF(v, v)n = r(v).

Assume that F(v0, v0) = 1, so that r(v0) = ∞. Let v be an arbitrary vertex, let γ =
[w0 = v, w1, . . . , wn = v0] be a path from v to v0, and let γ −1 = [wn, wn−1, . . . , w0]
be the reverse of γ . Then the expected number of times that a path starting at v passes
through v0 and ends at v is p(γ )r(v0)p(γ −1) = ∞, so r(v) = ∞. This implies that
F(v, v) = 1. From Proposition 2.2(b) it follows that F(u, v) = 1 if u ∼ v. Invoking
part (a) of the same result, we obtain F(u, w) = 1 for all vertices u and w of T .

In contrast to Proposition 2.3, it is possible to have a transient random walk for
which F(v, w) = 1 for some v 
= w. The example in section 6 demonstrates this.

By a homogeneous tree of degree d (d ≥ 2) we mean a tree all of whose vertices
have exactly d neighbors. This concept is pertinent to the following two examples.

Example 2.1. Let T be a homogeneous tree of degree d (d ≥ 3). We assign the
isotropic nearest-neighbor transition probability: p(u, v) = 1/d if u and v are neigh-
bors. By Proposition 2.1, the random walk on T corresponding to p is transient.

Example 2.2. Now let T3 be a homogeneous tree of degree three rooted at e, and de-
fine a nearest-neighbor transition probability as follows: if v is a vertex other than
e, let p(e, v) = 1/3 if |v| = 1, p(v−, v) = 1/4 if |v| ≥ 2, and p(v, v−) = 1/2 if
|v| ≥ 1. For any ray ρ emanating from e, εn(ρ) = 1 for each nonnegative integer n, so
H ∗(ρ) = ∞. Thus, by Theorem 2.1, the induced random walk on T3 corresponding to
p is recurrent.

In sections 3 and 4 we shall study some nearest-neighbor random walks on Z
0
+ =

Z+ ∪ {0}, where Z+ = {1, 2, . . .}. For such random walks, recurrence is completely
determined by the value of F(1, 0) as the following proposition shows.

Proposition 2.4. A nearest-neighbor random walk on Z
0
+ is recurrent if and only if

F(1, 0) = 1.

Proof. First observe that if the random walk is recurrent, then by definition

F(1, 0) = 1.

Conversely, assume that F(1, 0) = 1. Let p = p(1, 2), and note that p(0, 1) = 1 and
p(1, 0) = 1 − p. By Proposition 2.2(c) we see that

F(1, 0) = 1 − p + pF(2, 0),

so F(2, 0) = 1. But by Proposition 2.2(a), F(2, 0) = F(2, 1)F(1, 0), implying that
F(2, 1) = 1. On the other hand, Proposition 2.2(b) gives

F(1, 1) = 1 − p + pF(2, 1) = 1.

According to Proposition 2.3, the random walk is recurrent.

3. THE DRUNKARD’S WALK ON Z
0
+. In this section we study in detail the drunk-

ard’s walk (F) on Z
0
+ and establish the connections between items (A) through (G).

The drunkard’s walk with parameter p (0 < p < 1) is a random walk on Z
0
+ such that

p(n, n + 1) = p and p(n, n − 1) = 1 − p when n ≥ 1 and p(0, 1) = 1. We imagine
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that if the drunkard is at n, then he moves forward with probability p and backward
with probability 1 − p. We want to know the probability that starting at 1 he will
sooner or later “fall in the lake” (i.e., touch the point 0). We consider Z

0
+ as a tree with

edges [n, n + 1] for n ≥ 0. Thus we wish to calculate F(1, 0), the probability that a
walk beginning at 1 touches 0.

A path starting at 1 and visiting 0 for the first time is a loop in Z+ that begins and
ends at 1 and that is followed by one step from 1 to 0. In order to calculate F(1, 0), we
first consider the set of loops in Z+.

For n = 0, 1, 2, . . . we use An to signify the set of finite sequences

c = [c0, c1, . . . , c2n]
in Z+ such that c0 = c2n = 1 and |ck − ck+1| = 1 for k = 0, 1, . . . , 2n − 1. These are
the paths in Z+ that begin and end at 1 (i.e., the loops in Z+ based at 1). Let an be the
cardinality of An, and for m in Z+ let γn,m be the number of paths in Z+ of length n
starting at m and ending at 1. Then an = γ2n,1. Obviously, γ0,1 = 1 and

γn,m = γn−1,m−1 + γn−1,m+1.

When n > 0 and m > 1 this readily yields the entries in the one-sided Pascal triangle
in (C).

