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Abstract

In this paper, we analyze the spaceD of distributions on the boundaryΩ of a tree and its sub
spaceB0, which was introduced in [Amer. J. Math. 124 (2002) 999–1043] in the homogen
case for the purpose of studying the boundary behavior of polyharmonic functions. We show
µ ∈ B0, thenµ is a measure which is absolutely continuous with respectto the natural probability
measureλ on Ω, but on the other hand there are measures absolutely continuous with respeλ

which are not inB0. We then give the definition of an absolutely summable distribution and p
that a distribution can be extended to a complex measure on the Borel sets ofΩ if and only if it
is absolutely summable. This is also equivalent to the condition that the distribution have fin
tal variation. Finally, we show that for a distributionµ, Ω decomposes into two subspaces. On
of them, a union of intervalsAµ, µ restricted to any finite union of intervals extends to a comp
measure and onAµ we give a version of the Jordan, Hahn, and Lebesgue–Radon–Nikodym d
position theorems. We also show that there is no interval in the complement ofAµ in which any type
of decomposition theorem is possible. All the results in this article can be generalized to res
good (in particular, compact infinite) ultrametric spaces, for example, on thep-adic integers and th
p-adic rationals.
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1. Introduction

In the classical sense, a distribution is an element of the dual of the space oC∞-
functions on a manifold, whereas a complex measure may be thought of as an e
of the dual of the space of continuous functions (using the Riesz representation the
Thus, a measure is a distribution, but not vice versa. For example, the distributionf �→
f ′(x0) (for a fixedx0) cannot be extended to a measure.

Distributions and measures on the boundary play an important role in the har
analysis of trees. Although in this setting measures are the usual complex measures,
tributions must be conceived differently, since the boundary of a tree is not a man
indeed, it is an arbitrary compact ultrametric space.

In this paper, we shall study some classes of distributions, relating them to one a
and to the space of Borel measures. Among other results, we define a simple cond
distributions, which we callabsolute summability, and show that the space of measure
exactly the space of the distributions that are absolutely summable. We use [2] as a gen
reference on trees.

A treeis a locally finite connected graph with no loops, which, as a set, we identify
the collection of its vertices. Two verticesv andw of a tree are calledneighborsif there
is an edge connecting them, in which case we use the notationv ∼ w. A path is a finite or
infinite sequence of vertices[v0, v1, . . .] such thatvk ∼ vk+1 andvk−1 �= vk+1 for all k. If
u andv are any vertices, we denote by[u,v] the unique path joining them.

Fixing a vertexe ∈ T as a root of the tree, thepredecessoru− of a vertexu, with u �= e,
is the next to the last vertex of the path frome to u. An ancestorof u is any vertex in the
path frome to u−. A vertexu is adescendantof v if v is an ancestor ofu. By convention,
we sete− = e. We callchildrenof a vertexv the verticesu such thatu− = v. A vertex is
said to beterminal if it has only one neighbor.

A tree T may be endowed with a metricd as follows. If u,v are vertices,d(u, v) is
the number of edges in the unique path fromu to v. Given a roote, the lengthof a vertex
v is defined as|v| = d(e, v). For v ∈ T and an integern > |v|, let Dn(v) be the set of
descendants ofv of lengthn.

A nearest-neighbor transition probabilityon the vertices of a treeT is a function on
T × T such thatp(v,u) > 0, if v andu are neighbors,p(v,u) = 0, if v andu are not
neighbors, and

∑
u∼v p(v,u) = 1 for each vertexv.

By ahomogeneous treeof degreeq+1 (with q � 2) we mean a tree all of whose vertic
have exactlyq + 1 neighbors.

A transition probabilityp on a tree is said to beisotropic if for any pair of verticesu
andv, p(v,u) depends only onv and, in particular, is equal to the reciprocal of the num
of neighbors ofv whenu ∼ v.

TheboundaryΩ of T is the union of the set of terminal vertices and the set of eq
alence classes of infinite paths under the relation	 defined by the shift,[v0, v1, . . .] 	
[v1, v2, . . .]. For any vertexu, we denote by[u,ω) the (unique) path starting atu in the
classω; thenΩ can be identified with the set of paths starting atu. Furthermore,Ω is a
compact space under the topology generated by the sets

Iv = {
ω ∈ Ω : v ∈ [e,ω)

}
,
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which we callintervals. Clearly,Ω = Ie . For v ∈ T , n ∈ N, with n � |v|, definevn to be
the vertex of lengthn in the path[e, v]. Similarly, for a classω the path[e,ω) will be
denoted by[ω0,ω1,ω2, . . .].

If u is a vertex andω = [u = ω0,ω1, . . .] andω′ = [u = ω′
0,ω

′
1, . . .] are distinct bound

ary points, defineω ∧ ω′ = ωk , wherek is the largest integer such thatωk = ω′
k .

We shall assume thatΩ is infinite, because there is no difference between a measu
and a distribution on a finite set.

Observation 1.1. The complement of a finite union of intervals is again a finite unio
intervals. To see this observe that any finite union of intervals can be written as

⋃m
k=1 Iwk

where the verticeswk have fixed lengthN for someN ∈ N. LettingW = {w1, . . . ,wm}, we
see that the complement of this set is

⋃
|v|=N,v/∈W Iv, a finite union.

