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Abstract. We consider potential6 u associated with the Weinstein equation with paramketer
R, Z’}:l(azu/axf) + (k/xn)(0u/dx,) = 0, on the upper half space iR". We show that if the

representing measuyesatisfies the growth conditiofiy? /(1 + ly)" % < oo, where maxk, 2 —

n) < o < 1, thenGiu has a minimal fine limit of O at every boundary point except for a subset
of vanishing(n — 2 + w) dimensional Hausdorff measure. We also prove this exceptional set is best
possible.
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1. Introduction and Main Results

LetR} = {x = (x",x,) : x, > 0,x" = (x1,...,x,-1)} denote the upper half
space inR", n > 2, with R"~* its boundary. Generalising the classical results on
the boundary behavior of potentials by Littlewood and subsequently by Privalov,
L. Carleson [3] proved the following result.

THEOREM A. Let p = Gpu be a potential orR", such that/(y?/(1 + [yD)")
du(y) < oo, where0 < w < 1. Thenp has a perpendicular limit of zero at
all points of R"~* except for a set of vanishing— 2 4+ » dimensional Hausdorff
measure.

The result of Privalov (the case= 1 in Theorem A) was generalised by Doob [5]
to the setting of any Green space and its Martin boundary, and this was generalised
to the following result by the first author.

THEOREM B (Fatou—Naim—-Doob theorentet 2 be a Brelot harmonic space
with a positive potential. Let > 0 be a harmonic function with corresponding
representing measurg, on the minimal part of the Martin boundary. Then, for
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every potential, the minimal fine limit op /u is zero foru,-almost every point of
the boundary.

In this article we generalise the above result in the spirit of the result of Car-
leson. Accordingly we consider a class of Weinstein potentialsk(fgr1) whose
representing measures satisfy a growth conditio®onThe particulars concern-
ing the Weinstein equation, the Hausdorff measure etc. are described in the next
section. We prove the following two main results in this article.

THEOREM 1 Letu be a positive Radon measure &rj andk the parameter in
the Weinstein equation.

(@) If maxk,2 —n) < w < land [(y2/(A+ [y)" %) du(y) < oo, then the
minimal fine limit ofG, . = 0 at each boundary point d@&"~* except for a set
E c R ! having zeran — 2 + w)dimensional Hausdorff measure.

(b) If max2 —k,2—n) < w < 1and [(y*~1/(1 4 [y)"™*2) du(y) < oo,
then the minimal fine limit of* G, 1 (x) = O at each boundary point @"~*
except for a seE c R"~! having zero(n — 2 4+ ) dimensional Hausdorff
measure.

In the above statement, is the Green function corresponding to the Weinstein
operator [9]. The next theorem shows that the exceptional sets are best possible.

THEOREM 2. Letmaxk,2 —n) < o < 1. LetE ¢ R*1beofn —2+ w
dimensional Hausdorff measure zero. Then there exists a Weinstein potential
satisfying the growth conditiofi(y© /(1 + |y)"*) du(y) < oo such that the min-
imal finelimsup of G, u(x) = oo at each point ofE. A similar result is valid for
the case whemax(2 —k,2—n) < w < 1.

We recall that the case where the Weinstein paramieterO corresponds to the
Laplace equation and the classical Green potential®’bnWe believe that our
result is new even in this classical case whenr: 1. We also remark that when
k = 0andw = 1, the result is a special case of the result of Doob on Green spaces.

2. Preliminaries

The Weinstein equation with parameteis L, (f) = 0 where

. 9%f  k of
LiN=2 52 e
] n n

j=1

The C?-functions which satisfy the Weinstein equation form a Brelot harmonic
space satisfying the Domination Principle [13]. We recall that the Green function
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G(x, y) is given by

™ sint % ¢
Ge(x,y) = anp xx* y, / dr,
’ o [lx —y?+ 2x,y,(1— cost)]n=h/2

for k < 1,
and
Gi(x,y) = ay24 y* /n sinf” 1 —— dr,
o [x = y[®+ 2x,y,(1 — cost)]n+k-2/2
for k > 1,
where
n—k
App = 2;%2(27) for k < 1.

