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ABSTRACT. We extend a discrete version of an extension of Carleson’s theorem
proved in [5] to a large class of trees T that have certain radial properties. We
introduce the geometric notion of s-vanishing Carleson measure on such a tree
T (with s > 1) and give several characterizations of such measures. Given a
measure o on T and p > 1, let LP(o) denote the space of functions g defined
on T such that |g|P is integrable with respect to o and let LP(9T) be the space
of functions f defined on the boundary of T" such that |f|P is integrable with
respect to the representing measure of the harmonic function 1. We prove the
following extension of the discrete version of a classical theorem in the unit
disk proved by Power.

A finite measure o on T is an s-vanishing Carleson measure if and only
if for any real number p > 1, the Poisson operator P : LP(0T) — L*P(o) is
compact.

Characterizations of weak type for the case p = 1 and in terms of the tree
analogue of the extended Poisson kernel are also given. Finally, we show that
our results hold for homogeneous trees whose forward probabilities are radial
and whose backward probabilities are constant, as well as for semihomogeneous
trees.

1. INTRODUCTION

For s > 1, a positive measure ¢ on the open unit disk ID in the complex plane is
said to be an s-Carleson measure if there exists C' > 0 such that for each 6y € R
and h € (0,1),

(S, (h)) < CR*,
where
Sgo(h) :={re?? : 1 —h<r<1,|0—06 <h/2}.
In [2], Carleson proved that a positive measure o is 1-Carleson if and only if for

each p > 1, the Poisson operator P, which associates to each function f € LP(9D)
its Poisson integral Pf, is bounded from L?(0D) to L?(o), where g € LP(0o) means

/ 9(2)|P do(z) < oo.
D

In [3], Carleson obtained a similar characterization of such measures in terms
of the boundedness of the inclusion map from the Hardy space HP (0 < p < 00)
into LP(o). In [7], Duren extended the latter result by showing that for s > 1 and
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0 < p < o0, 0 is an s-Carleson measure if and only if for all f € HP,

[l dote) < sl
D
A positive measure o on D is said to be an s-vanishing Carleson measure if

So(h
lim sup M =0.
h—0gcr  h*
The 1-vanishing Carleson measures are commonly referred to as vanishing Carleson
measures. B
For z € D and w € D, the extended Poisson kernel at (z,w) is defined by

1— 1z
Plz,w) = ———.
Note that the formula for P(z,w) coincides with that of the ordinary Poisson kernel
when |w| = 1.
In [11], Theorem 8.2.5., vanishing Carleson measures were characterized in terms
of the compactness of the Poisson operator and of the above extension of the Poisson
kernel P.

Theorem 1.1. [11] For a positive measure o on D, the following conditions are
equivalent:

(a) o is a vanishing Carleson measure.

(b) For 1 < p < oo, the Poisson operator P is compact as a mapping from
LP(OD) into LP(o).

(¢) lim /P(z,w) do(w) =0.

|zl—1/p
The equivalence of (a) and (b) first appeared in [10] (Theorem 2).

In [5], motivated by the important role Carleson measures play in analytic func-
tion space theory and operator theory, we introduced the notion of s-Carleson
measure on an isotropic homogeneous tree and gave several characterizations of
such measures. In particular, we proved a discrete version of a characterization
of s-Carleson measures due to Duren ([7]). Carleson-type measures in a discrete
setting have previously been considered in [1].

In this work we define what are radial trees, and we extend the definitions and
the theorems derived in [5] to radial trees satisfying some additional axioms. Fur-
thermore, in this more general setting we develop a discrete notion of s-vanishing
Carleson measure (where s > 1) and provide several characterizations of such mea-
sures, some of which are the discrete analogues of Theorem 1.1 in the special case
s = 1. We conclude the paper by showing that the results given in the present
work hold in particular on non isotropic homogeneous trees whose forward prob-
abilities are radial and whose backward probabilities are constant, as well as on
semi-homogeneous trees.

We are not aware of any references involving vanishing Carleson measures in a
discrete setting, nor of any results similar to Theorem 1.1 for s-Carleson measures
in the classical setting of the unit disk for the case s > 1.

