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1. INTRODUCTION

Let n be a positive integer. Let R”*'= {(x, 1)eR"*':t>0} denote the
upper half-plane in R"*'. For Ec R”, let E¢ denote its complement R"\ E.
If E is measurable, let | £| denote its Lebesgue measure. We will let d
denote a continuous, translation invariant pseudo-distance on R” for which
there is an r >0 such that the d-balls satisfy | B(0, 1)} ~ 1" {see Sect.2). By
modulus of continuity we mean a real-valued, monotone nondecreasing,
subadditive function w on R such that w(0)=0. When convenient we will
assume  is constant outside the interval [0, 1]. For > 1, we say that w
is a-allowed if »'(0)= > and d *(x, 0) w(d*(x, 0)) is locally integrable.

Let x> 1, ¢>£>0, and u a real-valued function on R"*"'. Let w be a
modulus of continuity. Define

L Julx )
D x)=1 —_— 1.1
w2 #(X) 'frllanfw(w(o, o (1.1)
where the lim inf is taken over those (y, 7) satisfying
(c—g)t<d*(y,0)<(c+e)t. (1.2)

In the sequel, ¢ and ¢ shall be fixed once and for all, so we suppress them
in this notation.

In this paper we characterize the set of points of R" where the
generalized lower derivative defined by (1.1) and (1.2) is positive in case u
1s of finite y-variation, 72 1. This class of functions, which we denote by
+BV, was first defined in [4]. See Section 2 for the definition. To obtain
this characterization, we define a set EcR” to be an (w, «)-set (the
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generalized BCH set of the title) if £ is a closed set of measure 0 such that,
for each bounded set B containing F,

[ o{d™(x, E))

dx < ., 13
| o (1.3)

Our principal result is

THEOREM 1. Let o,7=1, ¢>¢>0, and ueyBV, uz0. Let w bhe a
modulus of continuity such that " is an a-allowed modulus of continuity. If
a> 1, then

{x:D, u(x)>0} (1.4)

@, x

is a countable union of (w?, a)-sets. Conversely, given a set E=\) E, which
is a countable union of (w’, a)-sets contained in a fixed bounded open set B,
there exists a function u(x, t)eyBV such that, for every xe E,

D, u(x)= .

Examples of functions of finite y-variation are wu(x, #)= [u(B(x, 1)]'7,
where p is a finite measure on R”. Thus, in this case, the theorem charac-
terizes the set of points x such that g has eventual mass concentration
at least of the order of w™[|B(x+y. )] along the family of balls
approaching x as prescribed by (1.2).

In [2] related results are considered. In that paper, n and o are taken to
be 1, d is the usual Euclidean distance on the real line, and measures on
the unit interval [0, 1] € R? are considered (that is, y = 1 and « as described
in the previous paragraph). Upper and lower derivatives are defined with
respect to a modulus of continuity with the difference that the balls are
taken to be centered at the point rather than moving toward the point as
defined by (1.2). This allowed Berman to deduce results about the
perpendicular boundary behavior of positive harmonic functions. By
approaching the point as in (1.2), Theorem 1 allows us to deduce results
concerning the tangential boundary behavior of positive harmonic
functions (as well as many other classes of functions given by Poisson type
integrals of measures due to the general nature of the pseudo-distance o).
The characterizing set that arose in [2] was a generalized BCH set
considered first in [3] and defined as a closed subset E of [0, 1] such that
|E]=0 and

Y w(lL])< oo, (1.5)

where {1} are the arcs complementary to £ in [0, 1]. In Proposition 2 we
will characterize an (w, a)-set in terms of a Whitney decomposition of its
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complement, thus relating it more closely to the condition of (1.5). As this
seems to be the natural generalization of these sets to R”, we refer to them
as generalized BCH sets. We remark that the liminf results of [2]
described above differ somewhat from ours in that the condition on w of
the local integrability of d(x, 0)™* w(d(x,0) *) is not needed. We need
this condition in order that there be any nonempty (w, «)-sets at all and,
hence, that there exist nonempty sets defined by (1.4). The difference arises
from the fact that the balls in the lower derivative defined in this paper are
not centered at the point of interest.

The paper is organized as follows. In Section 2 we outline background
material we will need. In Section 3 we prove the result relating the
{w, 2)-sets to Whitney decompositions. In Section 4 we prove Theorem 1.
In Section 5 we show the relationship between generalized BCH sets and
Hausdorff measure.