The functionG,u(x) = [ G (x, y) du(y) is a potential if and onlyG,u(x) < oo
for at least oner and this happens for < 1 if and only if [(y,/(1 + [y})" )
du(y) < oo. We shall prove all the results only in the cdse: 1. For the other
case whert > 1, the results are deduced in a simple way by using the fact that

k—1
Xn
(-) Gi(x,y) = Goi(x, y).
Yn

We remark thal (G (-, y)) = —48, in the sense of distribution. We shall make use
of the resulting fact thak, (G, ) = —u in the sense of distribution. We have also
the estimates foG,, viz. if k < 1,

1—k
xn yn xn yn
lx — y|n=*

(1)

wherey is the reflection ofy € R’} in the hyperplane boundary. All of these facts
are verified in [9].

We recall the Domination Principle: L&t be a locally bounded potential
andv a positiveL; superharmonic function aR’,.. If v > G,u on the support of
u, thenv > G u everywhere ([1, p. 129], [13, p. 436]).

For the sake of notational convenience, from now on we shall refer to the associ-
ated potential theoretic terminology and concepts in classical terms suppriessing
These include terms such as harmonic, superharmonic, potential, polar set, reduced
functions, balayage, quasi-everywhere, minimal fine limits, etc. We shall hereon
use the term measure to denote a positive Radon measure. We derite, by
the ball of the dimension of the poimtwith radiusr. We will use the same notation
for balls contained ifiR”. andR"~*.
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Finally we remark that we need many constants in our estimates which vary
with each step. However, when it does not in any way depend on anything other
than the fixed quantities, k, andw, we simply use the same ‘c’ for such constants.
Occasionally we do give other constants to motivate some steps.

3. A Capacity

In this section we define a set function on the class of all compact subs&tsanid
prove that it is a strong capacity in the sense of Choquet [1], [4], [12]. The definition
of this capacity was inspired by the work of Essen and Jackson [7]. This capacity
plays a crucial role in the proof of the main result. We start with a reciprocity result
which is similar to a result for classical Green potentials [12, p. 111] [6, p. 227].

LEMMA 1 (Reciprocity Lemma).Let . andv be two measures dR}. such that
G and Gv are potentials. Then

/x,’; Giu(x) dv(x) = /x,’; G (x) du(x). )

Proof. We note that

£ Grn(x) / /n X ST 1 dr du(y)
X x) =a, )
n kK “Jar Jo T = yP+ 265, —cosnjehz

A simple application of Fubini’'s theorem gives us that the value of the two integrals
in the lemma is equal to

d Xy SINt K7
An dr d dv(x). O
k /l\yjr /Rl /C; [|X _ y|2 + zxnyn(l _ COSZ‘)](n_k)/Z I’L(y) ( )

LEMMA 2. Letu be a measure supported by a compact sulssetR”, such that
G is alocally bounded potential. L&t C E be polar. Thenu(F) = 0.

Proof. For every positive integef, let E; = {x € E : Gyu(x) < j} and let
w; be the restriction ofx to E;. Clearly, Gypu; < Gy and hence it is locally
bounded. Further, on the support@f. ;, the constant (superharmonic) function
Jj is greater or equal t&/,u; and so by the Domination Principl€;u; < j on
the whole space. Le¥ be a compact neighborhood &f We may, if necessary
by passing to the reduced function, choose a pote@tialwith support inV such
thatG,v = oo on F. Now, by the Reciprocity Lemma we have

( igLFxflev(x)) pi(ENF) < /x,’;Gkv(x) di; (x)

= /x,]kaul,-(x) dv(x) <c jv(V) < oo.
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However,G,v(x) = oo on the setF and hence the above inequality is possible
only if u;(E N F) = 0. This is true for every and hence

w(F)=lim w(E;NF)=lim pu;(E;NF)=0. -
J—>00 j—o0

For the rest of this sectioy andk are real numbers such that1 » > k. We
observe thatl; (x*~%) = (o — k)(w — 1)x°7*~2 is negative everywhere, hence
x — x2~*is superharmonic. The choice of our Green’s functiprwhich verifies
Ly(Gi(-, y)) = =4, lets us conclude that the representing measure of this function
is given by the density- L, (x2~%) relative to the Lebesgue measure. In view of the
fact thatx®~* tends to zero uniformly at every boundary point and cannot possibly
minorisex!~* (which is a multiple of the minimal harmonic function corresponding
to oo [2]) on all of R, we conclude that — x~* is a potential.

