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Abstract. We consider potentialsGkµ associated with the Weinstein equation with parameterk in
R,
∑n
j=1(∂

2u/∂x2
j ) + (k/xn)(∂u/∂xn) = 0, on the upper half space inRn. We show that if the

representing measureµ satisfies the growth condition
∫
yωn /(1+ |y|)n−k < ∞, where max(k,2−

n) < ω 6 1, thenGkµ has a minimal fine limit of 0 at every boundary point except for a subset
of vanishing(n− 2+ ω) dimensional Hausdorff measure. We also prove this exceptional set is best
possible.
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1. Introduction and Main Results

Let Rn+ = {x = (x′, xn) : xn > 0, x′ = (x1, . . . , xn−1)} denote the upper half
space inRn, n > 2, withRn−1 its boundary. Generalising the classical results on
the boundary behavior of potentials by Littlewood and subsequently by Privalov,
L. Carleson [3] proved the following result.

THEOREM A. Let p = Gµ be a potential onRn+ such that
∫
(yωn /(1+ |y|)n)

dµ(y) < ∞, where0 < ω 6 1. Thenp has a perpendicular limit of zero at
all points ofRn−1 except for a set of vanishingn − 2+ ω dimensional Hausdorff
measure.

The result of Privalov (the caseω = 1 in Theorem A) was generalised by Doob [5]
to the setting of any Green space and its Martin boundary, and this was generalised
to the following result by the first author.

THEOREM B (Fatou–Naïm–Doob theorem).Let� be a Brelot harmonic space
with a positive potential. Letu > 0 be a harmonic function with corresponding
representing measureµu on the minimal part of the Martin boundary. Then, for
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every potentialp, the minimal fine limit ofp/u is zero forµu-almost every point of
the boundary.

In this article we generalise the above result in the spirit of the result of Car-
leson. Accordingly we consider a class of Weinstein potentials (fork 6= 1) whose
representing measures satisfy a growth condition onRn+. The particulars concern-
ing the Weinstein equation, the Hausdorff measure etc. are described in the next
section. We prove the following two main results in this article.

THEOREM 1. Letµ be a positive Radon measure onRn+ andk the parameter in
the Weinstein equation.

(a) If max(k,2− n) < ω 6 1 and
∫
(yωn /(1+ |y|)n−k)dµ(y) < ∞, then the

minimal fine limit ofGkµ = 0 at each boundary point ofRn−1 except for a set
E ⊂ Rn−1 having zero(n− 2+ ω)dimensional Hausdorff measure.

(b) If max(2− k,2− n) < ω 6 1 and
∫
(yk+ω−1
n /(1+ |y|)n+k−2)dµ(y) < ∞,

then the minimal fine limit ofxk−1
n Gkµ(x) = 0 at each boundary point ofRn−1

except for a setE ⊂ Rn−1 having zero(n − 2+ ω) dimensional Hausdorff
measure.

In the above statement,Gk is the Green function corresponding to the Weinstein
operator [9]. The next theorem shows that the exceptional sets are best possible.

THEOREM 2. Let max(k,2 − n) < ω 6 1. Let E ⊂ Rn−1 be ofn − 2 + ω
dimensional Hausdorff measure zero. Then there exists a Weinstein potentialGkµ

satisfying the growth condition
∫
(yωn /(1+ |y|)n−k)dµ(y) <∞ such that the min-

imal fine limsupof Gkµ(x) = ∞ at each point ofE. A similar result is valid for
the case whenmax(2− k,2− n) < ω 6 1.

We recall that the case where the Weinstein parameterk = 0 corresponds to the
Laplace equation and the classical Green potentials onRn+. We believe that our
result is new even in this classical case whenω < 1. We also remark that when
k = 0 andω = 1, the result is a special case of the result of Doob on Green spaces.