2. PRELIMINARIES ON TREES

By a tree T we mean a locally finite, connected, and simply-connected graph,
which, as a set, we identify with the collection of its vertices. Two vertices u and
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v are called neighbors if there is an edge connecting them, and we use the notation
u ~ v. The degree of a vertex is the number of its neighbors. The tree is called
homogeneous if all its vertices have the same degree. A path is a finite or infinite
sequence of vertices [vg, v1,...]| such that vy ~ viy1, for all k. Tt is a geodesic path
if in addition vg_1 # vg41, for all k. For any pair of vertices u,v there is a unique
geodesic path from u to v, which we denote by [u,v].

Given a tree T rooted at e and a vertex u € T, a vertex v is called a descendant
of w if w lies in the unique path from e to v. The vertex u is then called an ancestor
of v. Given a vertex v # e, we denote by v~ the unique neighbor which is an
ancestor of v. For v € T', The set .S, consisting of v and all its descendants is called
the sector determined by v. The sectors are the sets of vertices that will play the
role of Carleson squares in the tree setting.

Define the length of the finite path [ug, u1, ..., u,] to be n. The distance, d(u,v),
between vertices u and v is the length of the geodesic path [u,v].

The tree T is a metric space under the distance d. Fixing e as the root of the
tree, we define the length of a vertex v, by |v| = d(e, v).

The boundary 0T of T is the set of infinite geodesic paths w of the form [e =
W, w1,wa, . ..|. We denote by [e,w) the set of vertices in the path w. Then, 9T is
a compact space under the topology generated by the sets

I, ={wedT:velw)l,

which yields a compactification of T'. Clearly, 9T = I.. Furthermore, for any n € N,
OT is the disjoint union of the sets I,, over the vertices v of length n. Under this
topology, 95, = I, for each v € T.

For v € T with 0 < n < |v|, define v,, to be the vertex of length n in the path
[e, v].

Define a partial order < on T'U 0T as follows: Forv e T and x € TUIT, v < x
if v € [e,x]. Since TUOT has e as the minimum, for any z,y € T U9T the greatest
lower bound of z and y is well defined. We denote this greatest lower bound by
T Ay.

A nearest-neighbor transition probability on the vertices of T' is a function p :
T x T — [0,1] such p(v,u) > 0 if and only if v ~ u, and >, . p(v,u) =1 for each
vertex v. The tree is called isotropic if for every vertex u, the transition probabilities
p(u,v) all equal the reciprocal of the degree of w.

By a function on a tree we mean a real-valued function on the set of its vertices.

The Laplacian operator A is defined as the averaging operator minus the identity
operator; that is, for a function f on T,

Af(w) = 3 plo,w)f(w) - f(v), v ET.
wn~v

A function on T is harmonic at v if Af(v) = 0, and it is harmonic on T if it is
harmonic at every v € T. It is superharmonic on T if Af(v) <0 for all v € T

For u,v € T, define F(u,v) to be the probability that the associated random
walk starting at w hits v in positive time, and G(u, v) the expected number of visits
to vertex v by the random walk which begins at u. The tree T is called transient
provided the Green function G is finite at least at one (hence necessarily at every)
pair of vertices. This occurs if and only if F(v,v) < 1 for at least one (and so
necessarily at every) vertex v. Transience can be shown to be equivalent to the
existence of a positive superharmonic, nonharmonic function on 7'. In the transient
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case, we have the formulas

(1) Glo,w) = { (1—-F(v,v))~ if v=uw,

F(v,w)G(w,w) if v#w.

The function F' is multiplicative in the sense that if [vg, v1,...,v,] is the geodesic
from vy to v, then F(vg,v,) = [Tr—s F(vj, vjt1)-

We shall assume henceforth that T is a transient tree.

For v € T, w € 9T, denote the value of the Poisson kernel at (w,v) by P,(v).
Every positive harmonic function on 7' can be written as

Pu() = /8 P dnfe)

for a unique Borel measure p on 97T
The Poisson kernel is known to be related to the Green function by means of the
formula

Gv,v Aw)
P,(v) = —"—=.
) G(e,v Aw)
Using (1), we see that the Poisson kernel can be written in terms of F as follows:
% ifoAw#wv,
P,(v) = ﬁ ifoAw=10v#e,
1 ifv=e.

For a general reference on the potential theory on trees, see [4].

In the following section, we shall consider a class of trees with radial properties
and shall give axioms that will allow us to extend to such trees the theory of Hardy
spaces and of Carleson measures developed in [5].