A path of length 2n + 1 that enters into the calculation of F(1, 0) consists of n
steps to the right, each having probability p, and n + 1 steps to the left, each having
probability 1 − p. There are an such paths, so

F(1, 0) =
∞∑

n=0

an pn(1 − p)n+1 = (1 − p)

∞∑
n=0

an

[
p(1 − p)

]n
,

which is 1 − p times the series in (B).
We use two different methods to express the coefficients an in closed form. The first

is purely combinatorial, the second algebraic.
A Dyck path of length k is a finite sequence (a, b0), (a + 1, b1), . . . , (a + k, bk)

in Z × Z, where bi+1 = bi ± 1. With a path c = [c0, . . . , c2n] in An we associate the
Dyck path

(0, 1) = (0, c0), (1, c1), . . . , (2n, c2n) = (2n, 1).

This establishes a one-to-one correspondence between An and the set of Dyck paths
from (0, 1) to (2n, 1) that remain in Z

0
+ × Z+. The number of such Dyck paths is

the total number of Dyck paths from (0, 1) to (2n, 1) in Z × Z less the number of
these that touch the x-axis. But by a well-known reflection principle (see [3, p. 72]) a
Dyck path from (0, 1) to (2n, 1) touching the x-axis corresponds to an arbitrary Dyck
path from (0, −1) to (2n, 1): to see this, simply reflect across the x-axis that part of
the latter path between (0, −1) and the first point at which it touches the x-axis. The
number of all Dyck paths from (0, 1) to (2n, 1) is the number of ways of moving up n
times and down n times in 2n moves, which is

(2n
n

)
. On the other hand, the number of

Dyck paths from (0, −1) to (2n, 1) is the number of ways of moving up n + 1 times
and down n − 1 times in 2n moves, which is

( 2n
n−1

)
. Thus

an =
(

2n
n

)
−
(

2n
n − 1

)
=
(

2n
n

)
− n

n + 1

(
2n
n

)
= 1

n + 1

(
2n
n

)
.
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A second way of calculating an is to find a recurrence relation satisfied by these
numbers and then exploit it to derive the generating function for the sequence. To this
end, we define a function σ : An → An+1 as follows: for c = [c0, c1, . . . , c2n] in An,
let

σ(c) = [1, c0 + 1, c1 + 1, . . . , c2n + 1, 1].
Clearly, σ is one-to-one, and its image is the set of paths in An+1 that revisit 1 only

at the last step. Next we define the concatenation c · d of paths c in An and d in Am

to be the path in An+m given by c · d = [c0, c1, . . . , c2n, d1, . . . , d2m]. Armed with this
notation, we are in position to handle (D):

Theorem 3.1. The sets An are described inductively as follows: A0 = {[1]} and for
each nonnegative integer n An+1 is the disjoint union of the sets of paths σ(Ak) · An−k

for k = 0, 1, . . . , n. In particular, a0 = 1 and

an+1 =
n∑

k=0

akan−k

for n = 0, 1, . . . .

Proof. Any c in An+1 can be written as [c0, c1, . . . , c2k+2, c2k+3, . . . , c2n+2], where
c2k+2 is the first occurrence of 1 after c0. This yields a unique representation of c
as a concatenation c′ · c′′, where

c′ = [c0, . . . , c2k+2] = σ
([c1 − 1, . . . , c2k+1 − 1])

belongs to σ(Ak) and c′′ = [c2k+2, c2k+3, . . . , c2n+2] to An−k . Conversely, any elements
of σ(Ak) and An−k can plainly be concatenated to yield an element in An+1.

Theorem 3.2. The power series
∑∞

n=0 anzn converges when |z| ≤ 1/4, and its sum
g(z) is given by

g(z) =



1 − √
1 − 4z

2z
if 0 < |z| ≤ 1/4,

1 if z = 0,

(3)

where
√

w denotes the principal branch of the square root of w. In particular,

an = 1

n + 1

(
2n
n

)
= Cn,

the nth Catalan number.

Proof. Let G be the function defined by the right-hand side of (3). Then G is analytic
in the disk D = {z : |z| < 1/4}, G is continuous on the closure D of D, and G(0) = 1.
Let {bn} be the sequence of Taylor coefficients of G at the origin (i.e., the sequence
of coefficients in the power series expansion of G about 0). Then b0 = 1 and, since
G(z)2 = (G(z) − 1)/z when 0 < |z| < 1/4,

∞∑
n=0

(
n∑

k=0

bkbn−k

)
zn =

∞∑
n=0

bnzn
∞∑

n=0

bnzn =
∞∑

n=1

bnzn−1 =
∞∑

n=0

bn+1zn.
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It follows that

bn+1 =
n∑

k=0

bkbn−k (n = 0, 1, 2, . . .).