2. PRELIMINARIES

Let d denote a translation invariant pseudo-distance on R" [6]. This
means d:R"xR”"— [0, ) and there exists K>=1 such that for all
X, 3, zeRY (1) dix,y)=0 iff x=y, (2) dix,yv)=d(y, x), (3) d(x,2)<
Kld(x, vY+d(y, )], $Ydx+z, y+zy=d(x, ), (S){B(x,r):r>0} forms
a base of open sets for the open neighborhoods of x in the Euclidean
topology, where B(x,r)= {ye R":d(x, y)<r}, and (6) for each 2> 0 there
exists 7(2) < o¢ such that | B(O, ar)} < ()| B(0, ¢)| for all 1>0.

As a consequence, it is shown in [6] that there exists an integer N such
that for each xeR" r>0, and me Z* the d-ball B(x, t) can contain at
most N points {x;} such that d(x,, x;)> 2~ "r. The quantities ¥ and X are
referred to as the constants of the pseudo-distance 4. The following result

will be used several times.

COVERING THEOREM [6, Théoréme 1.2, p.69). Let E be a bounded
subset of R” and let {B(x, r(x)): xe E} be a covering of E by d-balls. Then
there exists a disjoint sequence {B(x,, r(x;))} from this covering such that
{B(x,, kr(x,))} covers E, where k depends only on the constants of d.

In this paper we will assume the two additional conditions that d is
continuous and there exist ¢, ¢,, and r such that

o' <|B(O, 1) <c,i”  forall 1>0. (2.1)

This holds, for example, if d(x, y) is of the form 3 | x,—y, ™.
Let y > 1. We recall a notion of generalized variation introduced in [4]
which generalizes a definition of Wiener [14] on the real line. Let u be a
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nonnegative, real-valued function on the upper half-plane in R"*'. The
y-variation ful||., is defined as

1y
sup (Z u(x;, t,)"') .

where the supremum is taken over all sequences {x,} in R” such that
{B(x,,1;)} is a mutually disjoint family of d-balls. We denote the set of
functions of finite y-variation by yBV. Wiener considered this in the special
case of u(x, t)=diam(v[B(x, 1)]) where t: R - R.

We use the following results concerning a modulus of continuity w. For
this and other facts see [3]. We have

A
-7 < < 1 ) 120, 2.
A+lw(z) (AN < (A + o) A,t20 (2.2)

and
‘o(s) < 2t 'wl(t), O<tr<s. (2.3)

If @ is in addition concave down, then ¢ 'w(¢) is nonincreasing and
tw'(1) < w(r) if w'(z) exists. In the sequel we will reserve the letters &, K, N,
¢, ¢4, r for the constants defined in this section.

3. {w, 2)-SETS

In case n=1, d is the usual Euclidean distance on R, and w is smooth
and concave down, we show that an (w, a)-set E contained in [0, 1] is an
w-set in the sense of [3]. Indeed, let {/,} be the arcs complementary to £
in [0,1]. Let [1,|/2=a,. Since w'(1) <t 'w(t),

wld(x, E)*)

oo>ZLoz dx B dx /Z[ ZZL:IO((J)'(IJ)([I

=3 [T Tar=Y o), 2T w@)2Y3 o)
0

This proves that £ is an w-set.

We now give a characterization of the (w, x)-sers which relates them
more closely to the w-sets of [3]. For this purpose, we define the
a-Whitney decomposition of an open set. First, we need the following
proposition.

PROPOSITION 1. Let = 1. Then for every open subset O of R" having
d-diameter at most 1, there exists a sequence of d-balls {B(x,, r;)} such that
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(1) O=U B(x,,r,), (2) {Bi(x,,r;/k)} is a disjoint sequence, (3) for each
xeB(x,r;),
kK, <d*(x, OYK Kk* (1 4+ 2K)* r

and (4) any point of O can belong to at most M of the balls {B(x,,r;)},
where M depends only on % and the constants of the pseudo-distance.