DefineC∞(Ω) to be the algebra generated by the characteristic functions of the
vals. SoC∞(Ω) is the set of finite linear combinations of the functionsξv :Ω → C defined
by

ξv(ω) =
{

1 if ω|v| = v,

0 otherwise,

where[e,ω) = [ω0,ω1, . . .].
A distribution is an element of the dualD of the spaceC∞(Ω). Equivalently, a dis-

tribution is a finitely additive complex-valued set function defined on finite unions o
setsIv . A complex measure is a countably additive complex-valued set function de
on theσ -algebra generated by the setsIv (in particular, it is finite-valued). Thus a comple
measure restricts to a distribution, but not every distribution extends to a complex me
as seen in the following example. For completeness we also point out that a signe
sure is a countably additive set function with values either inR ∪ {∞} or in R ∪ {−∞}.
A positive measure is a signed measure attaining its values in[0,∞].

Example 1.1. Let T be any tree rooted ate containing an infinite path{e = w0,w1,w2, . . .}
such that eachwn has at least three neighbors. For alln � 1, letvn be a neighbor ofwn−1

other thanwn−2 andwn, and pick a path[vn = vn,n, vn,n+1, . . .] either infinite or ending
at a terminal vertex, with|vn,i | = i. Define a distributionµ on Ω by settingµ(Ω) = 0,
µ(Ivn,i ) = 1, µ(Iwn) = −n, µ(Iu) = 0 if u �= wn,vn,i , for all n andi. By construction, the
intervalsIvn are pairwise disjoint andµ is finitely additive on all intervals. Thusµ ∈ D,
but cannot be extended to a complex measure since otherwise its extension would

µ
(∐

Ivn

)
=

∑
n

µ(Ivn) = ∞,

where the symbol
∐

stands for disjoint union. On the other hand,µ cannot be extended t
a signed measure either since otherwise the classω defined by the path[w0,w1,w2, . . .]
would satisfyµ({ω}) = limn→∞ µ(Iwn) = −∞. Soµ would attain the values∞ and−∞.
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As is customary, a function on a treeT will mean a function on its set of vertices. Ifp

is a nearest-neighbor transition probability onT , theLaplacianof a functionf :T → C is
defined as∆f = µ1f − f , where

µ1f (v) =
∑
u∼v

p(v,u)f (u).

A functionf onT is said to beharmonicif its Laplacian is identically zero.
In this work, we shall assume thatT is a tree (not necessarily homogeneous) roote

e endowed with an isotropic transition probability. By [2], there is aone-to-one correspon
dence between the harmonic functions onT and the distributions onΩ .

Observe that if[v0, v1, . . .] is an infinite path starting ate, then

Ivj − Ivj+1 =
∐

u∈Cj

Iu,

whereCj is the set consisting of the children ofvj unequal tovj+1. Thus, for eachv ∈ T

with |v| = n, we have

Ω =
n−1⋃
j=0

(Ivj − Ivj+1) ∪ Iv, (1)

a finite disjoint union of intervals.
Denote byλ theLebesgue measureonΩ : if for any v ∈ T , qv is the number of forward

neighbors ofv, then

λ(Iv) = 1

cv

, wherecv =
{∏|v|−1

j=0 qvj if v �= e,

1 if v = e.

The Lebesgue measure is the unique probability measure onΩ such thatλ(Iv) is divided
evenly among the intervals defined by all the forward neighbors ofv.

Definition 1.1. We say that a distributionµ onΩ is absolutely summableif for any count-
able collection{In} of pairwise disjoint intervals,

∑
µ(In) is absolutely convergent.

It is easy to see that a nonnegative distribution is absolutely summable: if{In} is a finite
collection of intervals, then its complement inΩ is a finite union of intervalsJm. Thus∑

µ(In) �
∑

µ(In) +
∑

µ(Jm) = µ(Ω) < ∞.

Thus if {In} is an infinite collection of pairwise disjoint intervals,µ(Ω) is an upper bound
for

∑
µ(In).

Let M be the space of complex (Borel) measures onΩ and letMAC be the subspac
of measures which are absolutely continuous with respect toλ. Let DAS be the space o
distributions which are absolutely summable, and letDFTV be the space of distribution
with finite total variation (see Definition 3.3).

Definition 1.2. Let B0 be the space of distributionsν onΩ satisfying the condition∑
v �=e

∣∣∣∣ν(Iv) − 1

qv−
ν(Iv−)

∣∣∣∣ < ∞.
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Notice thatλ(Iv) = λ(Iv−)/qv− , so that the above sum measures how farν is from being
a multiple ofλ.

We summarize the results of this paper by

B0 � MAC � M =DAS =DFTV �D. (2)

The results that are most difficult to prove are the proper containment ofB0 in MAC
(see Theorem 2.1) and the equalityM =DAS =DFTV (see Theorem 3.2).

All the results of this paper translate directly to good ultrametric spaces, for examp
thep-adic integers or thep-adic rationals. All the details are shown in Section 5.

2. The space B0

In [5], we introduced the spaceBα , for all α � 0, for the purpose of studying the boun
ary behavior of polyharmonic functions on homogeneous trees of degreeq + 1. The space
Bα turns out to be precisely the Besov–Lipschitz spaceBα

1,1 defined in [4] which can be
identified with the space of distributionsν such that∑

v �=e

qα|v|
∣∣∣∣ν(Iv) − 1

q
ν(Iv−)

∣∣∣∣ < ∞.

Proposition 2.1. Let ε :T → C be such that∑
w−=v

ε(w) = 0 for all v ∈ T . (3)

Define

µ(Iv) =
|v|∑

j=0

ε(vj )∏|v|−1
k=j qvk

, (4)

where we recall[v0, v1, . . . , v|v|] is the path frome to v. Thenµ ∈D. Conversely, ifµ ∈ D,
then the functionε defined by

ε(v) =
{

µ(Iv) − 1
qv− µ(Iv−) if v �= e,

µ(Ie) if v = e,
(5)

satisfies(3) and(4).

