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Abstract

In this paper, we analyze the sp&aPeof distributions on the boundarg of a tree and its sub-
spaceBp, which was introduced in [Amer. J. Math. 124 (2002) 999-1043] in the homogeneous
case for the purpose of studying the boundary behavior of polyharmonic functions. We show that if
1 € Bg, thenu is a measure which is abstdly continuous with respetb the natural probability
measure. on §2, but on the other hand there are measures absolutely continuous with respect to
which are not inBp. We then give the definition of an absolutely summable distribution and prove
that a distribution can be extended to a complex measure on the Borel setsf aind only if it
is absolutely summable. This is also equivalent to the condition that the distribution have finite to-
tal variation. Finally, we show that for a distributian £2 decomposes into two subspaces. On one
of them, a union of intervald ,,  restricted to any finite union of intervals extends to a complex
measure and oA, we give a version of the Jordan, Hahn, and Lebesgue—Radon-Nikodym decom-
position theorems. We also show that there is no interval in the complemant iofwhich any type
of decomposition theorem is possible. All the results in this article can be generalized to results on
good (in particular, compact infinite) ultrametric spaces, for example, op-tigic integers and the
p-adic rationals.
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1. Introduction

In the classical sense, a distribution is an element of the dual of the spac®-of
functions on a manifold, whereas a complex measure may be thought of as an element
of the dual of the space of continuous functions (using the Riesz representation theorem).
Thus, a measure is a distribution, but not vice versa. For example, the distrifutien
f'(xp) (for a fixedxp) cannot be extended to a measure.

Distributions and measures on the boundary play an important role in the harmonic
analysis of trees. Although in this setting me&suare the usual complex measures, dis-
tributions must be conceived differently, since the boundary of a tree is not a manifold,;
indeed, it is an arbitraryampact ultrametric space.

In this paper, we shall study some classes of distributions, relating them to one another
and to the space of Borel measures. Among other results, we define a simple condition on
distributions, which we calhibsolute summabilityand show that the space of measures is
exactly the space of the distributions thag absolutely summable. We use [2] as a general
reference on trees.

A treeis a locally finite connected graph with no loops, which, as a set, we identify with
the collection of its vertices. Two verticesandw of a tree are calledeighborsf there
is an edge connecting them, in which case we use the notatiom. A pathis a finite or
infinite sequence of verticdso, v1, ...] such thaty; ~ vg41 andvg_1 # vgy1 for all k. If
u andv are any vertices, we denote py, v] the unique path joining them.

Fixing a vertexe € T as a root of the tree, thredecesson~ of a vertexu, with u # e,
is the next to the last vertex of the path freno . An ancestorof u is any vertex in the
path frome to u~. A vertexu is adescendantf v if v is an ancestor af. By convention,
we sete™ = e. We callchildrenof a vertexv the vertices: such that:~ = v. A vertex is
said to beterminalif it has only one neighbor.

A tree T may be endowed with a metrit as follows. Ifu, v are verticesd (u, v) is
the number of edges in the unique path frero v. Given a root, thelengthof a vertex
v is defined agv| = d(e,v). Forv e T and an integern > |v|, let D, (v) be the set of
descendants af of lengthn.

A nearest-neighbor transition probabilityn the vertices of a tre€ is a function on
T x T such thatp(v,u) > 0, if v andu are neighborsp(v,u) =0, if v andu are not
neighbors, and_,.., p(v, u) = 1 for each vertex.

By ahomogeneous tref degreey + 1 (with g > 2) we mean a tree all of whose vertices
have exactly; + 1 neighbors.

A transition probabilityp on a tree is said to bisotropicif for any pair of vertices:
andv, p(v, u) depends only om and, in particular, is equal to the reciprocal of the number
of neighbors ofv whenu ~ v.

Theboundarys$2 of T is the union of the set of terminal vertices and the set of equiv-
alence classes of infinite paths under the relatiodefined by the shift[vg, v1,...] >~
[v1, v2,...]. For any vertex:, we denote byu, w) the (unique) path starting atin the
classw; then £2 can be identified with the set of paths startingtaFurthermoreg? is a
compact space under the topology generated by the sets

I, = {a)E.Q: vE [e,a))},



J.M. Cohen et al. / J. Math. Anal. Appl. 293 (2004) 89-107 91

which we callintervals Clearly,2 = I,. Forv € T, n € N, with n < |v|, definev, to be
the vertex of length: in the path[e, v]. Similarly, for a classy the path[e, w) will be
denoted bywo, w1, w2, ...].

If uisavertexand = [u = wg, w1, ...] andw’ = [u = 'o, @1, . . .] are distinct bound-
ary points, define A o' = wy, wherek is the largest integer such that = ;..

We shall assume tha? is infinite, because there is ndiffdrence between a measure
and a distribution on a finite set.