Thus, the sequences {an} and {bn} satisfy the same recurrence relation and the same
initial condition, from which we conclude that an = bn for all nonnegative integers n.
In particular, g(z) = G(z) for z in D. Using the binomial series for

√
1 − 4z, we see

that

√
1 − 4z = 1 − 2

∞∑
n=1

1

n

(
2n − 2
n − 1

)
zn,

whence

g(z) =
∞∑

n=1

1

n

(
2n − 2
n − 1

)
zn−1 =

∞∑
n=0

Cnzn . (4)

Stirling’s formula asserts that n! ∼ √
2π nn+1/2e−n [3]. We infer that

Cn ∼ π−1/24nn−3/2,

so the series on the right-hand side of (4) converges when z = 1/4, which implies
that it converges absolutely and uniformly on D. Hence g is also analytic in D and
continuous on D. This ensures that g and G are just different representations of one
and the same function on D.

Theorem 3.2 and the discussion preceding it show that

F(1, 0) = (1 − p)g
(

p(1 − p)
)
.

But
√

1 − 4p(1 − p) = |2p − 1| when 0 ≤ p ≤ 1. Hence

F(1, 0) =



1 if 0 ≤ p ≤ 1/2,

1 − p

p
if 1/2 ≤ p ≤ 1,

(i.e., F(1, 0) = f (p), the function in (A)).
If we replace p with an arbitrary complex number z, then the open set in which

F(1, 0) is analytic is bounded by the curve with equation |z(1 − z)| = 1/4. This is the
curve appearing in (E).

We now see the connection between all that has been said and the functional relation
in (G). Observe that, by translation, F(1, 0) = F(2, 1). Appealing to Proposition 2.2,
we get

f (p) = F(1, 0) = (1 − p) + pF(2, 0) = (1 − p) + pF(2, 1)F(1, 0)

= (1 − p) + pF(1, 0)2 = (1 − p) + p f (p)2,

as asserted by (G). (Of course, it is easy to check this relation directly from the defini-
tion of f .)
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By the way, notice that if p > 1/2, then F(1, 0) < 1. In this event the random walk
on Z

0
+ is transient (i.e., the drunkard has some chance of avoiding the lake).

4. MORE GENERAL RANDOM WALKS ON Z
0
+. In this section and the next we

extend the ideas developed earlier to more general random walks that yield connec-
tions similar to (A) through (G) in the introduction. Consider the random walk on Z

0
+

(analogous to (F)) with transition probabilities defined by p(0, 1) = 1, p(1, 2) = p,
p(1, 0) = 1 − p, p(n, n + 1) = q, and p(n, n − 1) = 1 − q for n = 2, 3, 4, . . . ,

where p and q are constants between 0 and 1. The calculation of F(2, 1) never in-
cludes a path from 1 to 2 and is thus independent of p. Taking p = q yields the same
example as in section 3, so that

F(2, 1) =



1 if 0 ≤ q ≤ 1/2,

1 − q

q
if 1/2 ≤ q ≤ 1.

For an arbitrary p, F(1, 0) = (1 − p) + pF(2, 1)F(1, 0), and we obtain

F(1, 0) =



1 if 0 ≤ q ≤ 1/2,

(1 − p)q

q − p + pq
if 1/2 ≤ q ≤ 1.

We recall from Proposition 2.4 that the value of F(1, 0) determines the recurrence
behavior of the corresponding random walk on Z

0
+. Thus the random walk is transient

if and only if q > 1/2.
Let k be any integer greater than 1. In what follows, we focus on the case q ≥ 1/2.

Given such a q, we pick a specific value of p: namely, we choose p to be the unique
solution in (0, 1) of the equation

(1 − p)q

q − p + pq
= k−1

√
1 − q

q
. (5)

Then p belongs to [1/k, 1). In fact, this establishes a one-to-one correspondence
q �→ p between (1/2, 1) and (1/k, 1), as we’ll see later.

The reason for choosing p to satisfy (5) is to get the identity

F(1, 0) = 1 − p + pF(1, 0)k . (6)

Let f (p) = F(1, 0), where q in (1/2, 1) and p in (1/k, 1) are related by (5). Then (6)
translates to the generalization of the functional equation (G):

f (p) = 1 − p + p f (p)k . (7)

Observe that f (p) = 1 satisfies (7) and that if f (p) satisfies (7) and f (p) 
= 1, then

f (p)k−1 + · · · + f (p) + 1 = 1 − f (p)k

1 − f (p)
= 1

p
. (8)

If, furthermore, 0 ≤ p ≤ 1/k and f (p) 
= 1, then (8) implies that f (p) > 1, which
contradicts the fact that f (p) is a probability. Thus, f (p) = 1 when 0 ≤ p ≤ 1/k. On
the other hand, we will show presently that q > 1/2 if p > 1/k, whence F(1, 0) < 1
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by Proposition 2.4. Therefore f (p) = y, where y in [0, 1] satisfies yk−1 + · · · +
y + 1 = 1/p. That is, we get the analogue of (A) for the general case k(≥ 2):

f (p) =
{

1 if p ∈ [0, 1/k],
y if p ∈ [1/k, 1], (9)

where y is the unique positive solution to
∑k−1

j=0 y j = 1/p. In the case k = 2 we re-
cover (1) and in the case k = 3 (see Figure 3), we have

f (p) =




1 if p ∈ [0, 1/3],√
4
p − 3 − 1

2
if p ∈ [1/3, 1].

