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MINIMAL FINE LIMITS ON TREES

KOHUR GOWRISANKARAN AND DAVID SINGMAN

Abstract. Let T be the set of vertices of a tree. We assume that the

Green function is finite and G(s, t)→ 0 as |s| → ∞ for each vertex t. For
v positive superharmonic on T and E a subset of T , the reduced function
of v on E is the pointwise infimum of the set of positive superharmonic

functions that majorize v on E. We give an explicit formula for the
reduced function in case E is finite as well as several applications of this

formula. We define the minimal fine filter corresponding to each bound-
ary point of the tree and prove a tree version of the Fatou-Näım-Doob
limit theorem, which involves the existence of limits at boundary points
following the minimal fine filter of the quotient of a positive superhar-
monic by a positive harmonic function. We deduce from this a radial
limit theorem for such functions. We prove a growth result for positive
superharmonic functions from which we deduce that, if the trees has

transition probabilities all of which lie between δ and 1/2− δ for some
δ ∈ (0, 1/2) (for example homogeneous trees with isotropic transition
probabilities), then any real-valued function on T which has a limit at a

boundary point following the minimal fine filter necessarily has a non-
tangential limit there. We give an example of a tree for which minimal

fine limits do not imply nontangential limits, even for positive superhar-

monic functions. Motivated by work on potential theory on halfspaces
and Brelot spaces, we define the harmonic fine filter corresponding to

each boundary point of the tree. In contrast to the classical setting, we
are able to show that it is the same as the minimal fine filter.

1. Introduction

Let D be an open subset of Rn having a Green function and let Ω be the
Martin boundary of D. Thus D ∪ Ω is a compactification of D such that
all positive harmonic functions on D have a unique integral representation
with respect to a regular Borel measure on Ω supported on the subset known
as the minimal Martin boundary. Corresponding to each minimal boundary
point ω, Näım [N] defined a filter of neighbourhoods on D finer than the one
given by the Martin topology, called the minimal fine filter. She proved that
for each positive harmonic function u and potential p on D, the quotient p/u
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has a limit of 0 following the minimal fine filter at µu-almost every minimal
boundary point, where µu is the representing measure of u.

Doob considered, more generally, the boundary behaviour of quotients v/u,
where v is positive superharmonic on D. In [D1] he proved a theorem con-
cerning the limits of v/u along Brownian paths, and in [D2] he gave a non-
probabilistic proof that v/u has a limit following the minimal fine filter at
µu-almost every minimal boundary point. GowriSankaran [G1], [G2] proved
a result analogous to the latter in a more abstract setting, which in particular
is valid in a Brelot harmonic space. This result is known as the Fatou-Näım-
Doob Theorem.

The non-probabilistic results of Doob can be specialized to an upper half
plane in Rn, n ≥ 2, where the minimal Martin boundary is the topological
boundary Rn−1 ∪ {∞} and the Martin kernel is the Poisson kernel. In [BD]
it is shown that the quotient h/u of two positive harmonic functions has a
nontangential limit at every boundary point where it has a minimal fine limit,
and in Theorem 1.XII.23 of [D3] the minimal fine theory is used to show that
potentials have perpendicular limits of 0 at Lebesgue-almost every boundary
point. Thus techniques based on the abstract minimal fine theory can be used
to deduce the classical theorems of Fatou and Littlewood.

In this paper we consider some related ideas in the setting of infinite trees.
In the next section we give precise statements of all definitions and results we
shall use. Let T denote the vertices of an infinite tree. We fix a vertex, e,
called the root. The boundary of T can be identified with the set of infinite
geodesic paths ω = {ω0, ω1, . . .} beginning at the root together with the set of
terminal vertices. Much of the basic potential theory was developed by Cartier
in [C]. Assuming the existence of a Green function, he considered harmonic
functions, superharmonic functions and Green potentials defined on T . He
defined the Martin kernel on T ×Ω, used it to give an integral representation
of all positive harmonic functions u by associating a unique Borel measure µu,
and proved a limit theorem for quotients v/u in the spirit of the probabilistic
result of Doob.

We describe the latter in a bit more detail. Let W be the set of all infinite
paths s = {s0, s1, . . .} beginning at the root. For c a finite path beginning at e,
let W (c) be the cylinder consisting of paths in W beginning with the segment
c. These cylinder sets form the base of a compact metrizable topology on
W . Let u be positive harmonic on T . For every such u, Cartier proved the
existence of a Borel measure Πu on W supported by the set of paths whose
vertices converge to a boundary point of the tree such that for every finite
path c, Πu(W (c)) = p(c)u(e), where p(c) is the product of the transition
probabilities along the edges of c. It is a consequence of Corollary 3.1b,
Theorem 3.1 and Theorem 3.2 in [C] that for any positive superharmonic
function v on T , for µu-a.e. boundary point ω, the quotient v(sn)/u(sn) has
a limit along the vertices of the path s for Πu-a.e. path s which converges to ω.
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From this it is deduced in Theorem 3 of [KP] that such quotients have limits
at µu-almost every boundary point if approach is restricted to nontangential
regions provided the transition probabilities are uniformly bounded away from
0 and the Green function is finite.

We are, in the present work, more motivated by the non-probabilistic tech-
niques of Doob and GowriSankaran. Accordingly we define and develop the
properties of the minimal fine filter on trees and use them to study the bound-
ary behaviour of the quotient of a positive superharmonic function by a pos-
itive harmonic function.

In [L], the minimal fine filter is considered on infinite networks using prob-
abilistic ideas. There are many papers dealing with boundary behaviour of
harmonic functions on trees using a geometric approach, for example, [C],
[CCGS], [DB], [GS], [R], [SV].

In Section 2 we recall all of the definitions and results on trees which we
shall use. We define the Green functionG(s, t), which we assume throughout is
finite (see (9)). We usually assume in addition that for each t ∈ T , G(s, t)→ 0
as |s| → ∞ (see (10)) and sometimes we assume that this limit tends to 0
uniformly exponentially fast (see (13)). This last condition is natural, as it
holds in the case of homogeneous trees of degree at least 3 with isotropic
transition probabilities. We also give examples which show that a Green
function can satisfy (9) without (10) and it can satisfy (10) without (13).

In Section 3, assuming only that the Green function satisfies (9), we give
upper and lower bounds for the ratio of values of a positive superharmonic
function at neighbouring vertices. We deduce that among all positive super-
harmonic functions, the Martin kernel Kω grows as quickly as possible along
the vertices of ω and decreases as rapidly as possible outside the vertices of ω
as we move away from the root.

For the remainder of the paper we assume the Green function satisfies (10).
In Section 4 we give an explicit formula for FEf , the solution of the Dirichlet
problem on the complement of a finite subset, E, of T in terms of the inverse
of the matrix determined by G(s, t), s, t ∈ E. As an application, we prove
that every function defined on a finite subset, E, of T can be written as
the restriction of the difference of two positive potentials with support in E.
For any subset E of T and positive superharmonic function v we define the
reduced function REv which is fundamental in studying the minimal fine filter,
and which agrees with FEv in case E is finite. Using the explicit formula
for FEv and certain limit results, we give very simple proofs of classically
hard results such as the additivity of the reduced function, the fact that the
reduction operation commutes with the integral representation of positive
harmonic functions, and the domination principle.

In Section 5 we define the minimal thin sets and the minimal fine filter
corresponding to each boundary point ω. A set of vertices, E, is said to
be minimally thin at ω if there exists a potential which majorizes the Martin
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kernel Kω on E. We show how to generate examples of sets that are minimally
thin at ω and examples of sets that are not minimally thin at ω. The set of
complements of sets minimally thin at ω forms the minimal fine filter at ω.
We show that a function has a limit following the minimal fine filter at a
boundary point ω if and only if it has a limit as ω is approached in the tree
topology outside of a set minimally thin at ω. We show that any function on
T which has a minimal fine limit at ω necessarily has a radial limit there. In
case the Green function satisfies (13), we show that the minimal fine filter is
strictly coarser than the nontangential filter, so in particular a function with
a minimal fine limit at ω necessarily has a nontangential limit at ω. This is in
contrast with classical potential theory on a halfspace in Rn where it is true
for functions which are quotients of positive harmonic functions but not true
in general. We give an example of a tree for which constants are harmonic and
the Green function satisfies (10) but not (13) such that minimal fine limits are
equivalent to radial limits, so the minimal fine filter is strictly coarser than the
nontangential filter. On this tree we define a positive superharmonic function
that has a minimal fine limit at every boundary point but which does not
have a nontangential limit at a particular boundary point.