Observation 1.1. The complement of a finite union of intervals is again a finite union of
intervals. To see this observe that any finite union of intervals can be writtesf'ag 7.,
where the vertices);, have fixed lengtlv for someN € N. LettingW = {w1, ..., w;}, we

see that the complement of this seltjg,_y, ,¢w Iv. @ finite union.

DefineC*°(£2) to be the algebra generated by the characteristic functions of the inter-
vals. SoC®°(£2) is the set of finite linear combinations of the functigpss2 — C defined

by

1 ifwp =v,
Svl@) = {O otht‘ar‘wise,
wherele, w) = [wo, w1, . . .].

A distributionis an element of the dudb of the spaceC>°(£2). Equivalently, a dis-
tribution is a finitely additive complex-valued set function defined on finite unions of the
setsl,. A complex measure is a countably additive complex-valued set function defined
on theo -algebra generated by the sétqin particular, it is finite-valued). Thus a complex
measure restricts to a distribution, but not every distribution extends to a complex measure,
as seen in the following example. For completeness we also point out that a signed mea-
sure is a countably additive set function with values eitheR id {oo} or in R U {—o0}.

A positive measure is a signed measure attaining its valus #].

Examplel.1. Let T be any tree rooted atcontaining an infinite patfe = wo, w1, wa, ...}

such that eacly, has at least three neighbors. Foralt 1, letv, be a neighbor ofv,,_1

other thanw,—» andw,, and pick a pathiv, = vy, Un.n+1, .. .] €ither infinite or ending

at a terminal vertex, withv, ;| = i. Define a distributionw on £2 by settingu(£2) =0,
wly, ;) =1, u(ly,) = —n, u(l,) =0 if u # wy, vy, for all n andi. By construction, the
intervalsr,, are pairwise disjoint ang is finitely additive on all intervals. Thug € D,

but cannot be extended to a complex measure since otherwise its extension would satisfy

w(LL 1) =D nt,) =os,

where the symbd] | stands for disjoint union. On the other hapd¢annot be extended to
a signed measure either since otherwise the eladsfined by the patbwg, w1, wa, .. .]
would satisfyu ({w}) = lim,— oo n(1y,) = —oo. Sou would attain the valueso and—oo.
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As is customary, a function on a tr&ewill mean a function on its set of vertices. jf
is a nearest-neighbor transition probability BntheLaplacianof a functionf : T — C is
defined asAf = u1f — f, where

paf @)=y p,u)fw).
u~v
A function f on T is said to béeharmonicif its Laplacian is identically zero.
In this work, we shall assume thétis a tree (not necessarily homogeneous) rooted at
e endowed with an isotropic transition proliity. By [2], there is aone-to-one correspon-
dence between the harmonic functions’and the distributions of®.
Observe that ifvg, v1, . . .] is an infinite path starting &t then

Iv]- - Iv_/+1 = ]_[ L,
uECj

whereC; is the set consisting of the children of unequal tov; 1. Thus, for each e T
with [v| =n, we have

n—1
2= U(I‘Uj _IU_H_j_)UI‘Ua (1)
j=0

a finite disjoint union of intervals.
Denote byA theLebesgue measuon £2: if foranyv € T, g, is the number of forward
neighbors ofv, then

1 lv[-1 ;
Al,) =—, wherec, = { H;}:o qv; '_f vFe,
Cy 1 ifv=e.
The Lebesgue measure is the unique probability measuse such thati (1) is divided
evenly among the intervals defined by all the forward neighbots of

Definition 1.1. We say that a distributiop on £2 is absolutely summabi&éfor any count-
able collection{1,} of pairwise disjoint intervalsy _ u(1,) is absolutely convergent.

Itis easy to see that a nonnegative distribution is absolutely summabplg}; i a finite
collection of intervals, then its complementghis a finite union of intervald,,,. Thus

Do) <Y u) + Y () = w(82) < 0o
Thus if {I,,} is an infinite collection of pairwise disjoint intervalg($2) is an upper bound
for Y w(ly).

Let M be the space of complex (Borel) measuregdand letMac be the subspace
of measures which are absolutely continuous with respekt tet Das be the space of
distributions which are absolutely summable, andeiy be the space of distributions
with finite total variation (see Definition 3.3).

Definition 1.2. Let By be the space of distributionson §2 satisfying the condition

2

v#e

v(ly) —

v(l,-)| < oo.

v
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Notice that. (1) = A(I,-)/q,-, SO that the above sum measures howfarfrom being
a multiple of.
We summarize the results of this paper by

Bo S Mac & M =Das="Drrv G D. (2)

The results that are most difficult to prove are the proper containmefi§ of Mac
(see Theorem 2.1) and the equalty = Das = Drr1v (See Theorem 3.2).

All the results of this paper translate eatly to good ultrametric spaces, for example,
the p-adic integers or th@-adic rationals. All the details are shown in Section 5.