2. Preliminaries

The Weinstein equation with parameterk isLk(f ) = 0 where

Lk(f ) =
n∑
j=1

∂2f

∂x2
j

+ k

xn

∂f

∂xn
.

TheC2-functions which satisfy the Weinstein equation form a Brelot harmonic
space satisfying the Domination Principle [13]. We recall that the Green function
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Gk(x, y) is given by

Gk(x, y) = an,k x
1−k
n yn

∫ π

0

sin1−k t
[|x − y|2 + 2xnyn(1− cost)](n−k)/2 dt,

for k 6 1,

and

Gk(x, y) = an,2−k ykn

∫ π

0

sink−1 t

[|x − y|2 + 2xnyn(1− cost)](n+k−2)/2
dt,

for k > 1,

where

an,k = 0
(
n−k

2

)
2πn/20

(
2−k

2

) , for k 6 1.

The functionGkµ(x) =
∫
Gk(x, y)dµ(y) is a potential if and onlyGkµ(x) <∞

for at least onex and this happens fork < 1 if and only if
∫
(yn/(1+ |y|)n−k)

dµ(y) < ∞. We shall prove all the results only in the casek < 1. For the other
case whenk > 1, the results are deduced in a simple way by using the fact that(

xn

yn

)k−1

Gk(x, y) = G2−k(x, y).

We remark thatLk(Gk(·, y)) = −δy in the sense of distribution. We shall make use
of the resulting fact thatLk(Gkµ) = −µ in the sense of distribution. We have also
the estimates forGk , viz. if k < 1,

c1
x1−k
n yn

|x − y|n−k 6 Gk(x, y) 6 c2
x1−k
n yn

|x − y|n−k (1)

wherey is the reflection ofy ∈ Rn+ in the hyperplane boundary. All of these facts
are verified in [9].

We recall the Domination Principle: LetGkµ be a locally bounded potential
andv a positiveLk superharmonic function onRn+. If v > Gkµ on the support of
µ, thenv > Gkµ everywhere ([1, p. 129], [13, p. 436]).

For the sake of notational convenience, from now on we shall refer to the associ-
ated potential theoretic terminology and concepts in classical terms suppressingk.
These include terms such as harmonic, superharmonic, potential, polar set, reduced
functions, balayage, quasi-everywhere, minimal fine limits, etc. We shall hereon
use the term measure to denote a positive Radon measure. We denote byB(x, r)

the ball of the dimension of the pointx with radiusr. We will use the same notation
for balls contained inRn+ andRn−1.
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Finally we remark that we need many constants in our estimates which vary
with each step. However, when it does not in any way depend on anything other
than the fixed quantitiesn, k, andω, we simply use the same ‘c’ for such constants.
Occasionally we do give other constants to motivate some steps.

3. A Capacity

In this section we define a set function on the class of all compact subsets ofRn+ and
prove that it is a strong capacity in the sense of Choquet [1], [4], [12]. The definition
of this capacity was inspired by the work of Essen and Jackson [7]. This capacity
plays a crucial role in the proof of the main result. We start with a reciprocity result
which is similar to a result for classical Green potentials [12, p. 111] [6, p. 227].

LEMMA 1 (Reciprocity Lemma).Letµ andν be two measures onRn+ such that
Gkµ andGkν are potentials. Then∫

xkn Gkµ(x) dν(x) =
∫
xkn Gkν(x) dµ(x). (2)

Proof.We note that

xkn Gkµ(x) = an,k
∫
Rn+

∫ π

0

xnyn sin1−k t
[|x − y|2 + 2xnyn(1− cost)](n−k)/2 dt dµ(y).

A simple application of Fubini’s theorem gives us that the value of the two integrals
in the lemma is equal to

an,k

∫
Rn+

∫
Rn+

∫ π

0

xnyn sin1−k t
[|x − y|2 + 2xnyn(1− cost)](n−k)/2 dt dµ(y) dν(x). 2

LEMMA 2 . Letµ be a measure supported by a compact subsetE ofRn+ such that
Gkµ is a locally bounded potential. LetF ⊂ E be polar. Thenµ(F) = 0.