2
1.8
1.6
1.4
1.2

1
0.8
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0
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Figure 3.

Now consider F(1, 0) as a function of q in (1/2, 1). Then by (5) we have

F(2, 1) = 1 − q

q
=
(

(1 − p)q

q − p + pq

)k−1

= F(1, 0)k−1,

so F(1, 0) is a decreasing function of q. Writing

s = k−1

√
1 − q

q

and solving for p in (5) yields

p = q(1 − s)

q(1 + s) − s
.

For q = 1, s = 0 and p = 1. For q approaching 1/2 from the right, s approaches 1
from the right, so an application of L’Hôpital’s rule shows that p approaches 1/k. Thus
(5) gives a one-to-one correspondence between p in (1/k, 1) and q in (1/2, 1).

For a fixed positive integer k the numbers an,k given by

an,k = 1

(k − 1)n + 1

(
kn

n

)
(n = 0, 1, 2, . . .)
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are known as the generalized Catalan numbers (with parameter k). For k = 2 they are
precisely the Catalan numbers.

The Lagrange-Bürmann inversion formula considers ζ = w + αϕ(ζ ) for a smooth
function ϕ and states that

ζ = w +
∞∑

n=1

αn

n!
dn−1

dwn−1

[
ϕ(w)n

]
(10)

for α sufficiently small, where by

dn−1

dwn−1
ϕ(w)n

we mean

dn−1

dζ n−1
ϕ(ζ )n

∣∣∣∣
ζ=w

.

In particular, for ϕ(ζ ) = ζ k (i.e., for ζ = w + αζ k), (10) yields

ζ = w +
∞∑

n=1

αn

n!
dn−1

dwn−1
wkn

=
∞∑

n=0

1

(k − 1)n + 1

(
kn

n

)
αnw(k−1)n+1

=
∞∑

n=0

an,kα
nw(k−1)n+1.

This inversion formula appears in many books and articles, including [6, prob. 211], [7,
p. 175], [5, p. 406], and [4, p. 72]. The Lagrange-Bürmann inversion formula applied
to ζ = f (p), w = 1 − p, and α = p, yields an analogue of (B):

f (p) = (1 − p)

∞∑
n=0

an,k

[
p(1 − p)k−1

]n
. (11)

Let us consider the series that arises from (11) when p is replaced with a complex
variable z. By Stirling’s formula,

an,k ∼
√

k

2πn3(k − 1)3

(
kk

(k − 1)k−1

)n

,

so

n
√

an,k ∼ kk

(k − 1)k−1
.

By the root test and Stirling’s formula, the set of convergence of the series in question
is the set R described by

R = {
z : |z(1 − z)k−1| ≤ (k − 1)k−1/kk

}
,
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whose boundary 
 looks like a figure-eight that is symmetric with respect to the real
axis. We will show that, in fact, the complement of 
 has three connected components,
two bounded components D0 and D1 and one unbounded component D2. The set R
is the closure of the union of D0 and D1. On the component D0 containing 0 the sum
of the series is identically 1, while on D1 the series sums to a nonconstant analytic
function of z determined by the equation w = 1 − z + zwk . (This follows from (9)
and the fact that the sum of the series is analytic in both D0 and D1.) When z lies in
D2, the series is divergent. (For the case k = 3, see Figure 4. In this instance the sum
f of the series in D1 is given by

f (z) =
√

4z−1 − 3 − 1

2
,

where the radical signifies the principal square root.) This is the analogue of (E).

0.3

0.4

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

(0, 0)
.

D2

(1, 0)
.

0 0.2–0.2 0.4 0.6 0.8 1 1.2 1.4

D0
D1

Figure 4.

The curve 
 is described by the equation h(x, y) = 0, with

h(x, y) = (x2 + y2)
(
(1 − x)2 + y2

)k−1 − (k − 1)2(k−1)

k2k
.

Thus 
 crosses the x-axis if and only if g(x) = x(1 − x)k−1 = ±a, where

a = 1

k

(
1 − 1

k

)k−1

.