Let E be a compact subset &} . Let Az andA’; be the representing measures

corresponding to the potentla}SE . and RE respectively. It is clear these mea-

sures are supported . In view of the fact thatRE o = RE , andRE = RE

except on a polar subset &f[1], we conclude by Lemma 2 that this polar set is of
Ag andA’, measure zero. Define

C(E) = /x,’; dip = /x;: .

Note that the above equality is a consequence of the Reciprocity Lemma. The set
functionC(E) is really dependent on the parameterandk. However, for brevity
we have suppressed the parameters.

LEMMA 3. The set functioilC(E) defines a strong capacity on the class of com-
pact set41], [4].

We need to show thal is monotone increasing, strongly subadditive and con-
tinuous on the right. All the three properties are proved using Lemma 1 and corre-
sponding properties of the reduced functions. The procedure is really classical and
we omit the details.

We extend this strong capacity using standard method to an outer capacity
(which we will continue to denote b€). We will use the fact that this set func-
tion, defined for all subsets &', has the property that il; C A, C -, then

LEMMA 4 . For every compact sef,

C(E) = inf{/ xy du(x) : Gy = 1q.e. onE}

= inf {/xlrf dux) : Gy > x,’f_k g.e. onE}
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= Sup{/ Xy duu(x) s suppu) C E, Giu < x:;”‘}
E

= Sup{/ x, du(x) : suppgu) C E, Giu < 1}.
E

Proof. In this article we use only the first relation which we shall prove now.
The rest of the proof is similar. A
SupposeG i > 1 g.e. onE. ThenG,u > RE. Hence

C(E) = / x* RE(x) dig (x)
< /X,’i Gip(x) dhp (x)

= [ % Guewdueo < [ 57 ducw.

Now the definition of C(E) (= [x% dij(x)) shows thatC(E) is the above
infimum. a

4. Proof of Theorem 1

We recall that we are dealing withy-superharmonic functions for the Weinstein
operatorL, with k < 1.

LEMMAS . LetGu be a potential. Fixc € R", and let|z — x| < x,/2. If

/ Gi(x,y) du(y) > 3.
[x—=y|>xn/2
then
/ Gi(z,y) du(y) > c,
|X_y‘>-x)l/2

wherec depends only on the dimensierand the Weinstein parameter
Proof. Choose & such thafx — y| > x,,/2. We have

x =17 1o Ay

Ix—y2 7 x =y

If y, < 2x,, then L+ (4x,y,/1x —y|%) < 33.1f y, > 2x,, then|x —y| >y, —x, >
Vu/2,80 14+ (4x,y,/|x — y|2) < 9. Thus
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:x_y: < /33 forally such thatx — y| > % 3)
X =Yy

Letx, z be as in the statement of the lemmags above. Then by (1),
Gi(x,y) xr Kz =yt
S ¢ “k
Gi(z,y) K lx =yl
(xn)l—" [z —x+x =7]"™"
<c|—
Zn |)C - y|”7k
|Z _ xlnfk + |x _ y|n7k
n—k (4)
lx — ¥l

since(x, /z,) < 2 and(a + b)" < 2" 1(a@" 4 b™) for m > 1. It follows from (3)
and (4) thatG, (x, y)/ G« (z, ¥) < c wherec depends only on andk. The result is
an immediate conseguence. a

~X

Let v be a measure oR”~! with the property that the measure of every ball of
radiusr is at most-"~2+¢_ for all » > 0. Such a measure is referred to as a test
measure forf, _»,,.,. Leth(x) be the (positive) harmonic function @&i_with v as
the representing measure, i.e.,

Xl_k
b = [ ) (@),
Re-1 |X — Y|
LEMMA 6 . For i as aboveh(x) < ¢ x2~ forall x € R%.
Proof. We have

xl—k

o0
h(x) = / L —7 () = I+ I;
Ri-1 [|X/ N y|2 +x3]( k)/2 ]2:]:- J

wherely is the part of the integral taken over the set whefe- y| < x, and for
each positive integey, /; is the integral over the set wheré2x, < |x’ — y| <
2/x,. Now

1-k
X
fo < Zv(BOx) < xp "t = a )
x5~
and for every positive intege,
w1k '
. _n ' 9J
I; < @iy Yk V(B(x', 2/ x,))
1 1-n j
—7 J n—2+4w
S Sicpann (@)
xwfl
= C o (6)

22 k—w)j
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Since 2— k —w > 0, we havezj 1/(227¥*)J < oo and the proof is complete
from (5) and (6). a

Before proceeding to the proof of Theorem 1, we the state the theorem of Frostman
which gives a convenient way to decide if a given compact set has zero Hausdorff
measure. The proof isin [11, Lemma 5.4].