2. The space By

In [5], we introduced the spadg,, for all @ > 0, for the purpose of studying the bound-
ary behavior of polyharmonic functions on homogeneous trees of dggrele The space
B, turns out to be precisely the Besov-Lipschitz sp&fg defined in [4] which can be
identified with the space of distributiomssuch that

anlvl

v#e

< 0.

1
v(ly) — —v(ly-)
q

Proposition 2.1. Lete: T — C be such that

> ew)=0 forallveT. (3)
Define
[v] i
iy =y —) @

lv]-1
j=0 nk:j Gy

where we recallvo, v1, . . ., vjy|] is the path frome to v. Thenu € D. Conversely, ifx € D,
then the functior defined by

_ H(Iv)_%ﬂ(lv_) ifv;ée, 5
W= {u(le) " ifv=e, )
satisfieq3) and(4).

Proof. Assume firsk satisfies condition (3) and let be defined as in (4). To prove that
wu € D, it suffices to show that

> ) = pu(ly).

w=v

But forw™ =,

1
n(ly) = q—u(lv) +e(w).



94 J.M. Cohen et al. / J. Math. Anal. Appl. 293 (2004) 89-107

Thus

D ulny= > qiu(lvw > e(w) = p(ly).

w—=v wT=v w—=v
For the converse, assumes D ande satisfies5). Then forv € T, we have

1
> [u(lw)— q—u(h)] = > ully)—pu(l,)=0

w =v w =v
and

[v] [v]

€)) o mUy) = plly; 1)/ qu;_y w(l,)
Z -1~ — Z [v]—1 lv|—1
j=0 Hk:j 9o j=1 Hk:j Gy szo pp

completing the proof. O

= lu‘(IU)s

It now follows thatu € By if and only if the corresponding functianon 7' satisfies the
condition)_, ., le(v)| < oo.
Theorem 2.1. (a) If u € By, thenpu can be extended to a complex measure on the Borel
sets off2 which is absolutely continuous with respecito

(b) There exist measures which are absolutely continuous with respgdiuibare not
in Bo.

Proof. Assumeu € Bp. Let ¢ be the function corresponding foin Proposition 2.1. Ob-
serve that ifw € 2 and[e, w) = [wo, w1, w2, . ..], we have

e(wp) = w(ly) — mlwy_q)-

k-1
Thus

vl

cop(ly) =Y _[eu, 11y, = e,y p(ly, )] + n(le),
n=1

whence

vl

ey (ly) — p(le) = chne(vn)~

n=1

Consequently, linp, o o, 1 (1,) exists if and only ify_77 ; ca, € (wn) eXists. To show that
this is finiteA-a.e., we show that

/chn\e(w,,)w)\(w)
Q n=0

is finite. By Fubini’s theorem and using the fact thgt (1) = 1, we obtain
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/ch,l é(wn)| di(w) = Z/Cw

e(wn)| dr(w) = Z Y ale@lrm)

n= 0~Q n=0v|=n
=Z Z‘e(v)|=2|e(v)‘<oo. (6)
n=0|v|=n veT

Thus, we may define

o0
F(w) = chje(wj) r-a.e,
j=0
which by (6) is inL1(»).
Letv e T with |v| =n, and recall that foj > n, D;(v) is the set of descendants of
of length;. Using(3), we have

/ F(0)di(w) = Z / Co,;€(@)) dM(@)

I, =07
—Z/cvje(v])dk(a))—i— Z > /cwe(w)d)\(w)
j= OIU j=n+lweD; (U)I

—zcv,“'jj) Y Y ew

j=n+lweD;(v)
n
E(Uj)
j= ol_[k ;‘]vk

Thusdp extends to the complex measuf@ on the Borel sets of2, completing the
proof of (a).

The proof of (b) is modeled on Exercises 6-8 in Section 3.3 of [1]. We shall, therefore,
eliminate many of the details.

Let f:T — C be a function such that(v) =0 for allv € T, |v| < 1. For each vertex
v with |v| > 1 let{f(w): w™ = v} be the set of thg,th roots of unity.

Foreachn e N, let R, and S, be the functions o2 defined by

= p(ly).

n R
Ri@ = f@).  Su@) =Y 2,

=1 7/
Note that for any vertex # ¢, R, is constant or,, if |v| > n, and
Y fw=
ue Dy (v)

since the sum of theth roots of unity is O for all integerg > 1. Thus

/Rndkzo if [v] <n. (7)
I
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This implies that ifj, k e N, j <k, then

/R Ry d)\ = Z /de)\ 0.

lvl=Jj

L

Using this, one can prove that the sequef#¢ is Cauchy inL?(1). This implies that s, }
is convergentinL2(1) (and hence also if1(1)) to some functiors. We claim that(S,,}
converges ta pointwisei-a.e.