Observe that on (−∞, 0] the function g decreases to −∞ as x → −∞, on [0, 1/k]
it increases from 0 to a, and on [1/k, 1] it decreases from a to 0. On the other hand,

776 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112



on [1, ∞) the function (−1)k−1g increases to ∞. Thus g(x) = ±a for exactly three
values x1, x2, and x3 of x , with x1 < 0 < x2 = 1/k < 1 < x3.

Fixing any value of x , consider the function y �→ h(x, y). Elementary calculus
shows that this function is decreasing on (−∞, 0) and increasing on (0, ∞). Thus, if
x < x1 or x > x3, h(x, y) > 0. If x is any of the numbers x1, x2, or x3, then h(x, y) = 0
only at y = 0. Finally, consider the case of x with x1 < x < x2 or x2 < x < x3. As
we have seen, h(x, 0) < 0. Furthermore, h(x, y) → +∞ as |y| → ∞. It follows that
there are exactly two values of y such that h(x, y) = 0. The upshot of these considera-
tions: 
 indeed looks like a figure-eight, with its left extreme at (x1, 0), a double point
at (x2, 0), and its right extreme at (x3, 0).

Observe that when y > 0 and y 
= 1 the sign of
∑k−1

j=0 y j is always positive. Thus,
the equation

k−1∑
j=0

y j = 1

x

cannot have negative solutions x . But the component D0 contains negative values of x .
Accordingly, on D0 the value of y = F(1, 0) must be identically 1.

5. GENERALIZED CATALAN NUMBERS AND THEIR PROBABILISTIC
INTERPRETATION. The generalized Catalan numbers have numerous combina-
torial interpretations (see [5] and [4]). Some of the formulas that we derive here
(including the recurrence relation in Proposition 5.1) can be found in the elegant paper
[4]. The following is the generalization of (D):

Proposition 5.1. The generalized Catalan numbers an,k satisfy the recurrence relation

an+1,k =
∑

i1+···+ik=n

ai1,k . . . aik ,k (n ≥ 0), (12)

where a0,k = 1.

Proof. Fix a positive integer k, and let bn be the sequence defined by the recurrence
relation (12) with b0 = 1. If

G(w) =
∞∑

n=0

bnw
n,

then G is analytic in the disk D = {w : |w| < kk/(k − 1)k−1} and

G(w)k =
∞∑

n=0

∑
i1+···+ik=n

bi1 . . . bik w
n

=
∞∑

n=0

bn+1w
n = 1

w

( ∞∑
n=0

bnw
n − 1

)

= 1

w

(
G(w) − 1

)
.
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For z in the interior of set R, w = z(1 − z)k−1 belongs to the disk D, and F(z) =
(1 − z)G(w) yields F(z) = 1 − z + zF(z)k . Using (11), we obtain

G(w) =
∞∑

n=0

an,kw
n.

Hence bn = an,k for all nonnegative n, establishing the result.

We next consider the cautious drunkard’s walk on Z
0
+ with parameter a fixed integer

k greater than 1: at each stage the drunkard can move exactly k − 1 steps forward or
move one step backward. This drunkard is more cautious, because at each stage he
may move several steps away from the lake, but just one toward it. We will see that
am,k is exactly the number of such paths from 1 to 1 with km moves (i.e., the number
of paths [c0, . . . , ckm] in Z+ with c0 = ckm = 1,

c j+1 = c j + k − 2

2
± k

2
,

and c j > 0 for each j .)
Here is the proof in the special case k = 3. A path c of length n is now a sequence

[c0, c1, . . . , cn], where ci+1 = ci + 2 or ci+1 = ci − 1. If c is a loop (i.e., if c0 = cn),
then n is a multiple of three: when a path begins and ends at the same point and
has s forward moves, it must have 2s backward moves, hence 3s moves altogether.
If cn = c0 + 1, then [c0, c1, . . . , cn, c0] is a loop, so 3 must divide n + 1, whereas if
cn = c0 + 2, then [c0, c1, . . . , cn, c0 + 1, c0] is a loop, in which event 3 divides n + 2.

Let A j
m be the set of all paths in Z+ of length 3m that begin and end at j and do not

contain j − 1, and let am be the cardinality of A j
m . Fix c = [c0, . . . , c3m] in A1

m . Let
c3m1 be the first occurrence of 1 in c, so m1 ≤ m. Let c3m2−1 be the first occurrence of
2 in c. Since c3m1−1 = 2, it follows that m2 ≤ m1. Note that c1 = 3 and c3m2−2 = 3.
Thus c is the concatenation of 1, γ3, γ2, and γ1, where γ3 = [c1, . . . , c3m2−2] belongs to
A3

m2−1, γ2 = [c3m2−1, . . . , c3m1−1] to A2
m1−m2

, and γ1 = [c3m1, . . . , c3m] to A1
m−m1

. This
furnishes a unique representation of any loop c in A1

m . On the other hand, any choice
of γ3 from A3

n3
, γ2 from A2

n2
, and γ1 from A1

n1
, where n1 + n2 + n3 = m − 1, yields a

unique path c = 1 · γ3 · γ2 · γ1 in A1
m . Thus

an+1 =
∑

n1+n2+n3=n

an1an2 an3 .