Proof. For every positive integerj , let Ej = {x ∈ E : Gkµ(x) 6 j} and let
µj be the restriction ofµ to Ej . Clearly,Gkµj 6 Gkµ and hence it is locally
bounded. Further, on the support ofGkµj , the constant (superharmonic) function
j is greater or equal toGkµj and so by the Domination Principle,Gkµj 6 j on
the whole space. LetV be a compact neighborhood ofE. We may, if necessary
by passing to the reduced function, choose a potentialGkν with support inV such
thatGkν ≡ ∞ onF . Now, by the Reciprocity Lemma we have(

inf
x∈E∩F x

k
nGkν(x)

)
µj(E ∩ F) 6

∫
xknGkν(x) dµj(x)

=
∫
xknGkµj(x) dν(x) < c j ν(V ) <∞.
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However,Gkν(x) ≡ ∞ on the setF and hence the above inequality is possible
only if µj(E ∩ F) = 0. This is true for everyj and hence

µ(F) = lim
j→∞µ(Ej ∩ F) = lim

j→∞µj(Ej ∩ F) = 0. 2
For the rest of this section,ω andk are real numbers such that 1> ω > k. We
observe thatLk(xω−kn ) = (ω − k)(ω − 1)xω−k−2

n is negative everywhere, hence
x 7→ xω−kn is superharmonic. The choice of our Green’s functionGk which verifies
Lk(Gk(·, y)) = −δy lets us conclude that the representing measure of this function
is given by the density−Lk(xω−kn ) relative to the Lebesgue measure. In view of the
fact thatxω−kn tends to zero uniformly at every boundary point and cannot possibly
minorisex1−k

n (which is a multiple of the minimal harmonic function corresponding
to∞ [2]) on all ofRn+, we conclude thatx 7→ xω−kn is a potential.

LetE be a compact subset ofRn+. Let λE andλ′E be the representing measures
corresponding to the potentialŝRE

xω−kn
and R̂E1 respectively. It is clear these mea-

sures are supported byE. In view of the fact thatR̂E
xω−kn
= RE

xω−kn
andR̂E1 = RE1

except on a polar subset ofE [1], we conclude by Lemma 2 that this polar set is of
λE andλ′E measure zero. Define

C(E) =
∫
xkn dλE =

∫
xωn dλ′E.

Note that the above equality is a consequence of the Reciprocity Lemma. The set
functionC(E) is really dependent on the parametersω andk. However, for brevity
we have suppressed the parameters.

LEMMA 3 . The set functionC(E) defines a strong capacity on the class of com-
pact sets[1], [4].

We need to show thatC is monotone increasing, strongly subadditive and con-
tinuous on the right. All the three properties are proved using Lemma 1 and corre-
sponding properties of the reduced functions. The procedure is really classical and
we omit the details.

We extend this strong capacity using standard method to an outer capacity
(which we will continue to denote byC). We will use the fact that this set func-
tion, defined for all subsets ofRn+, has the property that ifA1 ⊂ A2 ⊂ · · ·, then
C(∪Al) = lim l C(Al).

LEMMA 4 . For every compact setE,

C(E) = inf
{∫

xωn dµ(x) : Gkµ > 1 q.e. onE

}

= inf

{∫
xkn dµ(x) : Gkµ > xω−kn q.e. onE

}
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= sup
{∫

E

xkn dµ(x) : supp(µ) ⊂ E, Gkµ 6 xω−kn

}

= sup

{∫
E

xωn dµ(x) : supp(µ) ⊂ E, Gkµ 6 1

}
.

Proof. In this article we use only the first relation which we shall prove now.
The rest of the proof is similar.