In Section 6 we prove Theorem 6.1 which establishes the existence of limits
following the minimal fine filter of quotients of positive superharmonic func-
tions by a positive harmonic function, thus extending the non-probabilistic
result of Doob and the Fatou-Näım-Doob Theorem of GowriSankaran to trees.

In Section 7 we define a set, E, to be harmonic thin at a boundary point ω
if there exists a harmonic function on T which majorizes the Martin kernel Kω

on E but not on T . The set of complements of such sets forms a filter, known
as the harmonic fine filter at ω. This was introduced on Rn by Aikawa [A]
and by Zhang [Z] on Brelot spaces. In the latter, a limit theorem for quotients
of positive harmonic functions following the harmonic filter was proved. In
classical settings it is typically true that the harmonic fine filter is strictly
coarser than the minimal fine filter, as all examples in [Z] show. However we
show in Theorem 7.1 that the harmonic fine filter is the same as the minimal
fine filter on trees.

In [BCCS] it is shown that one can provide a topology on the set T̃ con-
sisting of the vertices and edges of the tree and define functions on T̃ so that
it is given the structure of a Brelot space. A function on the vertices that is
harmonic in the Cartier sense can be made harmonic in the Brelot sense by
extending it “linearly” on the edges. Conversely the restriction to the vertices
of a Brelot harmonic function is harmonic in the Cartier sense. Thus many
results valid in a general Brelot space automatically hold when restricted to
the vertices of a tree. We make no use of this fact in the present article since
the techniques we use are more explicit and give more detailed results than
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are available in the general setting. Furthermore our proof of the Fatou-Näım-
Doob Theorem (Theorem 6.1) is simpler than the one in [G2] which is valid
in a general Brelot space.

Acknowledgement. The authors wish to thank Peter Loeb for bringing
to their attention [BL1] and [BL2]. We made use of the techniques developed
in these papers to considerably simplify our proof of Theorem 6.1.

2. Preliminaries

In this section we recall several definitions and preliminary results. Good
references for basic potential theory on trees are [C] and [KPT]. All of the
results quoted in this section are proved there. A tree is a locally finite,
connected graph with no loops. Let T denote the set of vertices of an infinite
tree. If s1, s2 ∈ T , we write s1 ∼ s2 provided there is an edge joining s1 and
s2 in which case we say that s1 and s2 are neighbours. We assume each vertex
has finitely many neighbours. A path from initial vertex s to terminal vertex
t is a finite sequence of vertices c = {s0, s1, . . . , sn} such that s0 = s, sn = t,
and sj ∼ sj+1 for each j. The vertices s1, . . . , sn−1 are called the intermediate
vertices of the path. The length of c is n. We view {s} as the unique path
of length 0 from s to s. If c = {s0, . . . , sn} and c′ = {s′0, . . . , s′m} are two
paths in which sn = s′0, the product path cc′ is the path from s0 to s′m whose
first n + 1 vertices are the vertices of c and whose last m + 1 vertices are
the vertices of c′. If s, t are two vertices, the unique path of minimal length
joining s and t is called the geodesic path from s to t. We denote this path
by [s, t]. The distance d(s, t) is defined to be the length of the geodesic path
from s to t. An infinite path is an infinite sequence {s0, s1, . . .} of vertices
such that consecutive vertices are neighbours. An infinite path is called an
infinite geodesic or a ray if sj−1 6= sj+1 for every j.

We fix a vertex e ∈ T and refer to it as the root of T . Let s, t ∈ T . The
length of s, denoted by |s|, is defined to be d(e, s). We say that s is less or
equal to t, and write s ≤ t, provided s ∈ [e, t]. Define the sector generated by
s to be the set

Ts = {t ∈ T : s ≤ t}.

For s 6= e, let s− denote the unique vertex less or equal to s of length |s| − 1.
A vertex having exactly one neighbour is called a terminal vertex.

Denote by Ω the set of infinite geodesics starting at e together with all
finite geodesic paths from e to a terminal vertex. We denote a typical element
of Ω by ω = {ω0, ω1, ω2, . . .}. For s ∈ T we say that s is less or equal to
ω, and write s ≤ ω, if s = ωn for some n. For s ∈ T , define the interval
Is = {ω ∈ Ω : s ≤ ω}. The set of all intervals {Iωn : n ≥ 0} forms the base of
neighbourhoods at ω of a compact topology on Ω. If T is given the discrete
topology, Ω is the boundary of T in a compactification of T . A sequence
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{tn}n≥0 in T converges to a boundary point ω in this topology if for every
M ∈ Z+ there exists N ∈ Z+ such that tn ∈ TωM for all n ≥ N .

For s, t ∈ T , we denote by s ∧ t the unique vertex of largest length that is
less or equal to both s and t. For ω ∈ Ω, we let ω∧s denote the unique vertex
of maximal length that is less or equal to both s and ω.

Let p denote a nearest neighbour transition probability on T × T . This
means that p : T × T → [0, 1], p(s, t) = 0 if s and t are not neighbours,
p(s, t) > 0 if s ∼ t, and ∑

t∈T
p(s, t) = 1

for every s ∈ T . If c = {s0, s1, . . . , sn} is a finite path in T , define

p(c) =
n−1∏
i=0

p(si, si+1)

if n 6= 0, and p(c) = 1 if n = 0.
A kernel is any function that maps T × T into [0,∞]. Let C be any set of

paths, and let Cs,t be the subset of paths in C from s to t. Then UC , defined
by

UC(s, t) =
∑
c∈Cs,t

p(c)

(where the empty sum is defined to be 0), is a kernel. In particular if we take
C to be the set of paths of length 0 (respectively 1) we denote the resulting
kernel by I (respectively P ).

Let f : T → R. If U is a kernel, then Uf : T → R is defined by

Uf(s) =
∑
t∈T

U(s, t)f(t).

The Laplacian kernel is ∆ = P − I. Thus

∆f(s) =
∑
t∈T

P (s, t)f(t)− f(s) =
∑
t∼s

p(s, t)f(t)− f(s).

If U ′, U ′′ are two kernels, then the product kernel U ′U ′′ is defined to be

(U ′U ′′)(s, t) =
∑
r∈T

U ′(s, r)U ′′(r, t).

Inductively we can define any finite power of a kernel.
To get further examples of kernels, let

Γ = the set of all finite paths in T ,

Γ′ = {(s0, . . . , sn) ∈ Γ : n > 0, sj 6= sn for all j ∈ (0, n)},
Γ′k = {(s0, . . . , sn) ∈ Γ′ : d(sj , sn) ≤ k for every j},
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for k any positive integer. For these sets of paths, define the kernels

G(s, t) = UΓ(s, t), F (s, t) = UΓ′(s, t), Fk(s, t) = UΓ′k
(s, t).(1)

G is referred to as the Green function of T.
The following result gives a useful way to calculate certain kernels.

Theorem A ([C, p. 223]). Let C,C ′, C ′′ be sets of paths. Suppose each
path of the form c′c′′ with c′ ∈ C ′ and c′′ ∈ C ′′ is in C and conversely
suppose that every path in C has a unique decomposition of this form. Then
UC = UC′UC′′ .

By Theorem A, it follows that for any positive integer k, P k(s, t) is
∑
p(c),

where the sum is taken over all paths from s to t of length k. Thus

G(s, t) = I(s, t) +
∞∑
k=1

P k(s, t).

It also follows using Theorem A that

G(s, t) = I(s, t) + (PG)(s, t) = I(s, t) + (GP )(s, t).(2)

We assume throughout that for some s, t ∈ T , G(s, t) < ∞. This implies
it is true for all s, t ∈ T . This condition on G is equivalent to the condition
that the associated random walk is transient.

Let s, t ∈ T with s 6= t and let {s0, s1, . . . , sn} be the geodesic path from s
to t. The following are shown using Theorem A and (2):

G(s, t) = F (s, t) G(t, t),(3)

G(t, t) =
1

1− F (t, t)
,(4)

F (s, t) =
n−1∏
i=0

F (si, si+1),(5)

F (s, s) =
∑
r∼s

p(s, r) F (r, s).(6)

It follows that

F (s, t) ≤ 1 for all s, t ∈ T.

Let ω ∈ Ω. The kernel Kω : T → R is defined to be

Kω(s) =
G(s, ω ∧ s)
G(e, ω ∧ s)

.(7)

It follows from (3) and (5) that for each s ∈ T , ω 7→ Kω(s) is locally constant:

Kω(s) =
G(s, t)
G(e, t)

, for ω ∧ s = t ∧ s.