Since a0 = 1, by invoking Proposition 5.1 we deduce that an is the generalized Catalan
number an,3.

As a consequence of the interpretation of an,k as the number of “cautious” paths
in Z+ of length kn starting and ending at 1, the generalized Catalan numbers an,k are
seen to solve the following ballot problem: In an election in which candidate A gets
n votes and candidate B gets (k − 1)n votes, what is the number of ways of counting
the ballots so that candidate B never has more than k − 1 times as many votes as
candidate A?

As in the case of the Catalan numbers, the generalized Catalan numbers can be
derived by means of a Pascal-like triangle as follows. Fix an integer k bigger than 1.
For n in Z

0
+ and m in Z+, let γn,m be the number of cautious drunkard paths (with

parameter k) in Z+ of length n that begin at m and end at 1. Since any path that
begins at m must move to m − 1 or to m + k − 1 in the next step, γn,m must satisfy the
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recurrence relation

γn,m = γn−1,m−1 + γn−1,m+k−1.

Furthermore, γn,n+1 = 1 for any positive integer n. Observe that the generalized Cata-
lan numbers are given by γkn,1. Now form the one-sided Pascal triangle by considering
the values of γn,m . In each row, add the entry on the upper left side to the entry k − 1
steps to the right. The generalized Catalan numbers are the nonzero entries in the first
column. We display the Pascal triangle for the case k = 3, where the corresponding
sequence of generalized Catalan numbers is 1, 1, 3, 12, 55, 273, . . . :

1
0 1
0 0 1
1 0 0 1
0 2 0 0 1
0 0 3 0 0 1
3 0 0 4 0 0 1
0 7 0 0 5 0 0 1
0 0 12 0 0 6 0 0 1
12 0 0 18 0 0 7 0 0 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

This is the generalization of (C).
We next give a probabilistic interpretation of the generalized Catalan numbers cor-

responding to the case k = 3, which turns out to be equivalent to the description of the
cautious drunkard’s walk outlined earlier in the section. Specifically, we are going to
present a simple infinite directed graph on a horizontal strip whose edges are horizon-
tal, vertical, or diagonal segments and whose edge-probabilities are chosen so that the
number of paths of length n that start and end at the same vertex and never move to a
vertex to the left of the starting vertex is the generalized Catalan number an,3. A sim-
ilar construction can be carried out to yield a graph corresponding to any generalized
Catalan number an,k .

Consider the directed graph G in Figure 5. Label the vertices on the graph by
means of the even (respectively, odd) integers on the bottom line (respectively, top
line). Assume that the rightward probabilities along the horizontal direction are all
equal to some fixed number p in (0, 1) and that the probability assigned to each
downward-oriented edge and to each upward-directed diagonal edge is 1 − p. The
nearest-neighbor transition probabilities are 0 in the opposite of the indicated direc-
tions.

0 2 4 6 8

p p p p1 3 5 7 9

p p p p

· · · ✲ ✲ ✲ · · ·✲✲ ✲
1 − p 1 − p 1 − p 1 − p 1 − p

· · · ✲ ✲ ✲ · · ·✲✲ ✲

❅
❅

❅
❅

❅
❅

❅
❅❅

❅�

❅
❅

❅
❅❅

❅�

❅
❅

❅
❅❅

❅�

❅
❅

❅
❅❅

❅�
• • • • •

• • • • •
❄ ❄ ❄ ❄ ❄

Figure 5. Graph associated with the generalized Catalan numbers an,3.

We wish to count the number of directed paths on G of fixed length n that never
move to a vertex with a smaller label than the one of the starting vertex. Observe
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that such a path has the form c = [c0, c1, . . . , cn], where ci+1 = ci + 2 or ci − 1 for
i = 0, . . . , n − 1, and ci ≥ c0 for all i . If we assume that c0 lies in Z+, then c repre-
sents a path for the cautious drunkard’s walk. Conversely, any path for the cautious
drunkard’s walk yields such a path in G. Thus the number of directed cycles in G that
never move to a vertex with a smaller label than that of the starting vertex is an,3. Let
r be the probability that a path starting at 1 visits 0. It follows from (9) and (11) that
r = 1 if and only if p < 1/k.

We close this section with an observation about Catalan numbers. It applies whether
they be the classical ones or their generalized versions.