SupposeGkµ > 1 q.e. onE. ThenGkµ > R̂E1 . Hence

C(E) =
∫
xkn R̂

E
1 (x)dλE(x)

6
∫
xkn Gkµ(x)dλE(x)

=
∫

xkn GkλE(x)dµ(x) 6
∫
xωn dµ(x).

Now the definition ofC(E) (= ∫
xωn dλ′E(x)) shows thatC(E) is the above

infimum. 2

4. Proof of Theorem 1

We recall that we are dealing withLk-superharmonic functions for the Weinstein
operatorLk with k < 1.

LEMMA 5 . LetGkµ be a potential. Fixx ∈ Rn+ and let|z− x| < xn/2. If∫
|x−y|>xn/2

Gk(x, y) dµ(y) > 1
2,

then ∫
|x−y|>xn/2

Gk(z, y) dµ(y) > c,

wherec depends only on the dimensionn and the Weinstein parameterk.
Proof.Choose ay such that|x − y| > xn/2. We have

|x − y|2
|x − y|2 = 1+ 4xnyn

|x − y|2 .

If yn 6 2xn, then 1+(4xnyn/|x−y|2) 6 33. If yn > 2xn, then|x−y| > yn−xn >
yn/2, so 1+ (4xnyn/|x − y|2) 6 9. Thus
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|x − y|
|x − y| 6

√
33 for ally such that|x − y| > xn

2
. (3)

Let x, z be as in the statement of the lemma,y as above. Then by (1),

Gk(x, y)

Gk(z, y)
6 c

x1−k
n

z1−k
n

|z− y|n−k
|x − y|n−k

6 c

(
xn

zn

)1−k [|z− x| + |x − y|]n−k
|x − y|n−k

6 c
|z− x|n−k + |x − y|n−k

|x − y|n−k (4)

since(xn/zn) 6 2 and(a + b)m 6 2m−1(am + bm) for m > 1. It follows from (3)
and (4) thatGk(x, y)/Gk(z, y) 6 c wherec depends only onn andk. The result is
an immediate consequence. 2

Let ν be a measure onRn−1 with the property that the measure of every ball of
radiusr is at mostrn−2+ω, for all r > 0. Such a measure is referred to as a test
measure forHn−2+ω. Let h(x) be the (positive) harmonic function onRn+ with ν as
the representing measure, i.e.,

h(x) =
∫
Rn−1

x1−k
n

|x − y|n−k dν(y) ([2]).

LEMMA 6 . For h as above,h(x) 6 c xω−1
n for all x ∈ Rn+.

Proof.We have

h(x) =
∫
Rn−1

x1−k
n[|x′ − y|2 + x2

n

](n−k)/2 dν(y) = I0+
∞∑
j=1

Ij

whereI0 is the part of the integral taken over the set where|x′ − y| 6 xn and for
each positive integerj , Ij is the integral over the set where 2j−1xn 6 |x′ − y| 6
2jxn. Now

I0 6
x1−k
n

xn−kn

ν(B(x′, xn)) 6 x1−n
n xn−2+ω

n = xω−1
n , (5)

and for every positive integerj ,

Ij 6
x1−k
n

(2j−1xn)
n−k ν(B(x

′,2j xn))

6 1

2(j−1)(n−k) x
1−n
n (2jxn)

n−2+ω

= c
xω−1
n

2(2−k−ω)j
. (6)
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Since 2− k − ω > 0, we have
∑

j 1/(22−k−ω)j < ∞ and the proof is complete
from (5) and (6). 2
Before proceeding to the proof of Theorem 1, we the state the theorem of Frostman
which gives a convenient way to decide if a given compact set has zero Hausdorff
measure. The proof is in [11, Lemma 5.4].

THEOREM C. LetK be a compact subset ofRn−1 having positive(n − 2+ ω)-
dimensional Hausdorff measure. Then there exists a regular Borel measureν onK
that is a test measure forHn−2+ω such thatν(K) > 0.