Proof. The proof is similar to that of Théoréme 1.3 on p. 70 of [6].
We apply the covering theorem with r(x)=(2kK) > d*(x, O°). This gives
us a disjoint sequence {B(x,, p,)} of d-balls such that O is covered by
{B(x,, kp,)}, where p, denotes r(x;). Let r,=kp,. Clearly (1) and (2) hold.
Let xe B(x,, r;). Then

2kKp'* =d(x,, 0°) < K[d(x,, x)+d(x, 0°)] < K[kp, + d(x, O°)]
< K[kp}* +d(x, 0],

SO
d*(x,0°)=kp,=k*"'r,. (3.1)
Also
d(x, O )< K[d(x, x;) + d(x;, 0)]
< K[kp,+2kKp!*] < Kkp}™ (1 + 2K),
which says

d*(x, 0) < K*k*(1 +2K)* p, = K*k*~ (1 + 2K)* r,. (32)

Property (3) follows from (3.1) and (3.2).
To establish (4), let xe ) {B(x,,r;):iel}, where [ is a subset of the
positive integers whose size we now estimate. For i€/,

dix, x;)<r,<k'”*d*x, 0°),

so {x;:iel}c B(x, k' *d*(x, 0)) and for i, jel,
d(x,, 3,2 p,= 71> (KK(1 +2K))  d*(x, 0°).

We deduce that / can have at most

N|l +loga K*(1 + 2K))

elements. ||
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DEeriniTION 1. Let O be an open subset of R” having d-diameter at
most 1. We call a sequence of d-balls {B(x,, r;,)} an a-Whitney decomposi-

tion of O if (1) O=) B(x,, r;), (2) {B(x,, r,/k)} is a disjoint sequence, (3)
there exist 0 <«,, a, < oo such that for each xe B(x,, r;),

a,r,<d*(x, 0°)Y<a,r;,

and (4) any point of O can belong to at most M of the balls {B(x,,r,}},
where M depends only on « and the constants of the pseudo-distance.

PROPOSITION 2. Let E be a closed set of measure O whose closure is
contained in an open set U of d-diameter at most 1. Then E is an {©, x)-set
if and only if

Y (i B(x;, r)) <o,

where {B(x,, r;}} is the subcollection of balls of any a-Whitney decomposi-
tion of U\ E whose d-distance to (U\FE) is its d-distance to E.

Proof. Let V=) B(x,,r,). Then

w(d¥(x, E) w(d™(x, E)) |
v d¥(x, E) \Z{:Lt\, r d¥(x, E) o
<Zw(a (x;, 1)l
<Y a; el +(as/e) o] Blx, r)l, (3.3)
and
w(d (x, E)) w(d* (x, E))
j d* (x, E) dxzzfs(n,r,sk) d*(x, E) d

alh

2

B(.\',-, rl/k)l

. r r aﬁci'
zck a, <l+a’,('2')Zw('B('r[’r’)')' (3.4)

i

The result follows from (3.3) and (3.4). |



LOWER DERIVATIVES AND BCH SETS 489
4. PROOF OF THEOREM |

Let 0, &', and R>0. Let F be the intersection of

u(xy+x, 1)

m?Rwhenever(c—a)r<d"(x,0)<(c+s) I3 t<a’}

{xoe R

with a d-ball of radius 26. Let U be a concentric d-ball of radius 4. To
prove the first part of the theorem, it is enough to show that Fis a closed
set of measure 0 such that

| QU ) <o (4.1)

d* (x, F)

We first show F is closed. Let x,e R"\ F. Then there exists (x, ¢) such
that

u(xo+x,1) <
o(|BO, 1))

'

(c—e)yt<d(x,0)<(c+e)1, t<ée,

Consider

V={zeR":(c—e)t<d*(xg+x,z)<(c+e)t}.

Our continuity assumption on ¢ implies this is an open neighborhood of
Xo- Thus there exists # >0 such that z e V whenever d(z, x,) <n. For any
such z,

(c—¢e)t<dXxg+x—=:0)<(c+e)t
and
u(z+(xg+x—2z), t)=ul(xy+ x, 1)< Rw(| B(O, 1)]}),
so that e R"\ F. This shows that F is closed.
Let {#,} 0. Since (w7) (0) = oc, we have | B(0, 1,)| "7 o(] B(0, 1,)|) — .

In the language of [11, 4], there is a sequence {x;} — 0 such that {(x,, 7,)}}
is 1-admissible and for each j,

(c—e}t,<d™(x;,0)<(c+e)t,.
This is shown on p. 709 of [11]. Thus

. u(xg+x;,1;)
Fc {xoelR": lim sup ———— - = ac}
| B(O, 1,)|""

S x
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and according to Theorem 1 in [4], the latter has vanishing Lebesgue
measure. (Note that 1-admissible means the same in [11,4] even though
a-admissible does not for x> 1.) Thus | F| =0.