LetN,k,n e N, N <k <n,andletv € T with |v| = k. ThenSy — S; is constant o,
and we can show that

/lSN—S,,l d)\>/|sN—Sk| dx.
Iy
Givens > 0, let
Ar={weR: |Sy(®) — Sj(w)| <sforall j, N<j<k, and
|Sn (@) — Si(w)| > 8}
and define
A={weR: |Sy(w) — Sk(w)| > & for somek, N <k <n}.
Note thatA = Uk n+1 Ak, a disjoint union. Supposéy N 7, # @. SinceSy — S; is con-

stant onl, for all j <k, it follows thatl, C Ax. ThusAy is the disjoint union of intervals
generated by vertices of lengthWe get

1
A(A) < / ISy — Spl2dh < IISN Sn IILzm
A
For eachM, N € N, consider the set

Ay ={we 2! |Sy(®) — Sk(w)| > 1/M for somek > N}.
Define

0o 00
E:U ﬂAM,N-

M=1 N=1
If w € 2 — E, then for eachM € N there existsV € N such that for alk1, n2 € N with
ni>n2> N,
|Sn1 (@) = Spp(@)] < [Sny (@) = Sn(@)| + | S, (@) — Sy ()| < 2/M,
and so the sequen¢s, ()} converges. To complete the proof of the claim, it remains to

show thati(E) = 0. Sincer(Ay y) < M?||Sy — S||L2(k), we obtain

oo
AT 2 _
A(NQAM,N) < M2 lim ISy = Sl7z, =0.

It follows thatA(E) =0
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For eachv € T, let us defineu(1,) = [,U Sdx. Then, using (7) and the fact that, is
constant orf,, for n < |v|, we have

vl

) 1
iy =310 2

n=1 n Co
Thus
1 FOIE= 1
I, — I,-)| = =
St - i | = MR- 5
v#e v#e n=1|v|=n
X1 > 1
=Y Y=Y =
n n
n=1 |v|=n n=1

Thereforeu ¢ Bo. This completes the proof of the proper inclusisnG M. O

3. Extending distributionsto complex measures

In this section we explore the conditions needed for a distributiofedo extend to a
complex measure on the Borel setsf

Lemma3.l. Letly,..., Iy, J1, Jo, ..., beintervals such that

N [ee]
U= In (8)
n=1 m=1

Then there exist8f € N such that
N M
Un=U In
n=1 m=1

Proof. The set{J,} is an open cover of the left-hand side of (8), which is compact. Thus
there exists a finite subcover

Lemma 3.2. Assume

o0 o0
S=[[t=]]In
n=1

m=1

where the set$, and J,, are intervals. Then there exists a sequence of inter\ai$;cn
such that

00
S= ]_[Lk
k=1

and such that each, and eachJ,, is a finite union ofL;’s.
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Proof. Well order the set of pair§n, m): I, N J,, # ¢} and let thekth element bd.;, =

I, N J,, and use the notatioh~ (n, m) for this correspondence. Since the intersection of
two intervals is one or the other or is empky, is eitherl, or J,,. The setd.; are pairwise
disjoint and their unionis. If I,, is contained in somé,,, thenL; = I,,, wherek ~ (n, m).

If I, containsJy,,, ..., Ju, (afinite set by Lemma 3.1), then

I, = ]_[ Ly,
ki~(n,m;), 1<i<t

By symmetry, the same is true of the intervdls O

Theorem 3.1. Let{I,} and{J,,} be sequences of pairwise disjoint intervals such that

o o
[Tt=1]m
n=1 m=1

If u is an absolutely summable distribution, then

D onl) =Y n(m).
n=1 m=1

Proof. By Lemma 3.2, it suffices to assume that each intefyas a finite union ofJ,,’s.
By the absolute summability of, we may assume that the ordering is consistent with the
unions, that is, that for alV € N there existsy € N such that

N My
[Tt=1]
n=1 m=1

Fix € > 0. Since) o>, u(I,) and Y .~ 4 u(J,) are absolutely summable, there exist
N eNandM’' eN, M’ > My, such that

o u|<e/2 and Y u(n)| <e€/2.

n>N’ m>M'

Let N e Nbe suchthatv > N’ andM = My > M’. Then

N M
]_[ I, = ]_[ s
m=1

n=1

00 N
Y o) =Y ully)

n=1 n=1

o0 M
Z w(Jm) — Z w(Im)| < €/2.

m=1 m=1

SinceX" N u(l) ="M 11(Jn), we obtain

Y o) =Y 1w
n=1 m=1

proving the result. O

<e€/2 and

<,

We now recall some basic definitions from measure theory.
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Definition 3.1. A collection A of subsets of a sef containingd andX is called aralgebra
of sets(respectivelyg-algebra of setsif the union of any two (respectively, countably
many) elements aofl is also inA and the complement of any setiis in A.