Proof of Theorem 1.Letµ be a measure onRn+ satisfying the growth condition of
the theorem. SupposeE is a compact subset ofRn. The potential of the restriction
of the measureµ to the complement ofE tends to zero uniformly asx ∈ Rn+ tends
to x′ (in the Euclidean topology) in a convenient open subset ofE ∩ Rn−1. Also,
the countable union of sets ofHn−2+ω-measure 0 has the same property. Using
the above two properties, it suffices to prove that the minimal fine limit ofGkµ is
zero for all points ofRn−1 with the required exceptional set forGkµ whereµ has
compact support inRn. In this case, we may further replace the growth condition
onµ by∫

Rn+
yωn dµ(y) <∞.

In order to prove thatGkµ has minimal fine limit zero for allx′ ∈ Rn−1 with
the exception of a setE with Hn−2+ω(E) = 0, it suffices to prove that the setM
of all x′ ∈ Rn−1 such thatA = {x ∈ Rn+ : Gkµ(x) > 1} is not minimally thin at
x′ hasHn−2+ω-measure zero. SinceM is analytic [8, Theorem II.1], it is enough to
prove that every compact subset ofM hasHn−2+ω-measure zero [14, Corollary 7].
We also observe that the Euclidean neighbourhoods of points inRn−1 intersected
with Rn+ are minimal fine neighbourhoods (see Lemma 7). Hence, we may assume
thatA itself is in a bounded part ofRn. However, by Theorem C,Hn−2+ω(M) = 0
if we can prove thatν(M) = 0 for all test measuresν for Hn−2+ω. Accordingly,
let ν be a test measure and leth(x) be the harmonic function onRn+ with ν as the
representing measure, as in Lemma 6. We recall that the representing measure of
the greatest harmonic minorant ofRAh is precisely the restriction ofν to the setM
[8, p. 327]. Hence it suffices to prove thatRAh is a potential onRn+. Further, by
Lemma 6, this will be the case if we can produce a potential which majorisesxω−1

n

onA. We will in fact show that there are potentials majorisingxω−1
n onA1 andA2

where

A1 =
{
x ∈ Rn+ :

∫
|x−y|6xn/2

Gk(x, y) dµ(y) > 1
2

}
∩ A,
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and

A2 =
{
x ∈ Rn+ :

∫
|x−y|>xn/2

Gk(x, y) dµ(y) > 1
2

}
∩ A.

First considerA1. Define the measure dµ1(y) = dµ(y)/y1−ω
n . Thenµ1 has

compact support inRn and
∫
yn dµ1(y) =

∫
yωn dµ(y) < ∞, henceGkµ1 is a

potential. Letx ∈ A1. Then

Gkµ1(x) >
∫
|x−y|6xn/2

Gk(x, y)
dµ(y)

y1−ω
n

> c 1

x1−ω
n

.

Hence(1/c)Gkµ1 is a potential which majorisesxω−1
n onA1.

We now turn toA2. Consider{B(x, xn/3)}x∈A2. By the covering theorem of
Besicovitch [10, p. 5], we can findF 1, . . . ,FJ a finite number of mutually disjoint
countable subcollections of this family of closed balls such that the union of these
subcollections forj = 1 toJ coversA2. Here we note thatJ depends only on the
dimensionn. We will construct a potential corresponding to each subcollectionFj

which majorisesxω−1
n on the union of the sets inFj . Then clearly, the sum of these

potentialsj = 1 toJ , is a potential and has the required property.
LetA0 be a countable set ofRn contained inA2 such that{B(x, xn/3) : x ∈ A0}

is pairwise disjoint. LetEp = ∪B(x, xn/4) where the union is taken over the first
p elements ofA0 in any convenient enumeration ofA0. It follows from Lemma 5
that for somec independent ofp, Gkµ > c onEp. It follows from Lemma 4 that

C(Ep) 6 (1/c)
∫
yωn dµ(y). (7)

However,C(Ep) =
∫
ykn dλEp(y) whereλEp is the representing measure ofR̂

Ep

xω−kn
.