Proof. Assume firstε satisfies condition (3) and letµ be defined as in (4). To prove th
µ ∈ D, it suffices to show that∑

w−=v

µ(Iw) = µ(Iv).

But for w− = v,

µ(Iw) = 1
µ(Iv) + ε(w).
qv
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Thus ∑
w−=v

µ(Iw) =
∑

w−=v

1

qv

µ(Iv) +
∑

w−=v

ε(w) = µ(Iv).

For the converse, assumeµ ∈D andε satisfies(5). Then forv ∈ T , we have∑
w−=v

[
µ(Iw) − 1

qv

µ(Iv)

]
=

∑
w−=v

µ(Iw) − µ(Iv) = 0

and

|v|∑
j=0

ε(vj )∏|v|−1
k=j qvk

=
|v|∑

j=1

µ(Ivj ) − µ(Ivj−1)/qvj−1∏|v|−1
k=j qvk

+ µ(Ie)∏|v|−1
k=0 qvk

= µ(Iv),

completing the proof. �
It now follows thatµ ∈ B0 if and only if the corresponding functionε onT satisfies the

condition
∑

v∈T |ε(v)| < ∞.

Theorem 2.1. (a) If µ ∈ B0, thenµ can be extended to a complex measure on the B
sets ofΩ which is absolutely continuous with respect toλ.

(b) There exist measures which are absolutely continuous with respect toλ but are not
in B0.

Proof. Assumeµ ∈ B0. Let ε be the function corresponding toµ in Proposition 2.1. Ob
serve that ifω ∈ Ω and[e,ω) = [ω0,ω1,ω2, . . .], we have

ε(ωk) = µ(Iωk ) − 1

qωk−1

µ(Iωk−1).

Thus

cvµ(Iv) =
|v|∑

n=1

[
cvnµ(Ivn) − cvn−1µ(Ivn−1)

] + µ(Ie),

whence

cvµ(Iv) − µ(Ie) =
|v|∑

n=1

cvnε(vn).

Consequently, limn→∞ cωnµ(Iωn) exists if and only if
∑∞

n=0 cωnε(ωn) exists. To show tha
this is finiteλ-a.e., we show that∫

Ω

∞∑
n=0

cωn

∣∣ε(ωn)
∣∣dλ(ω)

is finite. By Fubini’s theorem and using the fact thatcvλ(Iv) = 1, we obtain
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fore,
∫
Ω

∞∑
n=0

cωn

∣∣ε(ωn)
∣∣dλ(ω) =

∞∑
n=0

∫
Ω

cωn

∣∣ε(ωn)
∣∣dλ(ω) =

∞∑
n=0

∑
|v|=n

cv

∣∣ε(v)
∣∣λ(Iv)

=
∞∑

n=0

∑
|v|=n

∣∣ε(v)
∣∣ =

∑
v∈T

∣∣ε(v)
∣∣ < ∞. (6)

Thus, we may define

F(ω) =
∞∑

j=0

cωj ε(ωj ) λ-a.e.,

which by (6) is inL1(λ).
Let v ∈ T with |v| = n, and recall that forj > n, Dj(v) is the set of descendants ofv

of lengthj . Using(3), we have∫
Iv

F (ω) dλ(ω) =
∞∑

j=0

∫
Iv

cωj ε(ωj ) dλ(ω)

=
n∑

j=0

∫
Iv

cvj ε(vj ) dλ(ω) +
∞∑

j=n+1

∑
w∈Dj (v)

∫
Iw

cwε(w)dλ(ω)

=
n∑

j=0

cvj

ε(vj )

cv
+

∞∑
j=n+1

∑
w∈Dj (v)

ε(w)

=
n∑

j=0

ε(vj )∏n−1
k=j qvk

= µ(Iv).

Thusdµ extends to the complex measureFdλ on the Borel sets ofΩ , completing the
proof of (a).

The proof of (b) is modeled on Exercises 6–8 in Section 3.3 of [1]. We shall, there
eliminate many of the details.

Let f :T → C be a function such thatf (v) = 0 for all v ∈ T , |v| � 1. For each vertex
v with |v| � 1 let {f (w): w− = v} be the set of theqv th roots of unity.

For eachn ∈ N, let Rn andSn be the functions onΩ defined by

Rn(ω) = f (ωn), Sn(ω) =
n∑

j=1

Rj (ω)

j
.

Note that for any vertexv �= e, Rn is constant onIv if |v| � n, and∑
u∈Dn(v)

f (u) = 0

since the sum of theq th roots of unity is 0 for all integersq > 1. Thus∫
Rn dλ = 0 if |v| < n. (7)
Iv
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Ω

Rj R̄k dλ =
∑
|v|=j

Rj

∫
Iv

R̄k dλ = 0.

Using this, one can prove that the sequence{Sn} is Cauchy inL2(λ). This implies that{Sn}
is convergent inL2(λ) (and hence also inL1(λ)) to some functionS. We claim that{Sn}
converges toS pointwiseλ-a.e.

Let N,k,n ∈ N, N � k < n, and letv ∈ T with |v| = k. ThenSN −Sk is constant onIv ,
and we can show that∫

Iv

|SN − Sn|2 dλ �
∫
Iv

|SN − Sk|2 dλ.

Givenδ > 0, let

Ak = {
ω ∈ Ω :

∣∣SN(ω) − Sj (ω)
∣∣ � δ for all j, N � j < k, and∣∣SN(ω) − Sk(ω)
∣∣ > δ

}
and define

A = {
ω ∈ Ω :

∣∣SN(ω) − Sk(ω)
∣∣ > δ for somek, N < k < n

}
.