Definition 3.2. A measure on an algebia a nonnegative extended real-valued set function
w defined on an algebra of setissuch thau () = 0 and for any disjoint sequen¢e;} of
sets inA whose union is also i,

M(U E,») =D n(E).
i=1 i=1

Proposition 3.1. Any nonnegative distribution € D can be extended uniquely to a non-
negative finite measure on the Borel sets2of

Proof. Let.A be the algebra generated by the intervals. Given any two intervals, either they
are disjoint or one is contained in the other. Recalling Observation 1.1, we then gdt that
consists of the empty set and all finite disjoint unions of intervals. By Lemma 3.1, there are
no infinite disjoint unions of (nonempty) intervals.ih Thus, ifu € D is nonnegative, it is

a finite measure on the algeb#a By the Carathéodory extension theorem (cf. [9, p. 295]),

u can be extended to a measure on the smatledgebra containingl, i.e., theo -algebra

of the Borel sets of2. Furthermore, ag (£2) < co such an extension is uniquer

Definition 3.3. Let u be a distribution. Then define an extended real-valued function on
intervals as follows:

(1) =supy_|u(Ly,)]

taken over all partitiongl,,, } of I,,. Observe thafi| extends to a finitely additive extended
real-valued function on finite unions of intervals. In particulafpif(£2) is finite, then|u|
is a nonnegative distribution. We c@ll| thetotal variationof .

By Lemma 3.1 any partitiodl,,, } of I, is finite. In particular, ifn = max|w,|, then
Z |:U'(Iwa)| < ZueDn(v) IM(IM)| Thus

ul(t) = lim " |u()].

ueDy (v)

In [10, Theorems 6.2 and 6.4] it is shown thagifextends to a measure, thgn| can
be extended to a finite-valued measure. We shall prove a stronger version of this result in
caseu is merely a distribution. Specifically, we show that a distributiofis absolutely
summable if and only if its total variation can be extended to a finite-valued measure, and
this holds if and only ifu itself can be extended to a measure.

The following result is reminiscent of Lemma 6.3 of [10], but is more elementary.

Lemma3.3.For N e Nletay,...,any € R be such that
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+2

N N
Zlaﬂ? Zaj
j=1 j=1

Thenforallk € {1,..., N},

> lajl>1.

J#k

Proof. Assume}_; ., la;| < 1. Then by two applications of the triangle inequality, we
obtain

N
Dlajl <1+ lal <2 lajl+ lal <2+
j=1 J#k

. O

N
D)
j=1

We are now ready to prove the main result of this section.
Theorem 3.2. Let u € D. Then the following statements are equivalent

(@) ueM.
(b) u is absolutely summable.
(€) I1ml(£2) < cc.

Proof. (a)= (b) If © € M, then for any countable collectidd, } of nonoverlapping in-
tervals the value o}, 1. (1,) is independent of the ordering of the index set and thus the
seriesy_, u(1,) must be absolutely convergent.

(b) = (c) Assume||(£2) is infinite. Then there exists an infinite sequence of vertices
{vo, v1, ...} with vo =, |v;41| > [v;], and such that for eachy |u|(1y;) = co. Thus for
eachj, there existsn; € N such that

Yo )| = |ut)| +2
uEij(vj)
By Lemma 3.3, it follows that
Yoo w1
uEij(vj),u;évmj

DefineA;j = {u € Dy, (v;): u # vy, }. By passing to a subsequence we may assume with-
outloss of generality that; 1| > m ; foreveryj. Thus{l,: u € A;, j € N}isacollection
of nonoverlapping intervals. Setting=(J7Z; A;, we obtain

S|t =" Y || = 0.

ueA j=lueA;

Thus,u is not absolutely summable.
(c)= (a) If |u|(£2) is finite, then|w| is a nonnegative distribution such that (1,) >
| (1y)|, for eachv € T. Thus|u| andp = u + |u| are both nonnegative distributions. By
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Proposition 3.1, there exist unique measqﬁ/sgndﬁ on the Borel sets of2 which are
extensions ofu| andp, respectively. Thep — |v] is a finite sighed measure on the Borel
sets of$2 which is an extensiongi. O

4. Decomposition theorems

We now want to find out how far a distribution is from being a measure.vlLla¢ a
vertex such thafu|(1,) < oo. By considering the tree of descendants @fhose boundary
is exactlyl,, it follows from Theorem 3.2 that may be extended to a measure.

Definition 4.1. Let A C £2 be a union of intervals. A distributiop on A is called aquasi-
measuref for every intervall C A, u|I can be extended to a complex measure.

If uis areal-valued quasi-measure AnthenB is apositive se{respectivelynegative
se) for u if for every intervall C A, and measurable s&tc BN 1, u(C) > 0 (respec-
tively, u(C) <0).

A real-valued quasi-measure does not necessarily extend to a signed measure because
there may be subsets with measdreo and subsets with measurexc. On the other
hand, a positive- (respectively, negative-) valued quasi-measure does extend to a positive
(respectively, negative) measure.