Also,λEp is−Lk(R̂Ep
xω−kn

) in the sense of distribution. However,−Lk(R̂Ep
xω−kn

) is zero
outsideEp, since the function is harmonic outsideEp. Also on the interior ofEp,

R̂
Ep

xω−kn
(y) = yω−kn which is aC∞ function and gives−Lk(R̂Ep

xω−kn
)(y) = (ω− k)(1−

ω)yω−k−2
n . Hence dλEp(y) > (ω− k)(1−ω)

∑
χB(x,xn/4)y

ω−k−2
n dy (χ denotes the

characteristic function), the sum taken over the firstp elements ofA0. It follows
that

C(Ep) =
∫
ykn dλEp(y) > c

∑∫
B(x,xn/4)

ykny
ω−k−2
n dy

= c
∑∫

B(x,xn/4)
yω−2
n dy

> c
∑
(3xn/4)

ω−2xnn . (8)
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This is true for every such finite sum and we conclude using the inequalities (7)
and (8) that

∑
x∈A0

xn+ω−2
n 6 c

∫
yωn dµ(y) <∞. (9)

Now consider the measureη =∑x∈A0
xn−3+ω
n δx whereδx is the Dirac measure

concentrated at the pointx. The fact thatη is supported by a bounded set ofRn and
the inequality

∫
yn dη <∞ (by (9)) imply thatGkη is a potential. Letx ∈ A0 and

z ∈ B(x, xn/2).

Gkη(z) > Gk(z, x)x
n−3+ω
n > c

z1−k
n xn

|z− x|n−k x
n−3+ω
n .

Since 1/26 zn/xn 6 3/2 and|z− x| 6 5zn we conclude that

Gkη(z) > c
z1−k
n znz

n−3+ω
n

zn−kn

= cz−1+ω
n . (10)

We apply the above argument to each of the collectionsFj and obtain a corre-
sponding potentialGkηj . Let p = {∑Gkηj : j = 1 to J }. Thenp is a potential.
Further, everyz ∈ A2 belongs to some ballB(x, xn/3) ⊂ B(x, xn/2), x in some
Fj , and by inequality (10) we getp(z) > Gkηj(z) > cz−1+ω

n . This completes the
proof. 2

5. Proof of Theorem 2

The proof of the next result is implicitly contained in [8, Chapter IV] and [2]. We
include a direct proof for the sake of completeness.

LEMMA 7 . Lety′ ∈ Rn−1 and letW = {x ∈ Rn+ : |x − (y′,0)| < ε} for someε
between0 and1. ThenWc = {x ∈ Rn+ : |x − (y′,0)| > ε} is minimally thin aty′.

Proof. Let p(x) = 1 if xn > 1 andp(x) = x1−k
n if xn < 1. It follows from

[1, Theorem 4, p. 72] thatp is superharmonic. We may thus writep asGkµ + h
with Gkµ a potential andh nonnegative harmonic. Sincep(x) 6 x1−k

n onRn+ and
the latter function is minimal [2],h(x) = cx1−k

n for some constantc. However,
p(x) = Gkµ(x) + cx1−k

n = 1 on {xn > 1}. Letting xn → ∞, we see this is
possible only ifc = 0. It follows thatp is a potential.

Let py ′(x) = x1−k
n /|x − (y′,0)|n−k denote the minimal harmonic function cor-

responding toy′. OnWc ∩ {xn 6 1} we havepy ′(x) 6 x1−k
n /εn−k = p(x)/εn−k

and onWc ∩ {xn > 1} we havepy ′(x) 6 x1−k
n /xn−kn = 1/xn−1

n 6 1 = p(x) 6
p(x)/εn−k. Thus the potentialp(x)/εn−k majorizespy ′ onWc. 2
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The following result can be proved easily using Lemma 7 and the Harnack property.