Note thatA = ⋃n−1
k=N+1 Ak , a disjoint union. SupposeAk ∩ Iv �= ∅. SinceSN − Sj is con-

stant onIv for all j � k, it follows thatIv ⊂ Ak . ThusAk is the disjoint union of intervals
generated by vertices of lengthk. We get

λ(A) � 1

δ2

∫
A

|SN − Sn|2 dλ � 1

δ2‖SN − Sn‖2
L2(λ)

.

For eachM,N ∈ N, consider the set

AM,N = {
ω ∈ Ω :

∣∣SN(ω) − Sk(ω)
∣∣ > 1/M for somek > N

}
.

Define

E =
∞⋃

M=1

∞⋂
N=1

AM,N .

If ω ∈ Ω − E, then for eachM ∈ N there existsN ∈ N such that for alln1, n2 ∈ N with
n1 > n2 > N ,∣∣Sn1(ω) − Sn2(ω)

∣∣ �
∣∣Sn1(ω) − SN(ω)

∣∣ + ∣∣Sn2(ω) − SN(ω)
∣∣ < 2/M,

and so the sequence{Sn(ω)} converges. To complete the proof of the claim, it remain
show thatλ(E) = 0. Sinceλ(AM,N) � M2‖SN − S‖2

L2(λ)
, we obtain

λ

( ∞⋂
N=1

AM,N

)
� M2 lim

N→∞ ‖SN − S‖2
L2(λ)

= 0.

It follows thatλ(E) = 0.
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For eachv ∈ T , let us defineµ(Iv) = ∫
Iv

S dλ. Then, using (7) and the fact thatRn is
constant onIv for n � |v|, we have

µ(Iv) =
|v|∑

n=1

f (vn)

n

1

cv

.

Thus ∑
v �=e

∣∣∣∣µ(Iv) − 1

qv−
µ(Iv−)

∣∣∣∣ =
∑
v �=e

|f (v)|
|v|cv

=
∞∑

n=1

∑
|v|=n

1

ncv

=
∞∑

n=1

1

n

∑
|v|=n

λ(Iv) =
∞∑

n=1

1

n
= ∞.

Thereforeµ /∈ B0. This completes the proof of the proper inclusionB0 � MA. �

3. Extending distributions to complex measures

In this section we explore the conditions needed for a distribution onΩ to extend to a
complex measure on the Borel sets ofΩ .

Lemma 3.1. Let I1, . . . , IN , J1, J2, . . . , be intervals such that

N⋃
n=1

In =
∞⋃

m=1

Jm. (8)

Then there existsM ∈ N such that
N⋃

n=1

In =
M⋃

m=1

Jm.

Proof. The set{Jn} is an open cover of the left-hand side of (8), which is compact. T
there exists a finite subcover.�
Lemma 3.2. Assume

S =
∞∐

n=1

In =
∞∐

m=1

Jm,

where the setsIn andJm are intervals. Then there exists a sequence of intervals{Lk}k∈N

such that

S =
∞∐

k=1

Lk

and such that eachIn and eachJm is a finite union ofLk ’s.
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Proof. Well order the set of pairs{(n,m): In ∩ Jm �= ∅} and let thekth element beLk =
In ∩ Jm and use the notationk ∼ (n,m) for this correspondence. Since the intersection
two intervals is one or the other or is empty,Lk is eitherIn or Jm. The setsLk are pairwise
disjoint and their union isS. If In is contained in someJm, thenLk = In, wherek ∼ (n,m).
If In containsJm1, . . . , Jmt (a finite set by Lemma 3.1), then

In =
∐

ki∼(n,mi ),1�i�t

Lki .

By symmetry, the same is true of the intervalsJm. �
Theorem 3.1. Let {In} and{Jm} be sequences of pairwise disjoint intervals such that

∞∐
n=1

In =
∞∐

m=1

Jm.

If µ is an absolutely summable distribution, then
∞∑

n=1

µ(In) =
∞∑

m=1

µ(Jm).

Proof. By Lemma 3.2, it suffices to assume that each intervalIn is a finite union ofJm ’s.
By the absolute summability ofµ, we may assume that the ordering is consistent with
unions, that is, that for allN ∈ N there existsMN ∈ N such that

N∐
n=1

In =
MN∐
m=1

Jm.

Fix ε > 0. Since
∑∞

n=1 µ(In) and
∑∞

m=1 µ(Jm) are absolutely summable, there ex
N ′ ∈ N andM ′ ∈ N, M ′ � MN ′ , such that∑

n>N ′

∣∣µ(In)
∣∣ < ε/2 and

∑
m>M ′

∣∣µ(Jm)
∣∣ < ε/2.

Let N ∈ N be such thatN > N ′ andM = MN � M ′. Then

N∐
n=1

In =
M∐

m=1

Jm,

∣∣∣∣∣
∞∑

n=1

µ(In) −
N∑

n=1

µ(In)

∣∣∣∣∣ < ε/2 and

∣∣∣∣∣
∞∑

m=1

µ(Jm) −
M∑

m=1

µ(Jm)

∣∣∣∣∣ < ε/2.

Since
∑N

n=1 µ(In) = ∑M
m=1 µ(Jm), we obtain∣∣∣∣∣

∞∑
n=1

µ(In) −
∞∑

m=1

µ(Jm)

∣∣∣∣∣ < ε,

proving the result. �
We now recall some basic definitions from measure theory.
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Definition 3.1. A collectionA of subsets of a setX containing∅ andX is called analgebra
of sets(respectively,σ -algebra of sets) if the union of any two (respectively, countab
many) elements ofA is also inA and the complement of any set inA is in A.