Definition 4.2. (a) Letu be a distribution and let be a positive distribution ofe. We say
that i is absolutely continuouwith respect tov, and writep < v, if () = 0 for every
interval such that (/) = 0.

(b) We say that a distribution is concentratedbn A C £2 if (/) =0 whenevel is an
interval such that N A = .

(c) We say that two distributiong and v are mutually singulay and writep L v, if
there exist disjoint set8 andC such thatu is concentrated o® andv is concentrated
onC.

We now give a version of the Hahn, Jordan, and Lebesgue—Radon—Nikodym decompo-
sition theorems for quasi-measures.

Theorem 4.1. Let A C 2 be a union of intervals and lgt be a quasi-measure oA.

(&) (Jordan decompositioif)u is real-valued, then there exist positive measurgsand
u— on A such that for any interval C A, u(I) = 4+ (1) — u—(I).

(b) (Hahn decompositionj u is real-valued, then there exist a positive #eand a neg-
ative setC for u such thatB U C = A.

(c) (Lebesgue—Radon—Nikodym decompositithny is a positive quasi-measure of,
then there exists a unique pdit,, u;) of distributions onA such thatu = g + s,
a K v, us Lv. If uis positive and finite, then so aye, and ;. Moreover, there
exists a uniqué e L1(v) such thatu, (E) = fE h dv for each finite union of intervals
Ein A.
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Proof. (a) The total variation of: is a positive quasi-measure, hence can be extended to a
finite positive measure oA. Similarly, (|| + ©)/2 and(|x| — 1)/2 can be extended to a
finite positive measuregs, andu_ on A.

(b) LetC be the supportof._, andB=A — C.

(c) Sincev is a positive quasi-measure @y we may assume it has been extended to a
measure or. Write A = ]_[;',":l I, wherel, are (pairwise disjoint) intervals. Let, be
the measure which extengds$l,, on I, and is 0 oA — I,,. Thenu = Z,f’;l Un, i.e., forany
finite union of intervalsE, w(E) = Z;’,"zl un(E). Clearly, the support gf,, is in ,. Then
by the classical Lebesgue—Radon—Nikodym decomposition theorem, there exist measures
Un.a @ndw, ¢ with support inZ, such thatw, = pn.a + tn.s, Una <KV, tns L v, and
there exists a unique, € L(v) with support ini, such thafu, ,(E) = [ hndv for each
finite union of intervals inA. Thenw, = > wn.a, s = Y tns andh =Y h, satisfy the
conclusion of the theorem. If, moreovarjs positive, then it can be extended to a measure
and the result follows from the classical case

Definition 4.3. Given a distribution, themeasure support qf is defined by the set

A, = U Ip.

{veT: |u|(1y)<oo}

Clearly, if A,, = §2, thenu can be extended to a measure by Theorem 3.2.

Furthermore, the measure support of a distribution is the largest set on which these
decomposition theorems hold, by Theorem 4.2 below.

In the following two examples, I€f; denote a homogeneous tree of degree 3.

Example4.1. Let u be the distribution in Example 1.1 applied®e. Notice that for every
vertexv ¢ {wy: k=0,1,...}, u(l,) = 271"1*" wheren is the largest integer such thats
adescendantaf,, or u(I,) = 0 if vis not a descendant of or wy. Sinceu|I, is positive,

it is absolutely summable and so it can be extended to a positive measure. We thus can get
ao-finite measure on the noncompact spgte {wo}, where[wg, w1, ...] = [e, wp). It is

o -finite because it can be written as the coutealmion of set of finite measure, namely

o
2 —{wo) =Ly U] [ 1y,
n=1
whereu is the neighbor oé other tharv, andws. If I is any interval containingyg, then
u|$2 — I can be extended to a finite nonnegative measure. Thus the measure support of
is 2 — {wo}.
The following is an example of a distribution @g whose measure support is the empty
set.

Example4.2. Let u(£2) =0, u(1y,) = n(l,,) =1 andu(ly,,) = —2, where, we recallyq,
v1, andw1 are the neighbors ef Now assume thatis a vertex with childrem andw such
thatu(l,) # 0. Then letu(1,,) = —signu (1) andu (1) = u(ly) — n(l,). Consequently,
every vertexv has a path of descendarfts, x, ...] such thafu(Z,,) — —oo as well as
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one going tot-oco. In particular,| | (1) = oo for every vertex. Thus, the measure support
of u is the empty set.

In general, we cannot get a Jordan decomposition of a distribution which is not ab-
solutely summable because if we could wyite=  — w— with .y, u— positive distrib-
utions, thenu, andu— could be extended to finite positive measuregy stself would be
extendible to a finite signed measure, contradicting Theorem 3.2.

Theorem 4.2. Let u be a distribution which is not absolutely summafse thatA , # £2).
If I isaninterval in$2 — A, then for all positive integers there exist finite disjoint unions
of intervalsJ,, and K, in I such thatu(J,) > n andu(K,) < —n.