The fact that the function

f (z) = (1 − z)
∞∑

n=0

an,k

[
z(1 − z)k−1

]n

is identically 1 near 0 means that, after suitable expansion and rearrangement of its
terms, the series

∞∑
n=0

an,k

[
z(1 − z)k−1

]n
(13)

reduces to the geometric series
∑∞

m=0 zm for z sufficiently close to zero. Initially we
assumed that this was a very simple observation. Instead we found that it leads to
an unexpected relation among the generalized Catalan numbers that does not seem to
have an obvious combinatorial proof.

Theorem 5.1. For all integers k ≥ 2 and m ≥ 0

m∑
n=�m/k�

(−1)nan,k

(
kn − n

kn − m

)
= (−1)m,

where �x� signifies the smallest integer greater than or equal to x.

This relation holds trivially for k = 1. Even in the case of the classical Catalan
numbers, the relation

m∑
n=�m/2�

(−1)nCn

(
n

2n − m

)
= (−1)m

does not seem to have a simple proof. We have not found this relation in the literature,
but we certainly do not preclude the possibility that it is both in the literature and has
a simple proof that has eluded us.

Proof. Expanding the terms zn(1 − z)(k−1)n we rewrite (13) as

∞∑
n=0

an,k

n(k−1)∑
t=0

(
(k − 1)n

t

)
(−1)n(k−1)−t znk−t ,

which (since the series is absolutely convergent in a neighborhood of 0) we can rewrite
in the form
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∞∑
m=0

(−1)m

[
m∑

n=�m/k�
(−1)nan,k

(
kn − n

kn − m

)]
zm .

Because this series coincides with the geometric series in a neighborhood of the origin,
we arrive at the stated result.

In particular, we obtain a new simple recursive definition of the generalized Catalan
numbers:

am,k = 1 − (−1)m
m−1∑

n=�m/k�
(−1)nan,k

(
kn − n

kn − m

)

for m = 1, 2, . . . .

6. THE EXAMPLE THAT INSPIRED THIS PAPER. The function H ∗ in Theo-
rem 2.1 says a great deal about whether or not a random walk on a tree is transient,
but it does not quite characterize transience. In this section we give an example that
makes this limitation of H ∗ precise. The example was presented originally in [1, Ex-
ample 5.1] without proof. We now describe a one-parameter family of random walks
on a homogeneous tree of degree three. In each of them the inward probabilities re-
main the same—so H ∗ is identical in all cases—but the random walks can be transient
or recurrent depending upon the parameter.

Recall the recurrent random walk on a homogeneous tree of degree three described
in Example 2.2. We will modify the transition probabilities along a single ray that, for
simplicity, we identify with Z

0
+.

Consider the tree T3 of Example 2.2 with root e = 0, and the ray

ρ = [0 = e, 1, 2, . . .].
Fix p in (0, 2/3). Let T be the same tree as T3, but with the transition probabil-
ities p(v, u) modified as follows when v = n with n ≥ 1: let p(n, n − 1) = 1/3,
p(n, n + 1) = p, and p(vn, wn) = q = 2/3 − p, where wn is the neighbor of n differ-
ent from n ± 1 (see Figures 6 and 7).
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Figure 6. Outward probabilities on T .
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Figure 7. Inward probabilities on T .

Notice that for each vertex v of T that does not lie on ρ the probabilities on the set

v,v− (see section 2) with respect to T are the same as those on the corresponding set
with respect to T3. Therefore F(v, v−) is the same for both trees. Since the random
walk on T3 is recurrent, F(v, v−) = 1. In particular, F(wn, n) = 1 for all n in N.

By Proposition 2.2 we have (for the function F associated with T )

F(1, 0) = 1/3 + pF(2, 1)F(1, 0) + q F(w1, 1)F(1, 0),

yielding F(1, 0) = 1/3 + pF(1, 0)2 + q F(1, 0). Since q = 2/3 − p, we obtain

F(1, 0) = 1

1 + 3p
+ 3p

1 + 3p
F(1, 0)2.

The Lagrange-Bürmann inversion formula tells us that

F(1, 0) =
∞∑

n=0

Cn

(
3p

1 + 3p

)n ( 1

1 + 3p

)n+1

= 1

1 + 3p

∞∑
n=0

Cn

[
3p

(1 + 3p)2

]n

, (14)

where the coefficients Cn are the Catalan numbers. Therefore formally it would appear
that

F(1, 0) = f

(
3p

1 + 3p

)
=
{

1 if 0 < p ≤ 1
3 ,

1/(3p) if 1
3 ≤ p ≤ 2

3 ,

where f is the function in (1). The problem with this argument is that the Lagrange-
Bürmann inversion formula is valid only in some neighborhood of 0, not necessarily
on all of [0, 2/3]. The result in (14), however, is correct for all p in [0, 2/3], as the
following probabilistic argument shows.