366 KOHUR GOWRISANKARAN AND DAVID SINGMAN

By a distribution on Ω we mean a finitely additive set function defined on
finite unions of intervals. Any nonnegative distribution extends to a Borel
measure on Ω. If µ is a distribution, the function Kµ is defined on T by
Kµ(t) =

∫
Ω
Kω(t) dµ(ω). This definition makes sense for any distribution be-

cause for each t ∈ T , ω 7→ Kω(t) is constant on each member of a finite
partition of Ω consisting of differences of intervals. Specifically, if t 6= e, we
have by (3)

Kµ(t) =
n−1∑
j=0

∫
Itj−Itj+1

Kω(t) dµ(ω) +
∫
Itn

Kω(t) dµ(ω)(8)

=
n−1∑
j=0

G(t, tj)
G(e, tj)

µ
(
Itj − Itj+1

)
+

G(t, tn)
G(e, tn)

µ (Itn)

=
n−1∑
j=0

F (t, tj)
F (e, tj)

µ
(
Itj − Itj+1

)
+

1
F (e, tn)

µ (Itn) ,

where [e, t] = {to, t1, . . . , tn], and Kµ(e) = µ(Ω). The integral Kµ of a distri-
bution is harmonic and conversely every harmonic function u is Kµ of a unique
distribution, which we shall denote by µu. If u is positive, the distribution µu
extends to a measure on the Borel subsets of Ω.

The definition of K in terms of the Green function given in (7) and the
integral representation of all positive harmonic functions described above im-
ply that the geometric boundary Ω of T is the Martin boundary of T viewed
as a harmonic space. Hence we shall refer to the topology we have defined on
T ∪ Ω as the Martin topology and we shall call K the Martin kernel.

A function v : T → R is called superharmonic at a nonterminal vertex
s ∈ T provided ∆v(s) ≤ 0. For E ⊂ T , we let S(E) denote the set of functions
superharmonic at each nonterminal vertex of E. We refer to an element of
S(T ) as a superharmonic function. The sets s(E) = {v : −v ∈ S(E)} and
H(E) = S(E) ∩ s(E) denote the set of functions that are subharmonic and
harmonic at each nonterminal vertex of E respectively. We define S+(E),
s+(E) and H+(E) to be the elements of these sets that are positive.

Let f : T → [0,∞). The potential of f is the function Gf , i.e.,

Gf(s) =
∑
t∈t

G(s, t)f(t).

We refer to f as the density of the potential. Gf is finite at each vertex
of T if and only if

∑
t∈T G(e, t)f(t) <∞, in which case it defines a positive

superharmonic function on T . Gf satisfies the Poisson equation ∆(Gf) = −f
and so Gf is harmonic outside the support of f . In particular, the function
s 7→ G(s, t) is positive, superharmonic on T , and harmonic outside of t. Every
positive superharmonic function v on T can be uniquely written as the sum of
a potential and a nonnegative harmonic function. The density of this potential
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is the negative of the Laplacian of v. Thus potentials are precisely the positive
superharmonic functions which majorize no positive harmonic function. The
harmonic support of a potential Gf is the complement of the set of vertices
where Gf is harmonic. The harmonic support of Gf equals the support of f .

If f is any real-valued function on T , lim inf∞ f , lim sup∞ f and lim∞ f
refer to the upper limit, lower limit and limit of the function f at the point at
∞ respectively, where the neighbourhoods of∞ are the complements of finite
subsets of T .

We shall always assume that the Green function satisfies:

0 < G(s, t) <∞ for all s, t ∈ T.(9)

This occurs if and only if there is a positive, superharmonic, nonharmonic
function on T .

We shall also consider two conditions on the transition probabilities which
imply that the Green function satisfies more stringent behaviour:

lim
s→∞

G(s, t) = 0 for some (equivalently every) t ∈ T ;(10)

there exists 0 < δ < 1/4 such that δ ≤ p(s, t) ≤ 1
2
− δ.(11)

A theorem of Picardello and Woess, which is proved in the appendix of [KPT],
says that (11) implies that for all s, t ∈ T,

F (s, t) ≤
( 1

2 − δ
1
2 + δ

)d(s,t)

(12)

and

G(s, t) ≤M
( 1

2 − δ
1
2 + δ

)d(s,t)

,(13)

where

M =
1 + 2δ

4δ
.

Examples of trees satisfying (11) are the homogeneous trees of degree q ≥ 3
with isotropic transition probabilities: every vertex has exactly q neighbours
and the transition probabilities are all given by 1/q. Notice that for any tree
satisfying (11), every vertex has at least three neighbours.

In general it is clear that (13) implies (10). Example 2.1 which follows
shows that (10) need not hold, and Example 2.2 shows that (10) can hold
without (13). We shall make it clear in each section which of (9), (10), or (11)
we assume.

Example 2.1. Let T be the set of rational integers. Let 1/2 < p < 1 and
let q = 1−p. Define the transition probabilities p(n, n+1) = p, p(n, n−1) = q.
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Let

v(n) =

{ 1
2p−1 , n ≤ 0,

1
2p−1

(
q
p

)n
, n > 0.

Then ∆v = −δ0, so v is a positive, superharmonic, nonharmonic function on
T . It follows that T has a finite Green function. Thus F (n, n) < 1 for all n.
Clearly F (n, n+ 1) = F (n+ 1, n+ 2) and F (n, n− 1) = F (n− 1, n− 2). Thus
F (n, n + 1) = p + q F (n − 1, n + 1) = p + q F 2(n, n + 1) and so [qF (n, n +
1) − p][F (n, n + 1) − 1] = 0. Since p/q > 1, it follows that F (n, n + 1) = 1.
We also have F (n, n) = pF (n+ 1, n) + qF (n− 1, n) = pF (n+ 1, n) + q. Since
F (n, n) < 1, we deduce that F (n + 1, n) < 1. Using a similar argument as
above, we get [pF (n+1, n)−q][F (n+1, n)−1] = 0, and so F (n+1, n) = q/p.
Thus F (n, n) = 2q = 2(1−p), and so G(n, n) = 1/(1− F (n, n)) = 1/(2p− 1).
It follows that

G(m,n) =

{ 1
2p−1 , m ≤ n,

1
2p−1

(
1−p
p

)m−n
, m > n.

In particular this gives a tree for which limm→−∞G(m,n) 6= 0. �

Example 2.2. Again we take T to be the set of integers. Let {xn}∞−∞ be
any positive sequence of real numbers such that xn → 0 as n→ ±∞, x0 = 2,
x−1 = x1 = 1, x0 > x1 > x2 > · · · and x0 > x−1 > x−2 > · · · . Define
pn = xn−xn−1

xn+1−xn−1
if n 6= 0 and let p0 be any number strictly between 0 and 1.

Then for all n, 0 < pn < 1. We define transition probabilities as follows: for
n ≥ 1 define p(n, n + 1) = pn and p(n, n − 1) = 1 − pn; for n ≤ −1 define
p(n, n− 1) = pn and p(n, n+ 1) = 1− pn; p(0, 1) = p0 and p(0,−1) = 1− p0.
Let v(n) = xn. It is easy to see that ∆v = −δ0, so as in Example 2.1
the Green function is finite. Since v → 0 as n → ±∞, it follows from the
maximum principle that v cannot majorize a positive harmonic function, so v
is a potential. Since v is harmonic outside of {0}, it follows that v is a multiple
of the Green function: xn = v(n) = c G(n, 0). Thus by choosing {xn} to tend
to 0 at an arbitrarily slow rate, we get examples of trees satisfying (10) but
not (13). �

3. Growth of positive superharmonic functions

Assumption in this section. The Green function satisfies condition
(9).

We show now that positive superharmonic functions grow at maximum and
minimum rates determined by the kernels F and Fk (recall (1)).