In particular, if 4 is not an absolutely summable distribution, then there cannot be a
Hahn decomposition on the complemenif: £2 — A,, = B U C, with B andC disjoint,
u positive onB and negative ol.

Proof. Assume that we cannot find the set§ satisfying the conditionu(K,) < —n.
That is, suppose there exists a natural numiesuch that for all finite disjoint unions
of intervalsK C I, u(K) > —N. Since the complement (with respect &p of a finite
disjoint union of intervals is also a finite disjoint union of intervalsKifis such a set, then
w(K")y < u(I)+ N. So for each such sé&f, —N < u(K) < u(I) + N. Thus, there exists
some positive numbe¥ such that-M < w(K) < M. Let {I;} be a finite set of disjoint
intervals whose union i. Let K be the union of the€; with () > 0 and letk’ be the
union of thel; with w(1;) < 0. Then

Do) =pK) - n(K') < 2M.

Thusu is of bounded variation oh, a contradiction.
Similarly replacingu by —u, we see that the sets, C I satisfyingu(J,) > n must
exist. O

5. Good ultrametric spaces

Definition 5.1. A metric d on a spaceX is said to be aniltrametric if for any points
x,y,z € X, dx,y) < maX{d(x,z),d(y,z)}, or equivalently, two of the three values
d(x,y),d(x,z),d(y,z) are the same and the third is no larger.

Note that in any ultrametric spac¢¥, d), if x € X, r > 0, and
y € By(x)= {v € X:d(v,x) < r},

thenB,(y) = B,(x). Thus, ifz € X, s > 0, andy € B, (x) N By(z), thenB,(x) = B,(y)
and B, (z) = Bs(y). Hence, if two balls intersect, then the ball with the smaller radius is
contained in the other.
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Definition 5.2. An ultrametricd is said to begood(cf. [3]) if the set
D={d(x,y): x,y€X, x#y}
is discrete, has 0 as a limit point, and if each lil{x) is compact.

Observation 5.1. Every infinite compact ultrametric space is good.

Proof. AssumeX is an infinite compaatitrametric space. Triviyy, it is locally compact.
Forx e X let D, ={d(x, y): x # y} so that

D= D..
xeX
We first show thaD, is discrete. Assume € D, and there is a sequengs,} in X such
thatd(x,, x) # r but lim,_ o d(x,, x) = r. SinceX is compact, we may assume that}
converges to some poing. Then

d(x, xo) =n|Lmood(x,xn) =r.

Sinced(x, x,) # r, d(x,, xo0) = max{d(x, x,), d(x, x0)} > r, which contradicts the con-
vergence. ThusD, is discrete.

Forx € X andr > 0, let D, = D, N[r,o0), and setD” = D N [r,o0) = J,.x D. By
the ultrametric property, iy € B, (x), thenD; = D’. For a fixedr there existyy, ..., x,
€ X such thatX = | J;_; B, (xx) and thusD" = | J;_; Dy, is discrete. This proves that
is discrete.

To show thatD has 0 as a limit point, assunae- 0 is a lower bound oD. Let {x,} be
an infinite sequence of distinct points ¥f Then forn £ m, d(x,, x,;) > €, sSo{x,} has no
convergent subsequences which contradicts the compactngEs3bfis, 0 must be a limit
point of D. SinceD is discrete, balls are both open and closed, hence compact.

Example 5.1. Let T be a rooted tree with boundary such that no vertex has exactly
two neighbors and ley be a positive function oif" whose values along any path from
the root to the boundary decrease to zerav ldnd ' are distinct boundary points, let
d(w, o) = f(wAw'). Then($2, d) is a compact ultrametric space.

Example 5.2. Let T be a rooted tree with boundarty and a distinguished boundary
point wp. Let f be a positive function o with discrete range whose values along any
path to any boundary point other thag decrease to zero and whose values along any path
tending towg increase tec. If w, " € 2 — {wo} are distinct, then the doubly infinite paths
(w, wp) and (', wp) have as their intersection an infinite path wp). Definew v o’ = v

and setl(w, ') = f(w Vv o’). Then(2 — {wo}, d) is a good ultrametric space which is not
compact since distancean be arbitrarily large.

We now give a brief description of the main ideas of Choucroun’s elegant paper [3]
which yield the converse construction.

If (X,d) is agood ultrametric space, we can construct afre@eéhose vertices corre-
spond to the ball®, of X and whose edges are defined as follows.ahdv’ are vertices,
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there is an edge between them if one of the bAllsand B, is strictly contained in the
other, but no other ball fits properly between them. Given X, let {d,},>0 be the de-
creasing sequence of elements®f. Let v, (x) be the vertex corresponding ®y, (x)
and letv(x) be the boundary point corresponding to the gatfix), v1(x), ...]. The map
v:X — £2 is one-to-one, indeed, it is an isometry if we provi@ewith the ultrametric
corresponding to the functiofi(v) = diamete(B,).