We show now that (4.1) holds. For each xe U\F, let r(x)=c¢ 'd*(x, F).
Since a>1, we may assume & was chosen so small that r(x)"*>
2Kke ‘*r(x) and r(x) <¢'. By the covering theorem, there exists a disjoint
sequence {B(x;, r;)} (where r; denotes r(x;}) such that {B(x, kr,)} covers
U F. Observe that u(x,, r;,) = Rw(| B(0, r;)|). For each xe€ U" F there exists
i such that xe B(x,, kr;). Thus

(rie)"*=d(x,, F)< K{d(x,, x)+d(x, F)]
< K[kr,+ d(x, F)]
< K[(2K) '(r,e)"* +d(x, F)],

so that d(x, F)=c¢"*(2K) 'r}* Applying 2.2 and 2.3 to o’,

w(d*(x, F))

¢ d¥(x F) dx

dxng o’(d™(x, F))

B(xj kr) o (U F) d”(x, F)

207(c"(2K) *r7)
< 2| B(O, kr,
Z (r(zK) xr r; | (O krl)l

<>:2w>'((-'(21<) e, "B, r))
= c"(2K)Y ¢, ' B(O, 1))

i

| B(O, k)]

<AY (1B0,r))<AY R wi(x.r,)
<AR 7 lulli< o,

where

(2K) e 'er+1)

A= 20h) S et

Inequality (2.3) was used to deduce the second in the string of inequalities
above. This completes the proof of the first part of the theorem.

Let E=|) E,, where E; is an (o, a)-set whose closure is contained in a
fixed ball B. Since, for each i,

w’'(d*(z, E}))

dz < o0,
s d¥(z, E)
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it foliows that there exist sequences {¢,} ~ 0 and {d;} » o« such that for
each /,

g 2= E))

S, Ay <2

where
E,={xeR"d(x, E)<e}cB.

For each (x, t1)e R"*', define

' (d¥(z, E})) v
= b bkt LA
u(x. 1) (; Eym Bix, 1) é d”(z, E)) )

and

u(x, 1) = (Z i (x, z)) y

Clearly ueyBV. Let x,€E, and let (x,1)eR"x (0, 1) satisfy (¢c—¢)r<
d*(x,0)<(c+e)t, with 1 so small that B(x,+x, 1)< E, for some j. Let
€ B(xy,+ x, 1). Since t <1 we have

d(z, E)<d(z, xo) < K[d(z, xo+ x) + d(x, 0)] < A"/,

where 4 = K[ 1 + (c+¢)"*}, so that
w'(d¥(z, E)))

Wixg+x, )zui(xog+x,1)= o dz
( ¢ 0 Blxq+ x,¢) / d (Z, Er)
w',‘ Aﬁ"tr
> w0,
Bixg+ x. 1) A !

w’(A%cy ' | B(0, 1)])
> (d, dz
> (d,/z)jw T ATETBO. D)
ATt )
>(dj/2)T:T4,—:Ci—1A’”C|w'(|B(0,t)|).

The third inequality follows by applying (2.3) to «® Dividing by
w’({ B(0, 1)]) and letting j — o, we get that the required lim inf is oc. This
completes the proof. |
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5. HAUSDORFF MEASURE AND (w, ®)-SETS

We first recall the definition of Hausdorff measure. Let £ be any subset
of R” and let v be a continuous, nondecreasing function on [0, =) such
that v(0) =0. Then

H,(E)=sup inf{z v(|B;|): B,-e('n_\},

y >0

where €, is the set of all coverings of E by d-balls of d-diameter at most s.
In this section we deal with the problem of determining whether or not
H,(E)=0 for every (w, a)-set E. For related results on the real line with
a=1, see [1, 13, 3]. The definition of the following function is inspired by
the type function defined on the real line in [1]. See also [3].

DEFINITION 2. Let E be a compact subset of R” having measure 0. Let
U be an open set containing E. We define the x-type function of E to be

T ()=|Ixe U\E:d™(x, E)=d*(x, (U\E))<1}].

LEmMMA 1. Let {B(x;, r))} be those d-balls in a given a-Whitney
decomposition of UN\E such that for each i, d(x, EY=d(x, (U E)") for each
x € B(x,, r;). Then for all t sufficiently small,

Te (ai)SY {|Blxi,r)|:ri <t} <tlk) Ty ahi).
Proof. The first inequality follows from the fact that
{xe UNE:d”(x, E)=d”(x, (UNE))<alt} | {B(x, r):ri<t}.
As for the second,
Y UB(xL )<ty <tk) Y {1 Blx, (rifk)) o rf <1}
=t(k)| U {B(x, r/k):ri<t}
<t(k) Ty, (a5).