THEOREM C. Let K be a compact subset &f*~! having positive(n — 2 4+ )-
dimensional Hausdorff measure. Then there exists a regular Borel measar&
that is a test measure fdt, _»,,, such thatv(K) > 0.

Proof of Theorem 1Let x be a measure oR’, satisfying the growth condition of
the theorem. Suppoge is a compact subset &". The potential of the restriction
of the measure: to the complement of tends to zero uniformly as € R’ tends

to x’ (in the Euclidean topology) in a convenient open subsef of R"~1. Also,

the countable union of sets @f,_,,,-measure 0 has the same property. Using
the above two properties, it suffices to prove that the minimal fine limitof is
zero for all points ofR"~1 with the required exceptional set far, u whereu has
compact support ifR”. In this case, we may further replace the growth condition
on i by

/ vy du(y) < oo.
R

n
+

In order to prove thaG,u has minimal fine limit zero for alk’ e R*~1 with
the exception of a sef with H, »,,(E) = O, it suffices to prove that the séf
ofall x’ € R*1suchthatdA = {x e R’ : Ggu(x) > 1} is not minimally thin at
x" hasH, ,,,-measure zero. Sing¥ is analytic [8, Theorem I1.1], it is enough to
prove that every compact subsetdfthasH, -, ,-measure zero [14, Corollary 7].
We also observe that the Euclidean neighbourhoods of poirkéih intersected
with R”, are minimal fine neighbourhoods (see Lemma 7). Hence, we may assume
that A itself is in a bounded part &". However, by Theorem 7, 5, ,(M) =0
if we can prove thav(M) = O for all test measures for H, »,,,. Accordingly,
let v be a test measure and lgtx) be the harmonic function oR’, with v as the
representing measure, as in Lemma 6. We recall that the representing measure of
the greatest harmonic minorant &f' is precisely the restriction of to the set\
[8, p. 327]. Hence it suffices to prove thAf' is a potential oriR”.. Further, by
Lemma 6, this will be the case if we can produce a potential which majorfsés
on A. We will in fact show that there are potentials majorisi{g® on A; and A,
where

Al:{xeR’_‘;:/ Gr(x, y) dM(y)>%}ﬂA’
br—y|<xn/2
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and
Azz{xeR’i:/ Gi(x,y) du«(y)>%}ﬂA.
[x—=y|=xn/2

First considerA;. Define the measureid(y) = du(y)/y}=. Thenpu; has
compact support ifR” and [ y, dui(y) = [y? du(y) < oo, henceGypu, is a
potential. Letx € A;. Then

du(y) 1
Grui(x) = / Gr(x, y)—— =¢
[x—y|<xn/2 Y

xl-e’
Hence(1/c)Guy is a potential which majorises’~* on A;.

We now turn toA,. Consider{B(x, x,/3)}ca,.- By the covering theorem of
Besicovitch [10, p. 5], we can find 4, . . ., &, a finite number of mutually disjoint
countable subcollections of this family of closed balls such that the union of these
subcollections forj = 1 to J coversA,. Here we note thaf depends only on the
dimensionz. We will construct a potential corresponding to each subcolleckipn
which majorisesc®~* on the union of the sets ifi;. Then clearly, the sum of these
potentialsj = 1 to J, is a potential and has the reqwred property.