If X is compact, therX is itself a ball and the corresponding vertex serves as the root
of the tree. Every boundary point yields a path from the root which then corresponds to a
decreasing sequence of balls, and hence whose intersection is some poifthafsv is
onto.

The equivalence of compact ultrametnpases and boundaries of trees was also pointed
outin [6] and [8], and in [7], for the case of homogeneous trees.

If X is not compact, the® is not bounded above and we can take a strictly increasing
maximal sequence of balls whose union is alkofThe path of the corresponding vertices
goes to a boundary poimip which is independent of the sequence we have chosen. This
is the only boundary point which is not in the imagewfand thus.X is in one-to-one
correspondence witl? — {wo}.

In both cases, having defingtv) to be the diameter of the ba#i,, the corresponding
ultrametric on the boundary of the tree or the boundary with a point removed yields an
isometry ontoX.

Our aim is to translate all the results of this paper to a good ultrametric Spadée
shall explain the translation below. The cas&ofompact follows precisely from what we
have done in the earlier sections, sidtenay be identified with the boundary of a tree.

In order to understand the noncompact case, we need to study these questions on the
noncompact ultrametric spacée= 2 — {w}. Let u be a distribution on2. Then define a
distributionz on X by (1) = u(I) — n(£2)A(I). i is then a finitely additive function on
the intervals not containing, i.e., on the balls ofX. Conversely, lefi be a distribution
onX.Let! =1, be aninterval containing, and define

phy=— Y ).

[v|=n, v#w,

This yields a one-to-one correspondence between the distribytioms 2 such that
w(£2) = 0 and the distributiong. on X. Since any distributionv on £2 is of the form
u+ cx whereu(£2) = 0 andi € By, this does not affect any of our inclusions which will
be proved to be valid of2 — {w}.

Thus we may identify a good ultrametric spakewith 2 or 2 — {w} (depending on
whether or notX is compact), where € £2 = 9T for some treel’. The intervalsl, C 2
correspond to ball®, C X. Just as each, is the disjoint unior{ [,,- _, 1., each ballB in
X is the disjoint union of smaller balls none of which is contained in a larger ball strictly
contained inB. Thus we get a natural definition of the distributionsXnBorel measures
on X are taken with respect to the balls.

If B is a ball of a good ultrametric space, gtB) be the number of proper maximal
sub-balls.
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For the compact case, Lebesgue measur¥ aswell defined by letting.(X) = 1, and
if B’ is a maximal proper sub-ball of a bal, theni(B’) = A(B)/q(B). All the space®3y,
Mac, M, Das, Detv, D are easily defined in terms of the space

For the noncompact case, the Lebesgue measukerequires fixing a balBo. By the
discreteness ab, there is a unique strictly increasing maximal sequence of bé,lll}s,>o
which coversX. Let g, = ¢(B,) for n > 0 andgo = ¢(Bo) + 1. Then define.(B,) =
1—1/q0q1-. .9, and otherwise extend as in the compact case. A distributiax tiren is
a finitely additive function on the balls. Using the notati®n for the smallest ball strictly
containingB, a distributionu is in By if

2

B#B,

wu(B) —

w(B7)| < o0.

1
q(B7)

The spaceM ac is defined as the set of multiples oby anL-function with respect ta,
andu € Das if and only if > u(By,) converges absolutely for each sequence of pairwise
disjoint balls.

Since any two choices Qﬁn}n>0 are eventually the same, the sp#lds well defined,
and for any two choices of, each one is absolutely continuous with respect to the other.
Thus all of the classes are well defined and so all the results in this paper now hold on an
arbitrary good ultrametric space.

Similarly, a complex measure axi corresponds to a complex measur®n §2 such
thatu(£2) = 0.

Notice that the absolutely summable measuresXonorrespond exactly to the ab-
solutely summable measures ghsince any disjoint union of intervals a2 differs by
at most one interval from a disjoint union of intervalsXn Furthermore, sinc& and$2
differ by one point, the corresponditig spaces with respect toare the same.

Example 5.3. Let p be a prime. Every rational numbercan be written uniquely as=
(m/n)p?, whereq, m, n are pairwise relatively prime integers,> 0. Set|r|, = p~9.
Thend(ry, r2) = |r1 — 2|, is an ultrametric orZ andQ. The completions with respect
to d yield the good ultrametric spacég,, andQ,), the former compact and the latter
noncompact.

More generally, letR be a discrete valuation ring with valuatian If d(r1,r2) =
v(r1 — rp) for r1,r2 € R thend is an ultrametric, ath the completion ofR with respect
to d is a good ultrametric space.

Thus all the results of this paper are valid on complete discrete valuation rings, includ-

ing Z(p) and(@(p).
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