Theorem 3.1. Let s, t ∈ T , with s ∼ t. For k ≥ 1, let Tk(s, t) = {w ∈
T : t ∈ [s, w], 1 ≤ d(s, w) ≤ k}. Let T (s, t) = T∞(s, t) = {w ∈ T : t ∈ [s, w]}.
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If v ∈ S+(Tk(s, t)) then

v(t) > Fk(t, s) v(s),(14)

if v ∈ S+(T (s, t)) then

v(t) ≥ F (t, s) v(s)(15)

and if v ∈ S+(T ) then

F (t, s) v(s) ≤ v(t) ≤ v(s)
F (s, t)

.(16)

Proof. We first note some facts about F (t, s) and Fk(t, s). It is immediate
from the definition of F1 that F1(t, s) = p(t, s). Let t1, . . . , tn be the neighbours
of t other than s. Let k ≥ 2. Applying Theorem A twice we get

Fk(t, s) = p(t, s) +
n∑
j=1

p(t, tj)Fk(tj , s)

= p(t, s) +
n∑
j=1

p(t, tj)Fk−1(tj , t)Fk(t, s).

We deduce from this that

1−
n∑
j=1

Fk−1(tj , t)p(t, tj) > 0(17)

and

Fk(t, s) =
p(t, s)

1−
∑n
j=1 Fk−1(tj , t)p(t, tj)

.(18)

We proceed to prove formula (14) by induction on k. If v ∈ S+(T1(s, t)) (=
S+({t}) then

v(t) ≥
n∑
j=1

p(t, tj) v(tj) + p(t, s) v(s) > p(t, s) v(s) = F1(t, s) v(s),

proving the formula for k = 1. Suppose v ∈ S+(Tk(s, t)), k ≥ 2. Then
v ∈ S+(Tk−1(t, tj)), for each j = 1, . . . , n, so by the inductive hypothesis we
have v(tj) > Fk−1(tj , t) v(t), j = 1, . . . , n. Thus

v(t) ≥
n∑
j=1

p(t, tj) v(tj) + p(t, s) v(s)

>

n∑
j=1

p(t, tj) Fk−1(tj , t) v(t) + p(t, s) v(s).
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Applying this together with (17) and (18), we get

v(t) >
p(t, s) v(s)

1−
∑n
j=1 p(t, tj) Fk−1(tj , t)

= Fk(t, s) v(s)

which proves (14). Formula (15) follows by letting k go to ∞, and formula
(16) follows by interchanging s and t in (15). �

In the following theorem we deduce as a consequence of Theorem 3.1 that
among all positive superharmonic functions, the Martin kernel Kω grows as
quickly as possible along the vertices of ω and decreases as rapidly as possible
outside the vertices of ω as we move away from the root.

Theorem 3.2. Let ω ∈ Ω. Let c1 be the geodesic path ω and, for n ≥ 0,
let c2 be a geodesic path starting at ωn consisting of vertices in Tωn − Tωn+1 .
Let s, t be any pair of vertices in c1 (respectively c2) with s ∼ t and s ≤ t.
Among all positive superharmonic functions v, the ratio v(t)/v(s) is maxi-
mized (respectively minimized) if v = Kω is the Martin kernel.

Proof. Suppose first s = ωj and t = ωj+1. We have

Kω(ωj) =
G(ωj , ωj)
G(e, ωj)

=
G(ωj , ωj)

F (e, ωj)G(ωj , ωj)
=

1
F (e, ωj)

,

so

Kω(ωj+1) =
1

F (e, ωj+1)
=

1
F (e, ωj)F (ωj , ωj+1)

=
Kω(ωj)

F (ωj , ωj+1)
,

which by Theorem 3.1 proves the first assertion.
Suppose now s, t ∈ c2. We have s ∧ ω = t ∧ ω = ωn, so by (3) and (5)

Kω(t) =
G(t, ωn)
G(e, ωn)

=
F (t, ωn)
F (e, ωn)

=
F (t, s)F (s, ωn)

F (e, ωn)
= F (t, s)Kω(s).

The result follows by Theorem 3.1. �

4. Dirichlet problem and the reduced function

Assumption in this section. The Green function satisfies conditions
(9) and (10).

If u, v are two functions defined on a subset S of T , u ≤ v (respectively
u = v) means that u(s) ≤ v(s) (respectively (u(s) = v(s)) for every s ∈ S.

Proposition 4.1 (Minimum Principle). Let E be a finite subset of T .
Let v, f be functions on T such that v ≥ f on E, v is superharmonic at every
vertex of T − E and lim inf∞ v ≥ 0. Then v ≥ min(0,min(f)).
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Proof. Suppose there exists a vertex t such that v(t) < min(0,min(f)).
Since lim inf∞ v ≥ 0, it follows that v assumes its absolute minimum at some
point t0 of T . If t0 were an element of T −E, the superharmonicity of v at t0
would imply v(t) = v(t0) for each neighbour t of t0. By considering the path
from t0 to the nearest point of E, we deduce that there exists a point t of E
such that v(t) = v(t0) < min(0,min(f)). Since this is impossible, the result
follows. �

Let E be a finite subset of T . For s, t ∈ T , define

FE(s, t) =
∑

p(c),

where the sum extends over all paths from s to t such that t is the first vertex
of c in E. Then

FE(s, t) ≤ F (s, t),

FE(s, t) = 0 if t /∈ E,
FE(s, t) = δs(t) if s, t ∈ E,
s 7→ FE(s, t) is harmonic outside E.

(19)

For the last property, let [s, t] denote the geodesic from s ∈ T −E to t ∈ T . If
[s, t] contains a vertex of E other than t, then the same is true for [s′, t] where
s ∼ s′, and so FE(s, t) = FE(s′, t) = 0; if [s, t] does not contain a vertex of E
other than t, the same is true for [s′, t] and it is easy to see in this case that
the mean value property holds. Thus the last property in (19) holds.

For E a finite subset of T , we define

FEf(s) =
∑
t∈E

FE(s, t) f(t).

From (19), the fact that E is finite, the minimum principle and (10) we deduce
that FEf is the solution of the Dirichlet problem on T − E with boundary
function f :

Proposition 4.2. FEf is the unique function on T which equals f on E,
is harmonic on T − E and has a limit of 0 at ∞.

In the special case that f is superharmonic on T , we deduce the following.

Proposition 4.3. Let v be positive superharmonic on T . Then FEv ≤ v
and FEv is superharmonic on T .

Proof. We have seen that v = FEv on E. The function w = v − FEv is
superharmonic on T − E, is 0 on E and lim inf∞ w ≥ 0 since FE ≤ G. Thus
by the minimum principle w ≥ 0, proving that FEv ≤ v on T . We already
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know that FEv is harmonic on T − E. If s ∈ E,∑
s′∼s

p(s, s′)FEv(s′) ≤
∑
s′∼s

p(s, s′)v(s′) ≤ v(s) = FEv(s),

proving that FEv is superharmonic on T . �

We deduce the following explicit formula for the solution of the Dirichlet
problem in case E is finite.

Theorem 4.1. If E = {s1, . . . , sn}, then the matrix M given by Mij =
G(si, sj) is invertible, and

FEf(s) =
∑
i,j

G(s, si) M−1
ij f(sj).(20)

Proof. Set Cij = −∆(s 7→ FE(·, sj))|s=si . Then the function

hj(s) =
∑
i

G(s, si)Cij − FE(s, sj)(21)

is harmonic on T and tends to 0 at ∞. By the minimum principle, hj is
identically 0. By taking s to be in E and applying (19) we deduce that MC is
the identity matrix. Replacing Cij by M−1

ij in (21) completes the proof. �

The following is a consequence of the theorem. In the classical setting the
result is one of approximation (see Lemma 6.1 in [H]) whereas on trees it is
exact.

Corollary 4.1. Every function defined on a finite set E of T extends
uniquely to T as the difference of two positive potentials with harmonic support
in E.

Proof. The uniqueness follows from the fact that any such difference of
positive potentials necessarily equals FEf by the minimum principle. The
existence follows from (20). �

Remark 4.1. We recall that in Rn a compact polar set K (with more than
one point) is characterized by the fact that every positive continuous function
on K is the restriction to K of a positive continuous potential [W]. See [J]
for a generalization to Brelot spaces. Such a result is not meaningful for trees
with positive potentials since there are no polar sets in such a setting. It also
follows immediately from Theorem 3.1 that we cannot expect to write every
positive function on a finite set of vertices as the restriction of a potential.

We now define the reduced function, which plays a key role in the develop-
ment of the minimal fine topology.
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Definition 4.1. Let E ⊂ T (not necessarily finite) and let v ∈ S+(T ).
For each t ∈ T , define the reduced function by

REv (t) = inf{w(t) : w ∈ S+(T ), w(s) ≥ v(s) for all s ∈ E}.

We collect the elementary properties of the reduced function in the follow-
ing proposition. We omit the proofs as they are either similar to those in the
abstract setting (see for example [B]) or follow easily.