Definition 3.2. A measure on an algebrais a nonnegative extended real-valued set func
µ defined on an algebra of setsA such thatµ(∅) = 0 and for any disjoint sequence{Ei} of
sets inA whose union is also inA,

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

Proposition 3.1. Any nonnegative distributionµ ∈ D can be extended uniquely to a no
negative finite measure on the Borel sets ofΩ .

Proof. LetA be the algebra generated by the intervals. Given any two intervals, eithe
are disjoint or one is contained in the other. Recalling Observation 1.1, we then getA
consists of the empty set and all finite disjoint unions of intervals. By Lemma 3.1, the
no infinite disjoint unions of (nonempty) intervals inA. Thus, ifµ ∈ D is nonnegative, it is
a finite measure on the algebraA. By the Carathéodory extension theorem (cf. [9, p. 29
µ can be extended to a measure on the smallestσ -algebra containingA, i.e., theσ -algebra
of the Borel sets ofΩ . Furthermore, asµ(Ω) < ∞ such an extension is unique.�
Definition 3.3. Let µ be a distribution. Then define an extended real-valued functio
intervals as follows:

|µ|(Iv) = sup
∑∣∣µ(Iwα )

∣∣
taken over all partitions{Iwα } of Iv . Observe that|µ| extends to a finitely additive extende
real-valued function on finite unions of intervals. In particular, if|µ|(Ω) is finite, then|µ|
is a nonnegative distribution. We call|µ| thetotal variationof µ.

By Lemma 3.1 any partition{Iwα } of Iv is finite. In particular, ifn = max|wα|, then∑ |µ(Iwα )| � ∑
u∈Dn(v) |µ(Iu)|. Thus

|µ|(Iv) = lim
n→∞

∑
u∈Dn(v)

∣∣µ(Iu)
∣∣.

In [10, Theorems 6.2 and 6.4] it is shown that ifµ extends to a measure, then|µ| can
be extended to a finite-valued measure. We shall prove a stronger version of this re
caseµ is merely a distribution. Specifically, we show that a distributionµ is absolutely
summable if and only if its total variation can be extended to a finite-valued measur
this holds if and only ifµ itself can be extended to a measure.

The following result is reminiscent of Lemma 6.3 of [10], but is more elementary.

Lemma 3.3. For N ∈ N let a1, . . . , aN ∈ R be such that
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N∑
j=1

|aj | �
∣∣∣∣∣

N∑
j=1

aj

∣∣∣∣∣ + 2.

Then for allk ∈ {1, . . . ,N},∑
j �=k

|aj | � 1.

Proof. Assume
∑

j �=k |aj | < 1. Then by two applications of the triangle inequality, w
obtain

N∑
j=1

|aj | < 1+ |ak| < 2−
∑
j �=k

|aj | + |ak| � 2+
∣∣∣∣∣

N∑
j=1

aj

∣∣∣∣∣. �

We are now ready to prove the main result of this section.

Theorem 3.2. Letµ ∈ D. Then the following statements are equivalent:

(a) µ ∈ M.
(b) µ is absolutely summable.
(c) |µ|(Ω) < ∞.

Proof. (a)⇒ (b) If µ ∈ M, then for any countable collection{In} of nonoverlapping in-
tervals the value of

∑
n µ(In) is independent of the ordering of the index set and thus

series
∑

n µ(In) must be absolutely convergent.
(b) ⇒ (c) Assume|µ|(Ω) is infinite. Then there exists an infinite sequence of vert

{v0, v1, . . .} with v0 = e, |vj+1| > |vj |, and such that for eachj , |µ|(Ivj ) = ∞. Thus for
eachj , there existsmj ∈ N such that∑

u∈Dmj
(vj )

∣∣µ(Iu)
∣∣ �

∣∣µ(Ivj )
∣∣ + 2.

By Lemma 3.3, it follows that∑
u∈Dmj

(vj ), u �=vmj

∣∣µ(Iu)
∣∣ � 1.

DefineAj = {u ∈ Dmj (vj ): u �= vmj }. By passing to a subsequence we may assume w
out loss of generality that|vj+1| > mj for everyj . Thus{Iu: u ∈ Aj , j ∈ N} is a collection
of nonoverlapping intervals. SettingA = ⋃∞

j=1 Aj , we obtain

∑
u∈A

∣∣µ(Iu)
∣∣ =

∞∑
j=1

∑
u∈Aj

∣∣µ(Iu)
∣∣ = ∞.

Thus,µ is not absolutely summable.
(c) ⇒ (a) If |µ|(Ω) is finite, then|µ| is a nonnegative distribution such that|µ|(Iv) �

|µ(Iv)|, for eachv ∈ T . Thus|µ| andρ = µ + |µ| are both nonnegative distributions. B
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Proposition 3.1, there exist unique measures|̂µ| and ρ̂ on the Borel sets ofΩ which are
extensions of|µ| andρ, respectively. Then̂ρ − |̂ν| is a finite signed measure on the Bo
sets ofΩ which is an extension ofµ. �

4. Decomposition theorems

We now want to find out how far a distribution is from being a measure. Letv be a
vertex such that|µ|(Iv) < ∞. By considering the tree of descendants ofv whose boundary
is exactlyIv , it follows from Theorem 3.2 thatµ may be extended to a measure.

Definition 4.1. Let A ⊂ Ω be a union of intervals. A distributionµ onA is called aquasi-
measureif for every intervalI ⊂ A, µ|I can be extended to a complex measure.