This completes the proof. |

LEMMA 2. Ler @ be a C*-smooth, concave downward, a-allowed modulus
of continuity. In order that E be an (w, 2)-set, it is necessary that

)]
j T, (1) 0" (1) dt > — 0,
0
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Proof. Choose {B;} ={B(x; r;)} as in Lemma 1. Then

_( Ty () @' (1) dr < — jz (1B,] a7 r <1} (1) dr

Y0

<-%[ 1B di=Y 18w @)~ o/1))

U]
<Y |Bila ' r, "w(ar)

<csa; (1+ajc] I)Zw”Bi”
< 0.

The last line follows by Proposition 2 and the fact that rw’(¢) < w(?). This
completes the proof.

THEOREM 2. Let v, @ # 0 be moduli of continuity, where v is continuous
and w is C*-smooth, concave downward, and x-allowed. Then #.(K)=0 for
every (w, a)-set K if

1/x

1
fo oy @ ==

Proof. Let K be a compact (w, o)-set contained in a fixed open ball B.
Let v be a Borel measure on K such that ¥[ B(x, r)] < v(r) for every d-ball
B(x, r) Let t>0. Then there is a finite set {x,: 1 <i< N} in K such that
{B(x,,1): 1 <i< N} is a disjoint family, and rB(\c,, kt): l <ig< N} covers
K Ifris sufﬁcnently small,

N

Neyv <Y | B(x, 1) =

i=1

)| S Ti o (1)

Xt

=1

Thus

N
HK)S Y, VIB(x, kN]I<(I+HR) Nv(n) ey YU+ k) v(n)t 7 Ty (17),

i=1

and so for all ¢ sufficiently small we have

[l,c‘m _
Cy m VWK)<(1+k) Ty (1)
In view of this, the concavity of w, and Lemma 2, we deduce that #(K)=0.

It follows from Frostman’s theorem (see [9, Théoréeme 111, Chap. I1, p. 27])
that #,(K)=0. |
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We do not know if the integral condition of the above theorem is
necessary. We show this is true in the case where n=1, ¢ is the usual
Euclidean distance on R, '*w'(r}) »> 0 as t -0, and + 'w(z) = w'(¢), that is,
if there exist constants b, b, such that

bw'(t)y<t ‘o(t)<b,w'(1).

Note that in this case, a subset £ of [0, 1] is an (w, a)-set if and only if

i “
Zj w'(sy s Vs < oo,
0

where {/;} are the arcs complementary to E in [0, 1]. These conditions
hold if, for example, w(t)=¢" where 0<f<1 and x(l-B)<1l or
w(r)= —tlog(z). We remark, however, that there do exist moduli of
continuity on R which are not comparable to tw'(7), so this is not the
general situation.

THEOREM 3. Let v, w # O be moduli of continuity, where v is continuous
and w is a-allowed, C*-smooth, and concave downward., Under the conditions
of the previous paragraph, #,(E)=0 for every (w, x)-set E if and only if

1 fl x
— w1 dt= — .
L v([m)w (1) o

LEMMA 3. Let E be a subset of [0,1]. Then E is an (v, a)-set if and
only if

1
J Ty ()w'(t)dt> —oc.
4]
Proof. The necessity of the condition was shown in Lemma 2. Suppose

now the condition holds. With the same reasoning as in the proof of
Lemma 4.1 of [3],

TI:'.z(’)%Z !]l‘ _+_Z tls“:z’

S g2

where
Ji={jeZ :|1|*<t} and Jy={jeZ" :|L|*>1t}.

Thus

1 1
— j YLl w"(r)dr <o and —f Y 1w (1) di < 0.
O

gy LA
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From the first we get

]
~thmmmnm<2mmumm<w, (5.1)

and from the second an integration by parts gives
e
0> [ o) d
0
’ a 1 ' {2y - 1
=TI +E [ (oo
o
From (5.1) we deduce
Ak
Zf (1/2) 0'(1) 1 1 dt < co.
0

By our remarks preceding the statement of Theorem 3, the proof is
complete. |

Proof of Theorem 3. Suppose the integral in the statement of the
theorem is finite. For ¢ <1 we have

t 1"’1‘,(tl‘!1)<2t —lv(t)’

so by the concavity of w

L
-Ilo v(t)w (1) dt> —cc.

A construction in [ 1] shows there is a set E such that 0 < #,(E) < o and
tiv(tyx Ty, (1*). It follows that

1
J‘ T, (D)w"(r)dt > — o,
0
so by the lemma, E is an (w, x)-set. ||
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