Proposition 4.4. Let v ∈ S+(T ) and let E ⊂ T .
(a) REv is positive and superharmonic at each vertex of T , harmonic at

each vertex of T − E, agrees with v at each vertex of E and is less
than or equal to v on T .

(b) Let E,F, {Gn}n≥1 be subsets of T with E ⊂ F , let c ∈ R, and let w ∈
S+(T ) with v ≤ w. Then REv ≤ RFv , R

⋃
nGn

v ≤
∑
nR

Gn
v , REv ≤ REw ,

and REcv = cREv .
(c) If {Ej}j is an increasing sequence of subsets of T with union E, then

for each t ∈ T ,

lim
j→∞

REjv (t) = REv (t).

(d) If {wj}j is an increasing sequence of positive superharmonic functions
on T whose limit w is finite (and hence superharmonic), then, for
every subset E of T ,

lim
j→∞

REwj (t) = REw(t).

In case E is finite, the following Corollary shows that the reduced function
is the solution of the Dirichlet problem and so can be represented by an explicit
formula.

Corollary 4.2. In case E = {s1, . . . , sn} is a finite subset of T and v
is positive superharmonic on T , then REv = FEv on T , and so is given by
formula (20):

REv (s) =
∑
i,j

G(s, si) M−1
ij v(sj).(22)

Proof. Since FEv is a positive superharmonic function on T which equals
v on E, by definition FEv ≥ REv . On the other hand, if w is a positive
superharmonic function on T such that w ≥ v on E, then by the minimum
principle w ≥ FEv on T , so taking the inf over all such w gives REv ≥
FEv. �

By combining formula (22) with the limit results in Proposition 4.4, we can
deduce many properties of the reduced function of a superharmonic function.
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In the next theorem we use this technique to show that the reduced function
satisfies certain additivity properties. We also show that the processes of
calculating the reduced function and writing the integral representation of a
positive harmonic function commute.

Theorem 4.2.

(a) Let {vk}k≥1 be a sequence of positive superharmonic functions on T
such that the sum v(s) =

∑∞
k=1 vk(s) is finite and so defines a super-

harmonic function. Let E be any subset of T . Then

REv =
∞∑
k=1

REvk .(23)

(b) If Gf is a potential, then for each t ∈ T ,

REGf (t) =
∑
s∈T

f(s)REG(·,s)(t).(24)

(c) Let u be positive harmonic, µu its representing measure and E ⊂ T .
Then for every t ∈ T ,

REu (t) =
∫
REKω (t) dµu(ω).(25)

Proof. (a) Suppose first that E = {s1, . . . , sn} is finite. By (22), we have

REv (t) =
n∑
i=1

n∑
j=1

M−1
ij v(sj) G(t, si)

=
n∑
i=1

n∑
j=1

M−1
ij

∞∑
k=1

vk(sj) G(t, si)

=
∞∑
k=1

n∑
i=1

n∑
j=1

M−1
ij vk(sj) G(t, si)

=
∞∑
k=1

REvk(t),

so (23) holds in case E is finite. In the general case, there exists an increasing
sequence of finite sets Em whose union is E. Then, by Proposition 4.4,
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REv (t) = lim
m→∞

REmv (t)

= lim
m→∞

∞∑
j=1

REmvj (t)

= lim
m→∞

lim
J→∞

J∑
j=1

REmvj (t)

= lim
J→∞

lim
m→∞

J∑
j=1

REmvj (t)

= lim
J→∞

J∑
j=1

REvj (t)

=
∞∑
j=1

REvj (t),

which is (23).
(b) Since Gf(t) =

∑
s∈T G(t, s)f(s), (24) holds by (23) and (b) of Propo-

sition 4.4.
(c) If E is finite, then (25) holds by replacing v by Kω in formula (22)

and then integrating with respect to µu. It holds in general by applying the
monotone convergence theorem and (c) of Proposition 4.4. �

As another application of formula (22) we give a simple proof of the dom-
ination principle.

Theorem 4.3 (Domination Principle). Let Gf be a potential having har-
monic support E. If v is any positive superharmonic function that majorizes
Gf on E, then v ≥ Gf on T .

Proof. We claim that if s ∈ E, then for every t ∈ T ,

REG(·,s)(t) = G(t, s).

To see this, suppose first that E = {s1, . . . , sn} is finite. Let s = si0 ∈ E.
Since

n∑
j=1

M−1
ij ·G(sj , si0) = δi i0 ,
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it follows that

REG(·,si0 )(t) =
n∑
i=1

n∑
j=1

M−1
ij G(sj , si0) G(t, si)

=
n∑
i=1

δii0 G(t, si)

= G(t, si0).

If E is any subset of T and si0 ∈ E, choose an increasing sequence {Em} of
finite subsets of T with union E such that each set in the sequence contains
si0 . Then

REmG(·,si0 )(t) = G(t, si0).

Letting m → ∞ and applying (c) of Proposition 4.4 completes the proof of
the claim.

To finish the proof, we need to show that REGf = Gf . This follows from
Theorem 4.2:

REGf (t) =
∑
s∈E

f(s) REG(·,s)(t) =
∑
s∈E

f(s) G(t, s) = Gf(t). �

5. Minimally thin sets and the minimal fine filter

Assumption in this section. The Green function satisfies conditions
(9) and (10). We shall at times assume that the transition probabilities satisfy
(11), and hence G satisfies (13).

Let ω ∈ Ω. By the uniqueness of integral representation of positive har-
monic functions, Kω is minimal in the sense that any positive harmonic mino-
rant of it is necessarily a multiple of Kω. From this, it follows that if E ⊂ T ,
then the reduced function REKω is either identically Kω or a potential.

Definition 5.1. Let ω ∈ Ω and let E ⊂ T . We say that E is minimally
thin at ω if REKω is a potential. Equivalently, this occurs if REKω is not identi-
cally equal to Kω. Thus E is minimally thin at ω if and only if there exists a
positive superharmonic function which majorizes Kω on E but not on all of
T .

We collect some properties of minimally thin sets in the next result.

Proposition 5.1. Let ω ∈ Ω. For brevity, in what follows, the term
“minimally thin” means minimally thin at ω.

(a) The class of minimally thin sets is closed under the operations of
taking subsets and finite unions.
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(b) For each n ≥ 0, T − Tωn is minimally thin and Tωn is not minimally
thin.

(c) E is minimally thin if and only if

lim
n→∞

R
E∩Tωn
Kω

(e) = 0.

(d) Let {En} be a sequence of sets, each minimally thin. If∑
nR

En
Kω

(e) <∞, then E =
⋃
nEn is minimally thin.

Proof. (a) The proof is obvious.
(b) Fix any n ≥ 0. The reduced function of any finite set is a potential.

It follows by Theorem 3.2 that the potential R{ω0,...,ωn}
Kω

majorizes Kω on⋃n
j=0

(
Tωj − Tωj+1

)
= T − Tωn+1 . Thus T − Tωn+1 is minimally thin. It is

now obvious that Tωn is not minimally thin for any n.
(c) Suppose first that E is minimally thin. The function limn→∞R

E∩Tωn
Kω

is a harmonic minorant of the potential REKω , and so is 0 on T . Conversely,
suppose E is not minimally thin. Then by (a) and (b), E ∩ Tωn is not mini-
mally thin for every n. Thus RE∩TωnKω

= Kω, and so the limit in the statement
is not 0.

(d) Choose N so that
∑
n≥N R

En
Kω

(e) < Kω(e). Then the countable subad-
ditivity of the reduced function implies

⋃
n≥N En is minimally thin. It follows

that E is minimally thin since it is the finite union of minimally thin sets:
E =

⋃
n≤N−1En ∪

⋃
n≥N En. �

The following result gives further examples of sets which are not minimally
thin.

Theorem 5.1. Fix ω = {ω0, ω1, . . .} ∈ Ω.
(a) Any subsequence {ωjk}k is not minimally thin at ω.
(b) Suppose that the transition probabilities satisfy (11). Let {nj}j≥1 be

any increasing sequence of positive integers and let n be a positive
integer. For each j, let tj be any vertex in Tωnj − Tωnj+1 such that
d(tj , ωnj ) ≤ n. Then E =

⋃∞
j=1{tj} is not minimally thin at ω.