If µ is a real-valued quasi-measure onA, thenB is apositive set(respectively,negative
set) for µ if for every intervalI ⊂ A, and measurable setC ⊂ B ∩ I , µ(C) � 0 (respec-
tively, µ(C) � 0).

A real-valued quasi-measure does not necessarily extend to a signed measure
there may be subsets with measure+∞ and subsets with measure−∞. On the other
hand, a positive- (respectively, negative-) valued quasi-measure does extend to a
(respectively, negative) measure.

Definition 4.2. (a) Letµ be a distribution and letν be a positive distribution onΩ . We say
thatµ is absolutely continuouswith respect toν, and writeµ � ν, if µ(I) = 0 for every
interval such thatν(I) = 0.

(b) We say that a distributionµ is concentratedonA ⊂ Ω if µ(I) = 0 wheneverI is an
interval such thatI ∩ A = ∅.

(c) We say that two distributionsµ andν aremutually singular, and writeµ ⊥ ν, if
there exist disjoint setsB andC such thatµ is concentrated onB andν is concentrated
onC.

We now give a version of the Hahn, Jordan, and Lebesgue–Radon–Nikodym dec
sition theorems for quasi-measures.

Theorem 4.1. LetA ⊂ Ω be a union of intervals and letµ be a quasi-measure onA.

(a) (Jordan decomposition)If µ is real-valued, then there exist positive measuresµ+ and
µ− onA such that for any intervalI ⊂ A, µ(I) = µ+(I) − µ−(I).

(b) (Hahn decomposition)If µ is real-valued, then there exist a positive setB and a neg-
ative setC for µ such thatB ∪ C = A.

(c) (Lebesgue–Radon–Nikodym decomposition)If ν is a positive quasi-measure onA,
then there exists a unique pair(µa,µs) of distributions onA such thatµ = µa + µs ,
µa � ν, µs ⊥ ν. If µ is positive and finite, then so areµa and µs . Moreover, there
exists a uniqueh ∈ L1(ν) such thatµa(E) = ∫

E hdν for each finite union of interval
E in A.
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Proof. (a) The total variation ofµ is a positive quasi-measure, hence can be extende
finite positive measure onA. Similarly, (|µ| + µ)/2 and(|µ| − µ)/2 can be extended to
finite positive measuresµ+ andµ− onA.

(b) LetC be the support ofµ−, andB = A − C.
(c) Sinceν is a positive quasi-measure onA, we may assume it has been extended

measure onA. Write A = ∐∞
n=1 In, whereIn are (pairwise disjoint) intervals. Letµn be

the measure which extendsµ|In onIn and is 0 onA− In. Thenµ = ∑∞
n=1 µn, i.e., for any

finite union of intervalsE, µ(E) = ∑∞
n=1 µn(E). Clearly, the support ofµn is in In. Then

by the classical Lebesgue–Radon–Nikodym decomposition theorem, there exist me
µn,a andµn,s with support inIn such thatµn = µn,a + µn,s , µn,a � ν, µn,s ⊥ ν, and
there exists a uniquehn ∈ L1(ν) with support inIn such thatµn,a(E) = ∫

E
hn dν for each

finite union of intervals inA. Thenµa = ∑
µn,a , µs = ∑

µn,s andh = ∑
hn satisfy the

conclusion of the theorem. If, moreover,µ is positive, then it can be extended to a meas
and the result follows from the classical case.�
Definition 4.3. Given a distributionµ, themeasure support ofµ is defined by the set

Aµ =
⋃

{v∈T : |µ|(Iv)<∞}
Iv.

Clearly, if Aµ = Ω , thenµ can be extended to a measure by Theorem 3.2.
Furthermore, the measure support of a distribution is the largest set on which

decomposition theorems hold, by Theorem 4.2 below.
In the following two examples, letT3 denote a homogeneous tree of degree 3.

Example 4.1. Let µ be the distribution in Example 1.1 applied toT3. Notice that for every
vertexv /∈ {wk: k = 0,1, . . .}, µ(Iv) = 2−|v|+n, wheren is the largest integer such thatv is
a descendant ofvn, orµ(Iv) = 0 if v is not a descendant ofv1 or w1. Sinceµ|Iv is positive,
it is absolutely summable and so it can be extended to a positive measure. We thus
aσ -finite measure on the noncompact spaceΩ − {ω0}, where[w0,w1, . . .] = [e,ω0). It is
σ -finite because it can be written as the countable union of set of finite measure, namely

Ω − {ω0} = Iu1 �
∞∐

n=1

Ivn ,

whereu1 is the neighbor ofe other thanv1 andw1. If I is any interval containingω0, then
µ|Ω − I can be extended to a finite nonnegative measure. Thus the measure suppµ
is Ω − {ω0}.

The following is an example of a distribution onT3 whose measure support is the em
set.

Example 4.2. Let µ(Ω) = 0,µ(Iv1) = µ(Iu1) = 1 andµ(Iw1) = −2, where, we recall,u1,
v1, andw1 are the neighbors ofe. Now assume thatv is a vertex with childrenu andw such
thatµ(Iv) �= 0. Then letµ(Iu) = −signµ(Iv) andµ(Iw) = µ(Iv) − µ(Iu). Consequently
every vertexv has a path of descendants[x1, x2, . . .] such thatµ(Ixn) → −∞ as well as
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one going to+∞. In particular,|µ|(Iv) = ∞ for every vertexv. Thus, the measure suppo
of µ is the empty set.