Let Ap be a countable set &" contained inA, such thafB(x, x,,/3) : x € Ao}
is pairwise disjoint. LetE, = UB(x, x,/4) where the union is taken over the first
p elements ofdg in any convenient enumeration df. It follows from Lemma 5
that for some- independent op, Gy > c on E,. It follows from Lemma 4 that

C(E,) < (1/6)/ij du(y). (7)

However,C(E,) = [ y dig,(y) whereig, is the representing measure®f’

a) k-

Also, A, is Lk(R Er ') in the sense of distribution. However,Lk(R ') is zero
outS|deEp, since the function is harmonic outsidg,. Also on the interior ofE,,
7 (v) = y*~F which is ac> function and glve&Lk(R o D) = (w—k)(1-

w)yn 2 Hence dg,(y) > (w—k)(1— a))ZxB(x,ng)yn ke 2dy (x denotes the
characteristic function), the sum taken over the firglements ofA. It follows
that

Oty = [ a0t > e [ hytray
B(x,x,/4)

= CZ/ vy dy

B(x,xn/4)

> c Z(3xn /4)0)_2)6:: . (8)
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This is true for every such finite sum and we conclude using the inequalities (7)
and (8) that

ottt / Yy A (y) < oo. 9)

X€AQ

Now consider the measure=3_ ., x'=3te s wheres, is the Dirac measure
concentrated at the point The fact that; is supported by a bounded setRf and
the inequality/ y, dn < oo (by (9)) imply thatG,n is a potential. Lek € A and
z € B(x, x,/2).

_ Z X, _
Ginz) = Gp(z, x)x" 3T > o 1 _yn=3to

Since ¥2 < z,/x, < 3/2 and|z — X| < 5z, we conclude that

1-k n—3+w

Z nk
Gin(z) > ct—7=%

= cz; . (10)
Z}’l

We apply the above argument to each of the collecti®hand obtain a corre-
sponding potentias;n;. Let p = {> " Gyn; : j = 1 to J}. Thenp is a potential.
Further, every; € A, belongs to some baB(x, x,/3) C B(x, x,/2), x in some
¥, and by inequality (10) we gei(z) > Gin;(z) > cz, 1. This completes the
proof. 0

5. Proof of Theorem 2

The proof of the next result is implicitly contained in [8, Chapter IV] and [2]. We
include a direct proof for the sake of completeness.

LEMMA7 . Lety’ € R"*and letW = {x € R : |x — (¥, 0)| < ¢} for somes
betweerD and1. ThenW¢ = {x € R, : |x — (', 0)| > &} is minimally thin aty’.

Proof. Let p(x) = 1if x, > 1 andp(x) = x1*if x, < 1. It follows from
[1, Theorem 4, p. 72] thgp is superharmonic. We may thus writeasG,u + h
with G, a potential and: nonnegative harmonic. Singgx) < x2~* onR” and
the latter function is minimal [2]4(x) = cx1* for some constant. However,
p(x) = Giu(x) + cxr* = 1on{x, > 1}. Letting x, — oo, we see this is
possible only ifc = 0. It follows thatp is a potential.

Let py(x) = x2*/|x — (', 0)|"~* denote the minimal harmonic function cor-
responding to’. On W¢ N {x, < 1} we havep,(x) < x}*/e"* = p(x)/e"*
and onW¢ N {x, > 1} we havep,(x) < x}*/x"*F = 1/x"1 < 1= px) <
p(x)/e"~*. Thus the potentiap(x)/e"~* majorizesp,, on W¢. 0
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The following result can be proved easily using Lemma 7 and the Harnack property.

LEMMAS8 . LetA C R". Lety € R**. Foreachj € Z*, let W; = {x e R". :

lx—(y', 0)| < 1/j}. ThenA is minimally thin aty’ if and only iflim ;. kﬁjwf (z) =

Ofor everyz € R’,. O

LEMMA9 . Let{t;} be a sequence of positive numbers that decreas@sThben
for eachy’ € R"~%, U; B((y', t;), t;/4) is not minimally thin aty’.

Proof. It is easy to see a sdtis minimally thin at 0if and only if A+ {(y’, 0)} is
minimally thin aty’, so we may assumg = 0. Notice thatJ; B((0’, ¢;), t;/4) =
U;t; B((0, 1), 1/4). Denote this union bys. For any setA C R”,

A A
Ry (@) = R0y @/D).