Proof. Choose v, a positive superharmonic function that majorizes Kω on
{ωjk : k ≥ 1}. According to Theorem 3.2, Kω increases at least as fast along
{ω0, ω1, ω2, . . .} as v, thus v must majorize Kω on all of {ω0, ω1, ω2, . . .}. For
any n ≥ 0, let {sj} be any infinite geodesic in Tωn − Tωn+1 starting at ωn.
Again by Theorem 3.2, Kω decreases at least as fast along {sj} as v, so v
must majorize Kω on {sj}. We deduce that v ≥ Kω on T , and so REKω = Kω,
proving that {ωjk : k ≥ 1} is not minimally thin at ω.

Assume now that the transition probabilities satisfy (11). We may assume
without loss of generality that d(tj , ωnj ) = n for every j, since there exists a



378 KOHUR GOWRISANKARAN AND DAVID SINGMAN

subsequence for which these distances are all the same. We show that REKω is
not a potential. Suppose on the contrary that

REKω =
∞∑
j=1

G(·, tj) f(tj),

where
∑∞
j=1G(e, tj)f(tj) <∞. Fix a positive integer k. Recalling (11)–(13),

we have
G(ωnj , tj)
G(tj , tj)

= F (ωnj , tj) ≥ δn

and for j 6= k

G(ωnk , tj)
G(tk, tj)

=
F (ωnk , tj)
F (tk, tj)

=
1

F (tk, ωnk)
≥
( 1

2 + δ
1
2 − δ

)n
> δn.

Also
Kω(tk)
Kω(ωnk)

=
G(tk, ωnk)
G(ωnk , ωnk)

= F (tk, ωnk) ≥ δn.

Thus

REKω (ωnk) =
∞∑
j=1

G(ωnk , tj) f(tj)

=
∞∑
j=1

G(tk, tj)
G(ωnk , tj)
G(tk, tj)

f(tj)

≥
∞∑
j=1

δn G(tk, tj) f(tj)

= δn REKω (tk)

= δnKω(tk)

≥ δ2nKω(ωnk)

and so δ−2nREKω is a potential that majorizes Kω on
⋃∞
j=1{ωnj}. This con-

tradicts the result of the previous paragraph. Thus E is not minimally thin
at ω. �

We now show how to generate examples of sets that are minimally thin.

Theorem 5.2. Let ω = {ω0, ω1, ω2, . . .} ∈ Ω.
(a) For each n choose xn ∈ Tωn − Tωn+1 such that

∑
nG(xn, ωn) <∞.

Then E =
⋃
n{xn} is minimally thin at ω.

(b) Assume in addition that the transition probabilities satisfy (11). Let
{dn}n≥1,{Mn}n≥1 be two sequences of positive integers such that

Mn ≤
(

1
δ − 1

)dn and
∑∞
n=1Mn

( 1
2−δ
1
2 +δ

)2dn
<∞. For each n, choose



MINIMAL FINE LIMITS ON TREES 379

at most Mn vertices of Tωn − Tωn+1 a distance dn from ωn. Denote
each of them by tnj , j = 1, . . . ,Mn. Let E =

⋃∞
n=1

⋃Mn

j=1 Ttnj . Then
E is minimally thin at ω.

Proof. (a) Define

f(x) =
∞∑
n=1

G(x, xn)
G(xn, xn)

G(xn, ωn)
G(e, ωn)

.

Since F (e, xn) ≤ 1 ≤ G(e, ωn),

G(e, xn)
G(xn, xn)

G(xn, ωn)
G(e, ωn)

= F (e, xn)
G(xn, ωn)
G(e, ωn)

≤ G(xn, ωn).

It follows that f(e) <∞, so f is a potential. Also

f(xn) ≥ G(xn, ωn)
G(e, ωn)

= Kω(xn).

Thus E is minimally thin at ω.
(b) To prove this, define f : T →∞ with support on

⋃∞
n=1

⋃Mn

j=1{tnj} by

f(tnj) =
Kω(tnj)
G(tnj , tnj)

.

Then ∑
t∈T

G(e, t) f(t) =
∞∑
n=1

Mn∑
j=1

G(e, tnj)
Kω(tnj)
G(tnj , tnj)

=
∞∑
n=1

Mn∑
j=1

F (tnj , ωn)F (ωn, tnj)

≤
∞∑
n=1

Mn

( 1
2 − δ
1
2 + δ

)2dn

<∞,

so Gf is a potential. Also for each n, j

Gf(tnj) ≥ G(tnj , tnj)
Kω(tnj)
G(tnj , tnj)

= Kω(tnj),

so Gf ≥ Kω on
⋃
n,j{tnj}. By Theorem 3.2, Gf majorizes Kω on all of E.

This completes the proof. �

We next define the minimal fine filter corresponding to a boundary point
ω ∈ Ω.
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Definition 5.2. For each ω ∈ Ω, define

Fω = {T − E : E minimally thin at ω}.

By Proposition 5.1, Fω is a filter which we call the minimal fine filter corre-
sponding to ω. We refer to limits following this filter as minimal fine limits.
Thus if f : T → R and L ∈ R, we write

mfine lim
t→ω

f(t) = L

if for every ε > 0 there exists F ∈ Fω such that |f(t) − L| < ε for all t ∈ F .
We define minimal fine limits of ±∞ as well as minimal fine limsup and liminf
in the obvious way.

It follows from Proposition 5.1 that the minimal fine filter at ω is at least
as fine as the neighbourhood filter defined by the Martin topology. On the
other hand, let E be the set in Theorem 5.2(a). Then T −E is in the minimal
fine filter Fω, but it is not a Martin neighbourhood of ω since it does not
contain Tωn for any n ≥ 1. Thus we have shown:

Theorem 5.3. The minimal fine filter together with the discrete topology
on T defines a topology that is strictly finer than the Martin topology on T ∪Ω.

The following result gives a more intuitive sense of what it means for a
function to have a minimal fine limit at a boundary point.

Proposition 5.2. Let f : T → R, ω ∈ Ω. The minimal fine limit of f
at ω is L if and only if there exists a set E minimally thin at ω such that
f(t) converges to L as t converges in T − E to ω with respect to the Martin
topology.

Proof. The condition is clearly sufficient for the minimal fine limit to equal
L. Suppose then that the minimal fine limit of f at ω is L. For each n ≥ 1
there exists En minimally thin at ω and m(n) such that |f(t)− L| < 1/n

for all t ∈ Tωm(n) − En. By Proposition 5.1, R
Tωj∩En
Kω

(e)→ 0 as j → ∞.

Thus we can assume m(n) is chosen so that R
Tωm(n)∩En
Kω

(e) < 1/2n. Let E =⋃
n

(
En ∩ Tωm(n)

)
. By Proposition 5.1(d), E is minimally thin at ω and it has

the property of the set in the statement. �

We now define approach regions that are more geometric in nature than
the approach regions of the minimal fine filter.

Definition 5.3. Let ω ∈ Ω. Let α ≥ 0. The nontangential region at ω of
aperture α is

Sα(ω) = {t ∈ T : t ≥ ωn for some n and d(t, ωn) ≤ α}.
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A function is said to have a nontangential (respectively radial) limit of L at
ω if for all α ≥ 0 (respectively for α = 0) and for all ε > 0 there exists n such
that |f(t)− L| < ε whenever t ∈ Tωn ∩ Sα(ω).

For the rest of this section we consider some of the connections between
minimal fine, radial and nontangential limits. In particular we show in the
next theorem that if the transition probabilities satisfy (11), then a minimal
fine limit at a boundary point implies an equal nontangential limit there. This
is in contrast to classical potential theory on a halfspace in Rn where such
a result holds for positive harmonic functions but not for arbitrary functions
[BD].

Theorem 5.4. Let f : T → R be any function and let ω ∈ Ω. Suppose
that mfine limt→ω f(t) = L exists and is finite.

(a) Then the radial limit of f exists and equals L.
(b) Suppose in addition that the transition probabilities satisfy (11). Then

the minimal fine filter at ω is strictly coarser than the filter of nontan-
gential neighbourhoods of ω. Thus the nontangential limit of f exists
and equals L, and there exist functions having a finite nontangential
limit but not a minimal fine limit at ω.

Proof. (a) Suppose f does not have a radial limit of L at ω. Then there exist
ε > 0 and an increasing sequence of integers {nj}, such that |f(ωnj )−L| > ε
for all j. By assumption there exists F ∈ Fω such that |f(t) − L| < ε for
all t ∈ F . By Theorem 5.1(a)

⋃
j≥1{ωnj} is not minimally thin at ω, and

so, by Proposition 5.1(a), it intersects F . Thus there exists j ≥ 1 such that
|f(ωnj )− L| < ε. This contradiction completes the proof of (a).