In general, we cannot get a Jordan decomposition of a distribution which is no
solutely summable because if we could writeµ = µ+ − µ− with µ+,µ− positive distrib-
utions, thenµ+ andµ− could be extended to finite positive measures, soµ itself would be
extendible to a finite signed measure, contradicting Theorem 3.2.

Theorem 4.2. Letµ be a distribution which is not absolutely summable(so thatAµ �= Ω).
If I is an interval inΩ −Aµ, then for all positive integersn there exist finite disjoint union
of intervalsJn andKn in I such thatµ(Jn) > n andµ(Kn) < −n.

In particular, if µ is not an absolutely summable distribution, then there cannot
Hahn decomposition on the complement ofAµ: Ω − Aµ = B ∪ C, with B andC disjoint,
µ positive onB and negative onC.

Proof. Assume that we cannot find the setsKn satisfying the conditionµ(Kn) < −n.
That is, suppose there exists a natural numberN such that for all finite disjoint union
of intervalsK ⊂ I , µ(K) � −N . Since the complement (with respect toI ) of a finite
disjoint union of intervals is also a finite disjoint union of intervals, ifK ′ is such a set, the
µ(K ′) � µ(I) + N . So for each such setK, −N � µ(K) � µ(I) + N . Thus, there exist
some positive numberM such that−M � µ(K) � M. Let {Ij } be a finite set of disjoin
intervals whose union isI . Let K be the union of theIj with µ(Ij ) � 0 and letK ′ be the
union of theIj with µ(Ij ) < 0. Then∑∣∣µ(Ij )

∣∣ = µ(K) − µ(K ′) � 2M.

Thusµ is of bounded variation onI , a contradiction.
Similarly replacingµ by −µ, we see that the setsJn ⊂ I satisfyingµ(Jn) > n must

exist. �

5. Good ultrametric spaces

Definition 5.1. A metric d on a spaceX is said to be anultrametric if for any points
x, y, z ∈ X, d(x, y) � max{d(x, z), d(y, z)}, or equivalently, two of the three value
d(x, y), d(x, z), d(y, z) are the same and the third is no larger.

Note that in any ultrametric space(X,d), if x ∈ X, r > 0, and

y ∈ Br(x) = {
v ∈ X: d(v, x) � r

}
,

thenBr(y) = Br(x). Thus, if z ∈ X, s > 0, andy ∈ Br(x) ∩ Bs(z), thenBr(x) = Br(y)

andBs(z) = Bs(y). Hence, if two balls intersect, then the ball with the smaller radiu
contained in the other.
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Definition 5.2. An ultrametricd is said to begood(cf. [3]) if the set

D = {
d(x, y): x, y ∈ X, x �= y

}
is discrete, has 0 as a limit point, and if each ballBr(x) is compact.

Observation 5.1. Every infinite compact ultrametric space is good.

Proof. AssumeX is an infinite compactultrametric space. Trivially, it is locally compact.
Forx ∈ X let Dx = {d(x, y): x �= y} so that

D =
⋃
x∈X

Dx.

We first show thatDx is discrete. Assumer ∈ Dx and there is a sequence{xn} in X such
thatd(xn, x) �= r but limn→∞ d(xn, x) = r. SinceX is compact, we may assume that{xn}
converges to some pointx0. Then

d(x, x0) = lim
n→∞ d(x, xn) = r.

Sinced(x, xn) �= r, d(xn, x0) = max{d(x, xn), d(x, x0)} � r, which contradicts the con
vergence. Thus,Dx is discrete.

Forx ∈ X andr > 0, letDr
x = Dx ∩ [r,∞), and setDr = D ∩ [r,∞) = ⋃

x∈X Dr
x . By

the ultrametric property, ify ∈ Br(x), thenDr
y = Dr

x . For a fixedr there existx1, . . . , xn

∈ X such thatX = ⋃n
k=1 Br(xk) and thus,Dr = ⋃n

k=1 Dr
xk

is discrete. This proves thatD

is discrete.
To show thatD has 0 as a limit point, assumeε > 0 is a lower bound ofD. Let {xn} be

an infinite sequence of distinct points ofX. Then forn �= m, d(xn, xm) > ε, so{xn} has no
convergent subsequences which contradicts the compactness ofX. Thus, 0 must be a limi
point ofD. SinceD is discrete, balls are both open and closed, hence compact.�
Example 5.1. Let T be a rooted tree with boundaryΩ such that no vertex has exact
two neighbors and letf be a positive function onT whose values along any path fro
the root to the boundary decrease to zero. Ifω andω′ are distinct boundary points, le
d(ω,ω′) = f (ω ∧ ω′). Then(Ω,d) is a compact ultrametric space.

Example 5.2. Let T be a rooted tree with boundaryΩ and a distinguished bounda
point ω0. Let f be a positive function onT with discrete range whose values along a
path to any boundary point other thanω0 decrease to zero and whose values along any
tending toω0 increase to∞. If ω,ω′ ∈ Ω −{ω0} are distinct, then the doubly infinite pat
(ω,ω0) and(ω′,ω0) have as their intersection an infinite path[v,ω0). Defineω ∨ ω′ = v

and setd(ω,ω′) = f (ω∨ω′). Then(Ω −{ω0}, d) is a good ultrametric space which is n
compact since distancescan be arbitrarily large.

We now give a brief description of the main ideas of Choucroun’s elegant pap
which yield the converse construction.