Let W, = {x e RY : |x — (0, 0)| < &}, where 0< & < 1/2. ThenR;"": (0, 1) >
REPODYD v 1) wherej is chosen so thag B((0, 1), 1/4) C W,. By Lemma

Po
8, we will be done if we can show;jof?((o’l)’l/‘”(d, 1) is bounded away from 0O by

a constant that is independent ofWe have

1;B((0,1),1/4)

0/! R _ /
Rpo,(.) (0/, 1) — Rf(f,((;j])-) 1/4)(0/’ 1/f]) — l‘} nRgé(O,l),l/M(O/, 1/t,)
But RpOY" ¥ is a potential Gy, with support inB((0', 1), 1/4). Thus

[ G0, 1/17), %) du(x)
B((0,1),1/4)

1/t *x,
> el / ATV
B(0,1,1/4 1(0,1/t;)) —X|

k—n  n—k
> c/ 1l du(x)
= —_—
B4 [(0, 1) — x|k

Zc,

wherec is independent of. This completes the proof. a

Proof of Theorem 2.We may assume thdt is a bounded subset @&". Let

H, 2.,(E) = 0. For eachn € Z* there exist ball§B(x;, ;, 7, ;)}; in R”~1 such
thatE C U; B(x;, ;, 7m.j), andy_; rim2te < 2-m Letu be the measure

m,j

_ n—2
nw= Zmrm,j 8(X,/,,,j,4rm,j)’

m, j
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whered., 4, is the Dirac measure concentrated at the paift;, 47, ;) in
R’ . Thenu has bounded support RY',

[ 3¢ du = Yo 2 < o
m,j

and for anyx € B((x,, ., 47 ;) 2rm,j)s

m,j’

, n_2 (Zrm,j)lik (4rm,j)mr::lj,’2

G (x) 2 Gr(x, (xy, ;, 4 j))mr, = > ¢ (10r, ) * — = cm.
Let x' € E. Then for eachn € Z* there existsj(m) € Z* such thatx’ €
B(x,/n,j(myrm,j(m))- Note that B((x', 41y, jim))s T'm, jm)) C B((x,/n,j(m),‘li’m,j(m)),
2ry jmy)- Let B = UB((X', 41 jm))s Tm,jm))- ThenGu has a limsup obo as
we approachy’ within B, and by Lemma 9B is not minimally thin atx’. This

completes the proof. a

References

1. Brelot, M.:Lectures on Potential Thegryata Institute no. 19, Bombay, 1960, re-issued 1967.
2. Brelot-Collin, B. and Brelot, M.: ‘Représentation intégrale des solutions positives de I'équation

2 .
Le(f) =) 8—x’é + x% O/ — 0, (k constante réele)

i=1y 0xp

dans le demi-espacg & > 0), deR"™’, Bull. Acad. Royale de Bel§8(1972), 317-326.
3. Carleson, L.On a Class of Meromorphic Functions and its Associated ExceptiongltBesss,
Uppsala, 1950.
4. Choquet, G.: ‘Theory of capacitieginn. Inst. Fourier5 (1955), 131-295.
5. Doob, J. L.: ‘A non-probabilistic proof of the relative Fatou theoreAnn. Inst. Fourier9
(1959), 293-300.
6. Doob, J. L.:Classical Potential Theory and its Probabilistic CounterpaBjpringer-Verlag,
1984.
7. Essén, M. and Jackson, H. L.: ‘On the covering properties of certain exceptional sets in a
half-space’ Hiroshima Math. J10(1980), 233—-262.
8. GowriSankaran, K.: ‘Extreme harmonic functions and boundary value probl&ms., Inst.
Fourier 13(1963), 307-356.
9. GowriSankaran, K. and Singman, D.: ‘A generalized Littlewood theorem for Weinstein
potentials on a halfspacdllinois J. of Math.41(1997), 630—647.
10. de Guzméan, M.Differentiation of Integrals inR”, Lecture Notes in Math. 481, Springer-
Verlag.
11. Hayman, W. K. and Kennedy, P. Bubharmonic Functions, VolumeAcademic Press, 1976.
12. Helms, L. L.iIntroduction to Potential Theorywiley-Interscience, 1969.
13. Hervé, R.-M.: ‘Recherches axiomatiques sur la théorie des fonctions surharmoniques et du
potentiel’,Ann. Inst. Fourierl2 (1962), 415-571.
14. Howroyd, J.D.: ‘On dimension and on the existence of sets of finite positive Hausdorff
measure’Proc. London Math. Soc. (30 (1995), 581-604.