(b) The proof that f has a nontangential limit of L at ω follows from a
similar argument and the use of part (b) rather than part (a) of Theorem 5.1.

We now show that there exists a set E that is not minimally thin at ω and
which is not contained in Sα(ω) for any aperture α. Let 0 = n0 < n1 < n2 <
· · · be an increasing sequence of integers, to be determined later. Let {tj}j≥1

be any sequence of vertices such that tj ∈ Tωj − Tωj+1 and for each k ≥ 1, if
nk−1 +1 ≤ j ≤ nk, then d(tj , ωj) = k. Let Ek = {tj : nk−1 + 1 ≤ j ≤ nk}. By
Proposition 4.4(c) and Theorem 5.1(b), we can choose such sequences {nk}k≥0

and {tj}j≥1 such that for each k ≥ 1,

REkKω (ωk) ≥
(

1− 1
k

)
Kω(ωk).

By Theorem 3.2, it follows that

REkKω (ωm) ≥
(

1− 1
k

)
Kω(ωm) for all 1 ≤ m ≤ k.(26)
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Let E = ∪k≥1Ek. Then by (26), we have for each k ≥ m ≥ 1 that

REKω (ωm) ≥ REkKω (ωm) ≥
(

1− 1
k

)
Kω(ωm).

Since k is arbitrary, REKω (ωm) ≥ Kω(ωm) for each m. By Theorem 5.1(a),
REKω ≡ Kω, so E is not minimally thin at ω. Since there are vertices in E at an
arbitrarily large distance from ω, E cannot be contained in any nontangential
region.

Finally, define g on T by g(t) = d(t, ω ∧ t) if t ∈ E and g(t) = 0 otherwise.
Then the minimal fine limsup of g at ω is ∞ and, since E intersects any
nontangential region in at most finitely many points, the nontangential limit
of g at ω is 0. �

In the following example we show that a tree having a Green function that
does not satisfy (11) may not satisfy the conclusion of Theorem 5.4(b): a
function on T can have a minimal fine limit at a boundary point ω without
having a nontangential limit there. The idea comes from Theorem 5.2(a),
which suggests that if the transition probabilities decrease fast enough as we
move away from the vertices of ω, then the nontangential region Sα(ω) with
the vertices of ω removed, Sα(ω)− {ωn : n ≥ 1}, can be minimally thin at ω.
Example 5.1 demonstrates that this is indeed the case.

Example 5.1. In this example we construct a tree T having transition
probabilities satisfying (9) and (10) for which any function has a limit at a
boundary point following the minimal fine filter if and only if it has a radial
limit there and for which there exists a positive superharmonic function on T
that has a minimal fine limit at every boundary point but which fails to have
a nontangential limit at a particular boundary point.

Let T be the tree consisting of a ray ω = {ω0, ω1, ω2, . . .} together with
rays

ωn = {ωn0 , ωn1 , . . .}

for each n ≥ 1 such that ωn0 = ωn. Define e = ω0
0 = ω0. Note that ω0

is a terminal vertex and ω is the only boundary point that has sequences
converging to it nontangentially but not radially. Choose {pn}n≥1 such that

2n

1+2n < pn < 1. Let qn = 1−pn. We define transition probabilities as follows:
p(ω0, ω1) = 1; p(ωnm, ω

n
m+1) = pn and p(ωnm+1, ω

n
m) = qn for m ≥ 0, n ≥ 1;

p(ωn, ωn+1) = p(ωn, ωn−1) = qn/2 for n ≥ 1.
Define f : T → (0,∞) by f(ωnm) = (qn/pn)m. Thus f is identically 1 along

the vertices of ω and is qn/pn on ωn1 , n ≥ 0. It is easy to check that f is
harmonic on each ray ωn, n ≥ 1, and

∆f(ωn0 ) = pn
qn
pn

+
1
2
qn +

1
2
qn − 1 = 2qn − 1 < 0,



MINIMAL FINE LIMITS ON TREES 383

so f is positive, superharmonic and nonharmonic. Thus the Green function
on T is finite.

For each n ≥ 1, F (ωnm, ω
n
m−1) is the same for all m ≥ 1, and by definition

of F it must agree with F (n + 1, n) in Example 2.1 (with p replaced by pn),
so

F (ωnm, ω
n
m−1) =

qn
pn
.

Thus

F (ωnm, ω1) = F (ωnm, ω
n
m−1)F (ωnm−1, ω1) ≤ qn

pn
· 1 ≤ 2−n → 0

as n→∞ and

F (ωn, ωn−1) =
1
2
qn + pnF (ω1

n, ωn−1) +
1
2
qnF (ωn+1, ωn−1)

=
1
2
qn + pn

qn
pn
F (ωn, ωn−1) +

1
2
qnF (ωn+1, ωn−1)

≤ 2qn <
1

2(n−1)
,

so

F (ωn+1, ω1) ≤ 1
2n

1
2n−1

. . .
1
20

=
1

2n(n+1)/2
→ 0

as n→∞. We deduce that G satisfies (10).
Also, for n ≥ 2,

F (ωn, ωn) = pnF (ωn1 , ωn) +
1
2
qnF (ωn+1, ωn) +

1
2
qnF (ωn−1, ωn)

≤ qn +
1
2
qn +

1
2
qn

= 2qn,

so

G(ωn, ωn) =
1

1− F (ωn, ωn)
≤ 1

1− 2qn
=

1
2pn − 1

.

Since pn > 2n/(1 + 2n) ≥ 4/5 for n ≥ 2, we obtain

G(ωn1 , ω
n
0 ) = F (ωn1 , ω

n
0 )G(ωn, ωn) ≤ qn

pn
· 1

2pn − 1
≤ 25

12
qn <

25
12

2−n.

By Theorem 5.2(a), {ωn1 }n≥0 is minimally thin at ω and so by Theorem 3.2,
T − {ωn : n ≥ 0} is minimally thin at ω. Thus a function has a minimal fine
limit at ω if and only if it has a radial limit at ω. Clearly this holds at every
other boundary point, so radial and minimal fine limits are the same.

Since qn/pn → 0 as n → ∞, it follows that f is a positive superharmonic
function that does not have a nontangential limit at ω but does have a minimal
fine limit of 1 at ω. �
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6. Fatou-Näım-Doob Theorem

Assumption in this section. The Green function satisfies conditions
(9) and (10).

In this section we prove Theorems 6.1 and 6.2 which describe the minimal
fine boundary behaviour of quotients of positive harmonic functions. The
proof of Theorem 6.1 is an adaptation of the proofs of the main results in
[BL1] and [BL2].

We first set some notation. We fix once and for all a positive harmonic
function u. For any positive harmonic function h we denote its representing
measure by µh. The Radon-Nikodym derivative of µh with respect to µu
is denoted by dµh

dµu
. For each µu integrable function ψ on Ω, we define the

function uψ on T by

uψ(t) =
∫
ψ(ω)Kω(t) dµu(ω).(27)

Our main result in this section is as follows.

Theorem 6.1. Let v = Gf + h be a positive superharmonic function and
u a positive harmonic function on T . Then the minimal fine limit of v/u
exists at µu-almost every point of Ω and equals dµh

dµu
.

Proof. We first show that if Gf is a potential then

mfine lim
t→ω

Gf

u
(t) = 0 for µu-a.e. ω ∈ Ω.(28)

For each n ∈ Z+ let En = {t ∈ T : Gf(t) > u(t)/n}. Let Σn be the set of
minimal fine limit points of En. Thus Σn is the set of ω ∈ Ω where En is not
minimally thin. Since the potential nGf majorizes u on En, REnu ≤ nGf and
so REnu is a potential. On the other hand by Theorem 4.2

REnu (·) =
∫
REnKω (·) dµu(ω)

≥
∫

Σn

REnKω (·) dµu(ω)

=
∫
Kω(·) dµΣn

u (ω),

where µΣn
u is the restriction of µu to Σn. Since the last integral defines a

nonnegative harmonic minorant of a potential, we must have µu(Σn) = 0 for
every n. If ω ∈ Ω−

⋃∞
n=1 Σn, then T − En is a minimal fine neighbourhood

of ω for every n and so mfine limt→ω
Gf
u (t) = 0. The result follows from the

fact that µu(
⋃∞
n=1 Σn) = 0.
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We now show that if v is a positive harmonic function such that the repre-
senting measures µv and µu are mutually singular, then

mfine lim
t→ω

v

u
(t) = 0 for µu-a.e. ω ∈ Ω.(29)

The function min(u, v) is positive superharmonic. By the unique inte-
gral representation of positive harmonic functions, there cannot be any pos-
itive harmonic function minorizing both u and v. Hence min(u, v) is a po-
tential. At any ω for which mfine limt→ω

min(u,v)
u (t) = 0, it is obvious that

mfine limt→ω sup v
u (t) = 0. The result thus follows from (28).