LEMMA 8 . LetA ⊂ Rn+. Lety′ ∈ Rn−1. For eachj ∈ Z+, letWj = {x ∈ Rn+ :
|x−(y′,0)| < 1/j}. ThenA is minimally thin aty′ if and only iflimj→∞ R̂

A∩Wj
py′ (z) =

0 for everyz ∈ Rn+. 2
LEMMA 9 . Let {tj } be a sequence of positive numbers that decreases to0. Then
for eachy′ ∈ Rn−1, ∪jB((y′, tj ), tj /4) is not minimally thin aty′.

Proof.It is easy to see a setA is minimally thin at 0′ if and only ifA+{(y′,0)} is
minimally thin aty′, so we may assumey′ = 0′. Notice that∪jB((0′, tj ), tj /4) =
∪j tjB((0′,1),1/4). Denote this union byB. For any setA ⊂ Rn+,

RtAp0′ (·)(z) = RAp0′ (t ·)(z/t).

LetWε = {x ∈ Rn+ : |x − (0′,0)| < ε}, where 0< ε < 1/2. ThenRB∩Wεp0′ (0′,1) >
R
tjB((0′,1),1/4)
p0′ (0′,1), wherej is chosen so thattjB((0′,1),1/4) ⊂ Wε. By Lemma

8, we will be done if we can showR
tjB((0′,1),1/4)
p0′ (0′,1) is bounded away from 0 by

a constant that is independent ofj . We have

R
tjB((0′,1),1/4)
p0′ (·) (0′,1) = RB((0′,1),1/4)p0′ (tj ·) (0′,1/tj ) = t1−nj RB((0

′,1),1/4)
p0′ (0′,1/tj ).

ButRB((0
′,1),1/4)

p0′ is a potential ,Gkµ, with support inB((0′,1),1/4). Thus

t1−nj

∫
B((0′,1),1/4)

Gk((0
′,1/tj ), x) dµ(x)

> ct1−nj

∫
B((0′,1),1/4)

(1/tj )1−kxn
|(0′,1/tj )− x|n−k dµ(x)

> c
∫
B((0′,1),1/4)

tk−nj tn−kj

|(0′,1)− tjx|n−k dµ(x)

> c,

wherec is independent ofj . This completes the proof. 2
Proof of Theorem 2.We may assume thatE is a bounded subset ofRn. Let

Hn−2+ω(E) = 0. For eachm ∈ Z+ there exist balls{B(x′m,j , rm,j )}j in Rn−1 such

thatE ⊂ ∪jB(x′m,j , rm,j ), and
∑

j r
n−2+ω
m,j < 2−m. Letµ be the measure

µ =
∑
m,j

mrn−2
m,j δ(x ′m,j ,4rm,j ),
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whereδ(x ′m,j ,4rm,j ) is the Dirac measure concentrated at the point(x′m,j ,4rm,j ) in
Rn+. Thenµ has bounded support inRn,∫

yωn dµ(y) =
∑
m,j

mrn−2
m,j (4rm,j )

ω <∞,

and for anyx ∈ B((x′m,j ,4rm,j ),2rm,j ),

Gkµ(x) > Gk(x, (x
′
m,j ,4rm,j ))mr

n−2
m,j > c

(2rm,j )1−k(4rm,j )mrn−2
m,j

(10rm,j )n−k
= cm.

Let x′ ∈ E. Then for eachm ∈ Z+ there existsj (m) ∈ Z+ such thatx′ ∈
B(x′m,j (m), rm,j (m)). Note thatB((x′,4rm,j (m)), rm,j (m)) ⊂ B((x′m,j (m),4rm,j (m)),
2rm,j (m)). Let B = ∪B((x′,4rm,j (m)), rm,j (m)). ThenGkµ has a limsup of∞ as
we approachx′ within B, and by Lemma 9,B is not minimally thin atx′. This
completes the proof. 2
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