If (X,d) is a good ultrametric space, we can construct a treeT whose verticesv corre-
spond to the ballsBv of X and whose edges are defined as follows. Ifv andv′ are vertices
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there is an edge between them if one of the ballsBv andBv′ is strictly contained in the
other, but no other ball fits properly between them. Givenx ∈ X, let {dn}n�0 be the de-
creasing sequence of elements ofDx . Let vn(x) be the vertex corresponding toBdn(x)

and letv(x) be the boundary point corresponding to the path[v0(x), v1(x), . . .]. The map
v :X → Ω is one-to-one, indeed, it is an isometry if we provideΩ with the ultrametric
corresponding to the functionf (v) = diameter(Bv).

If X is compact, thenX is itself a ball and the corresponding vertex serves as the
of the tree. Every boundary point yields a path from the root which then correspond
decreasing sequence of balls, and hence whose intersection is some point ofX. Thusv is
onto.

The equivalence of compact ultrametric spaces and boundaries of trees was also poi
out in [6] and [8], and in [7], for the case of homogeneous trees.

If X is not compact, thenD is not bounded above and we can take a strictly increa
maximal sequence of balls whose union is all ofX. The path of the corresponding vertic
goes to a boundary pointω0 which is independent of the sequence we have chosen.
is the only boundary point which is not in the image ofv, and thus,X is in one-to-one
correspondence withΩ − {ω0}.

In both cases, having definedf (v) to be the diameter of the ballBv , the correspondin
ultrametric on the boundary of the tree or the boundary with a point removed yiel
isometry ontoX.

Our aim is to translate all the results of this paper to a good ultrametric spaceX. We
shall explain the translation below. The case ofX compact follows precisely from what w
have done in the earlier sections, sinceX may be identified with the boundary of a tree.

In order to understand the noncompact case, we need to study these question
noncompact ultrametric spaceX = Ω − {ω}. Let µ be a distribution onΩ . Then define a
distributionµ̃ onX by µ̃(I ) = µ(I) − µ(Ω)λ(I). µ̃ is then a finitely additive function o
the intervals not containingω, i.e., on the balls ofX. Conversely, letµ̃ be a distribution
onX. Let I = Iωn be an interval containingω, and define

µ(I) = −
∑

|v|=n, v �=ωn

µ̃(Iv).

This yields a one-to-one correspondence between the distributionsµ on Ω such that
µ(Ω) = 0 and the distributions̃µ on X. Since any distributionν on Ω is of the form
µ + cλ whereµ(Ω) = 0 andλ ∈ B0, this does not affect any of our inclusions which w
be proved to be valid onΩ − {ω}.

Thus we may identify a good ultrametric spaceX with Ω or Ω − {ω} (depending on
whether or notX is compact), whereω ∈ Ω = ∂T for some treeT . The intervalsIv ⊂ Ω

correspond to ballsBv ⊂ X. Just as eachIv is the disjoint union
∐

w−=v Iw , each ballB in
X is the disjoint union of smaller balls none of which is contained in a larger ball str
contained inB. Thus we get a natural definition of the distributions onX. Borel measure
onX are taken with respect to the balls.

If B is a ball of a good ultrametric space, letq(B) be the number of proper maxim
sub-balls.



106 J.M. Cohen et al. / J. Math. Anal. Appl. 293 (2004) 89–107

ise

ther.
on an

-

ct
er

clud-

3 (1994)
For the compact case, Lebesgue measure onX is well defined by lettingλ(X) = 1, and
if B ′ is a maximal proper sub-ball of a ballB, thenλ(B ′) = λ(B)/q(B). All the spacesB0,
MAC, M, DAS, DFTV, D are easily defined in terms of the spaceX.

For the noncompact case, the Lebesgue measure onX requires fixing a ballB̂0. By the
discreteness ofD, there is a unique strictly increasing maximal sequence of balls{B̂n}n�0

which coversX. Let qn = q(B̂n) for n > 0 andq0 = q(B̂0) + 1. Then defineλ(B̂n) =
1− 1/q0q1 . . . qn and otherwise extend as in the compact case. A distribution onX then is
a finitely additive function on the balls. Using the notationB− for the smallest ball strictly
containingB, a distributionµ is in B0 if∑

B �=B̂n

∣∣∣∣µ(B) − 1

q(B−)
µ(B−)

∣∣∣∣ < ∞.

The spaceMAC is defined as the set of multiples ofλ by anL1-function with respect toλ,
andµ ∈ DAS if and only if

∑
µ(Bn) converges absolutely for each sequence of pairw

disjoint balls.
Since any two choices of{B̂n}n�0 are eventually the same, the spaceB0 is well defined,

and for any two choices ofλ, each one is absolutely continuous with respect to the o
Thus all of the classes are well defined and so all the results in this paper now hold
arbitrary good ultrametric space.

Similarly, a complex measure onX corresponds to a complex measureµ on Ω such
thatµ(Ω) = 0.

Notice that the absolutely summable measures onX correspond exactly to the ab
solutely summable measures onΩ since any disjoint union of intervals onΩ differs by
at most one interval from a disjoint union of intervals inX. Furthermore, sinceX andΩ

differ by one point, the correspondingL1 spaces with respect toλ are the same.

Example 5.3. Let p be a prime. Every rational numberr can be written uniquely asr =
(m/n)pq , whereq,m,n are pairwise relatively prime integers,n > 0. Set |r|p = p−q .
Thend(r1, r2) = |r1 − r2|p is an ultrametric onZ andQ. The completions with respe
to d yield the good ultrametric spacesZ(p) andQ(p), the former compact and the latt
noncompact.

More generally, letR be a discrete valuation ring with valuationν. If d(r1, r2) =
ν(r1 − r2) for r1, r2 ∈ R thend is an ultrametric, and the completion ofR with respect
to d is a good ultrametric space.

Thus all the results of this paper are valid on complete discrete valuation rings, in
ing Z(p) andQ(p).
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