It follows from (28) and (29) that the proof will be complete if we prove
that

mfine lim
t→ω

uψ
u

(t) = ψ(ω) for µu-a.e. ω ∈ Ω,(30)

where ψ is a nonnegative, µu-integrable function on Ω. Since we are free
to change ψ on a set of µu-measure zero, we may assume without loss of
generality that ψ is finite valued.

For a Borel set E ⊂ Ω let IE denote the characteristic function of E. For
each pair of integers m,n with m ≥ 0, n ≥ 1, define

Emn = ψ−1

[
m

n
,
m+ 1
n

)
.

We have

uψ·IΩ−Emn
u

≤
uψ·IΩ−Emn
uIEmn

and
uIΩ−Emn

u
≤
uIΩ−Emn
uIEmn

.

By (29) we know that the functions on the right in the above two inequalities
have minimal fine limits of zero at µu-almost every element of Emn. Hence
we can find a subset Fmn of Emn of µu-measure zero such that

mfine lim
t→ω

uψ·IΩ−Emn
u

(t) = mfine lim
t→ω

uIΩ−Emn
u

(t) = 0(31)

for all ω ∈ Emn−Fmn. Let F =
⋃
m,n Fmn. Then µu(F ) = 0. Fix ω ∈ Ω−F

for the remainder of the proof. Fix any n ≥ 1. We shall show that

mfine lim
t→ω

sup
∣∣∣uψ
u

(t)− ψ(ω)
∣∣∣ ≤ 2

n
.(32)
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There exists a unique m such that ω ∈ Emn and (31) holds at ω. Let E
denote Emn. For any t ∈ T we have

|uψ(t)− ψ(ω) · u(t)| ≤
∣∣∣uψ(t)− m

n
· u(t)

∣∣∣+
∣∣∣m
n
· u(t)− ψ(ω) · u(t)

∣∣∣
≤
∣∣∣uψ·IE (t)− m

n
· uIE (t)

∣∣∣
+
∣∣∣uψ·IΩ−E (t)− m

n
· uIΩ−E (t)

∣∣∣+
1
n
· u(t)

≤ 1
n
· uIE (t) + uψ·IΩ−E (t) +

m

n
· uIΩ−E (t) +

1
n
· u(t),

and so ∣∣∣uψ
u

(t)− ψ(ω)
∣∣∣ ≤ 1

n
· uIE
u

(t) +
uψ·IΩ−E

u
(t) +

m

n
·
uIΩ−E
u

(t) +
1
n

≤ 2
n

+
uψ·IΩ−E

u
(t) +

m

n
·
uIΩ−E
u

(t).

Taking the minimal fine limsup as t goes to ω and applying (31), we deduce
(32). Noting that the inequality is true for arbitrary n, we conclude that

mfine lim
t→ω

uψ
u

(t) = ψ(ω)

for all ω ∈ Ω− F . �

By applying Theorem 5.4 and Theorem 6.1 we immediately deduce the
following result.

Theorem 6.2. Let v = Gf + h be a positive superharmonic function and
u a positive harmonic function on T . Then the radial limit of v/u exists
at µu-almost every point of Ω and equals dµh

dµu
. If in addition the transition

probabilities satisfy (11), then we have the same result with nontangential
limits.

7. Harmonic thin sets and the harmonic fine filter

Assumption in this section. The Green function satisfies conditions
(9) and (10).

Harmonic thin sets were first introduced for the classical potential theory
on NTA domains in Rn in [A] and later on abstract Brelot spaces in [Z]. In
[Z] it was shown that the set of complements of sets harmonic thin at ω forms
a filter, known as the harmonic fine filter at ω, and this filter is coarser than
the minimal fine filter. It was then shown that, with the assumption of an
additional axiom, the quotient of two positive harmonic functions h/u has a
limit at ω ∈ Ω following the harmonic fine filter for µu-almost every boundary
point ω, where µu is the representing measure for u. Here we consider the
natural analogue of the harmonic fine filter on trees.
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Definition 7.1. Let E ⊂ T and ω ∈ Ω. We say that E is harmonic thin
at ω ∈ Ω if there exists a positive harmonic function that majorizes Kω on E
but not on all of T .

Clearly if a set is harmonic thin at ω then it is also minimally thin at ω.
In the settings considered by Aikawa and in all of the examples considered by
Zhang the harmonic fine filter is strictly coarser than the minimal fine filter.
The following result shows this is not the case on trees.

Theorem 7.1. Let E ⊂ T and ω ∈ Ω. Then E is minimally thin at ω if
and only if E is harmonic thin at ω.

Proof. Suppose E is minimally thin at ω. Thus there exists a potential
which majorizes Kω on E. We will be done if we show that there exists a
finite measure µ on Ω such that the Martin integral Kµ majorizes Kω on E
but not on all of T .

We first show that any finite set is harmonic thin at ω. Let G be a finite
subset of T . Define n = max{|t ∧ ω| : t ∈ G}. Let u be any positive harmonic
function on T which agrees with Kω at ωn and whose representing measure
does not charge ω. By Theorem 3.2, u majorizes Kω on T−Tωn+1 , hence on all
of G. If u majorized Kω at ωk for every k ≥ 1, it again follows by Theorem 3.2
that u would majorize Kω on T . Since Kω and u agree at ωn, this would imply
that they are identical. This contradiction proves G is harmonic thin at ω.

It follows from Theorem 5.1 that there can be at most finitely many j such
that ωj ∈ E. The same proof as in Corollary 2.1.4 in [Z] shows that the finite
union of sets harmonic thin at ω is harmonic thin at ω. Thus it is enough
to prove the result in case ωn is not in E for every n. By Theorem 3.2 it
follows that if a potential Gf satisfies Gf(s) ≥ Kω(s) for some s ∈ T not in
[e, ω], then Gf(t) ≥ Kω(t) for all t ∈ Ts. Thus we may assume without loss of
generality that E is “complete ” in the sense that for all s ∈ E, Ts is a subset
of E.

For each s ∈ E, there exists a unique vertex sω in E ∩ [s, s∧ω] of minimal
length. Let

Ẽ =
⋃
{sω : s ∈ E}.

Then E can be written as the pairwise disjoint union

E =
⋃
s∈Ẽ

Ts.

Let Gf be a potential with harmonic support in Ẽ which majorizes Kω

on Ẽ but not on all of T . For each s ∈ Ẽ let µs be any probability measure
whose support is the interval Is. Thus µ(It) = 1 for any t ≤ s and µ(It) = 0
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for any t with It ∩ Is = ∅. We define

µ =
∑
s∈Ẽ

G(e, s) f(s) µs.

Since Gf(e) < ∞, µ is a finite measure. We shall show that Kµ majorizes
Kω on E but not on all of T .

Fix s ∈ Ẽ. Let t be any vertex in (T −Ts)∪{s}. Let {t0, t1, . . . , tm, . . . , tn}
be the geodesic from e to t and let tm = s∧ t, where 0 ≤ m ≤ n. Then by (8)
we have

Kµs(t) =
n−1∑
j=0

G(t, tj)
G(e, tj)

µs
(
Itj − Itj+1

)
+

G(t, tn)
G(e, tn)

µs (Itn)

=
G(t, s ∧ t)
G(e, s ∧ t)

,

since all terms on the right side of the first equation are 0 except for one term.
But

G(t, s)
G(e, s)

=
G(t, s ∧ t)
G(e, s ∧ t)

,

so

G(e, s) f(s) Kµs(t) = G(t, s) f(s).

It follows that for all t ∈ Ẽ ∪ (T − E),

Kµ(t) =
∑
s∈Ẽ

G(e, s) f(s) Kµs(t) =
∑
s∈Ẽ

G(t, s) f(s) = Gf(t).

Thus Kµ does not majorize Kω on all of T but it does equal Gf on all of
Ẽ, hence by Theorem 3.2, it majorizes Kω on all of E. This completes the
proof. �
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et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571. MR 25 #3186

[J] R. Jesuraj, Continuous functions on polar sets, Proc. Amer. Math. Soc. 93 (1985),

262–266. MR 86f:31007
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