We calculate F(1, 0) by studying all paths in T from 1 to 0 that do not visit 0 before
the last step. Each such path c has a unique representation

c = c0 · γ0 · c1 · γ1 · · · c2n · γ2n · 0,

782 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112



where c0 = c2n = 1, |ci − ci−1| = 1, and γi is a path from ci to itself that does not pass
through any other integer j . Fixing n, let 
n denote the set of all such paths. In light
of the restrictions on the ci , we see that there are exactly Cn choices for the ordered
set (c0, c1, . . . , c2n, 0), each carrying exactly the same probability. This probability is
the product of several factors: there are n times when ci+1 > ci , contributing pn; there
are n + 1 times when ci+1 < ci , contributing

(
1
3

)n+1
; and finally the set of all possible

γi contributes 1 (the empty path) plus (q F(wci , ci ))
k (for a path going from ci to wci

and eventually back to ci , having touched ci exactly k times) for each k. Recalling that
F(wci , ci ) = 1, we get

pn

(
1

3

)n+1
( ∞∑

k=0

qk

)2n+1

= pn

3n+1

1

(1 − q)2n+1

as the sum of the path probabilities for fixed c0, . . . , cn+1. We calculate this sum to be

1

3

1

1 − q

[
p

3(1 − q)2

]n

= 1

1 + 3p

[
3p

(1 + 3p)2

]n

,

since 3(1 − q) = 1 + 3p. Thus the sum of the path probabilities over 
n is

Cn
1

1 + 3p

[
3p

(1 + 3p)2

]n

,

which establishes (14). Consequently, the random walk on T is recurrent when
0 < p ≤ 1/3 and transient when 1/3 < p ≤ 2/3.

Since p(v, v−) = 1/2 whenever v is not a vertex on ρ, if ρ ′ is any ray in T other
than ρ, then εn(ρ

′) = 1 for all n sufficiently large. Accordingly, H ∗(ρ ′) = ∞. Yet
εn(ρ) = 1/2 for every positive integer n, so

H ∗(ρ) =
∞∑

k=0

(
1

2

)k

= 2 < ∞

regardless of the value of p, whence H ∗ does not itself determine whether or not the
random walk is transient.

Incidentally, p = 2/3 means that q = 0, disconnecting the tree. In this case, F(1, 0)

is calculated on a tree that is Z
0
+ with transition probabilities p(n, n + 1) = 2/3 and

p(n, n − 1) = 1/3, giving F(1, 0) = 1/2. Finally, letting t = 3p, we obtain

F(1, 0) = 1

1 + t

∞∑
n=0

Cn

[
t

(1 + t)2

]n

defined when t/(1 + t)2 ≤ 1/4.
We were originally drawn to this problem by the strangeness of the fact that the

series

1

1 + t

∞∑
n=0

Cn

[
t

(1 + t)2

]n

converges on [0, ∞) but takes the value 1 when 0 ≤ t ≤ 1 and 1/t when t ≥ 1. The
mysterious change in behavior becomes clear by looking at this as a series in a complex
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variable. We know that

1

1 + z

∞∑
n=0

Cn

[
z

(1 + z)2

]n

converges to a function f (z) exactly when |z/(1 + z)2| ≤ 1/4. The complement of the
curve


 =
{

z :
∣∣∣∣ z

(1 + z)2

∣∣∣∣ = 1

4

}

is the disjoint union of domains D0, D1, and D2, where D2 is unbounded, D0 is the
bounded connected component containing 0, and D1 is the other bounded component
(see Figure 8).

D1

D0

0. D2

Figure 8.

The real line intersects 
 at the points −3 − 2
√

2, −3 + 2
√

2, and 1. The function
f is defined and bounded by 1 on the complement of D1. On D0 it is identically 1
and f (z) = 1/z for z in D2. In particular, f is continuous on [0, ∞) and analytic on
[0, 1) ∪ (1, ∞), but it is not analytic at 1.

The surprising conclusion is that this example mathematically reduces to the study
of the drunkard’s walk on Z

0
+.

ACKNOWLEDGMENTS. We wish to express our deepest gratitude to the referee for his insightful sugges-
tions on how to improve our manuscript. We also thank Glenn Easley for his help with the graphics.

REFERENCES

1. I. Bajunaid, J. M. Cohen, F. Colonna, and D. Singman, Trees as Brelot spaces, Adv. Appl. Math. 30 (2003)
706–745.

2. P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math. 9 (1972) 203–270.
3. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 3rd ed., John Wiley & Sons,

New York, 1968.

784 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112



4. P. Hilton and J. Pederson, Catalan numbers, their generalization, and their uses, Math. Int. 13 (1991)
64–75.

5. D. A. Klarner, Correspondences between plane trees and binary sequences, J. Comb. Theory 9 (1970)
401–411.
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