3. RADIAL TREES

A tree is termed radial if for all neighboring vertices v, w, the transition prob-
abilities p(v,w) depend only on |v| and |w|. This condition places a restriction

on the degree of each vertex. Indeed, if w~ = v and ¢ is the number of forward
neighbors of v, then the total forward probability is ¢p(v,w) = 1 — p(v,v™), so
1-p(v,v7)

qg=(1-p(v,v7))/p(v,w). Thus the degree of vertex v is 1 + , and so it

p(v,w)
depends only on |v].
For each k > 0, let g; denote the number of forward neighbors of any vertex v

with |v| = k. For each n > 1, the number of vertices of T of length n is

n—1
k=0

Let m be the probability measure on 9T for which
1 ifv=e,
I =
m(L) {01 ifv#£e.
If p is absolutely continuous with respect to m with density function f, we shall
adopt the notation P f instead of Pu. In particular, m is the representing measure

of the harmonic function 1. We shall refer to it as the normalized Lebesgue measure
on 0T



CARLESON AND VANISHING CARLESON MEASURES ON RADIAL TREES 5

In addition to assuming that the tree is radial and transient, we shall suppose
that there exist constants ¢,C7,Cy > 0 and 61,7 € (0,1) such that the following
axioms hold:

Al 2 < g; < q for each j;

A2 P, (v) < Cr(m(Iyp,)) trlvl=1oAl for all v € T,w € OT;
A3 P,(v) > Cy(m(I,))7Y, forall veT,w € I;

A4 F(v,v7) <1—14q, forall v#£e.

From A1l we obtain

1
(3) ¢ "M <m(1,) = — < 27Ivl,
Clvl
Since for v # e we have m(I,-) = qj,|—1 m(I,), the measure m satisfies the “dou-
bling” condition

(4) m(Il,) <m(Il,-) < gm(ly).

Observe that if A is harmonic on T', then

(5) Z h(w) = cph(e), n > 1.

|lw|=n

This can be proved by induction on n, but follows more easily by symmetry and
the fact that h(e) is the weighted average of its boundary values on |v| = n, where
the weights are the hitting probabilities for the first hitting time on |v| = n of the
random walk beginning at e.

We remark that for T any radial tree satisfying A4, T is necessarily transient.
In fact, in the next proposition we provide a sufficient condition for transience
(which clearly holds under the assumption of the axiom A4) that to the best of our
knowledge has not appeared in the literature.

Proposition 3.1. If there is a vertex v # e such that F(v,v™) < 1 and F(u,v) <1
for all children u of v, then T is transient.

Proof. Suppose v is a vertex satisfying the assumption. Choose § > 0 such that
Fw,v7) < 1-46 and F(u,v) < 1 —§ for all children u of v. Since p(v,v™) <
F(v,v7) <1—=4, then

F(v,v) = pv,v")F(v",v)+ Z p(v, u)F(u,v)
< po,07)+ Y plv,u)(1-0)

= pv,v )+ (1 =p(v,07))(1=6) =1-6(1 —p(v,v7))
= 1-6+dp(v,v7)<1—-04+6(1-9)
= 1-6%

proving that T is transient. O
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For the remainder of the paper, we shall assume T is a radial tree satisfying
axioms A1-A4.

In [5], we proved all of the theorems that appear below in Sections 4 and 5 for
the case of a homogeneous isotropic tree. It turns out that all of these results hold
in the case of a radial tree satisfying axioms A1-A4. In fact, all of the proofs are
virtually the same, except for the few parts below in which we give the needed
details.

4. THE HARMONIC HARDY SPACE HP

For 1 < p < oo we let LP(OT) denote the functions f : T — [—o0, 00| such that
| f|P is m-integrable.We let L>°(0T') be the set of bounded functions on 9T

For 1 <p < oo, n > 1, and a function f on T, let My(f,n) be the average value
of |f|? over the vertices of length n, namely,

_ Z\m:n |f(w)[P _

Clo]

My (f,n) m(L) Y [f ).
\

v|l=n
We now define the harmonic Hardy space H? on T for p > 1.

Definition 4.1. Let 1 < p < oo and let h be harmonic on 7. Then h € H?
provided that

Rl = sgg M, (h,n) < cc.

Definition 4.2. Let f € LY(0T). The Hardy-Littlewood mazimal function of f is
the function M f on OT defined as

)| dm(T
Mf(w)=  sup M: sup C|u\/l|f(7)|dm(7)~

{veT:wel,} m('[v) {veT:wel,}

Lemma 4.1. (Covering Lemma) Let A C T. Then there exists A C A such that
U S, = U S, U I, = U I,, and for each pair of distinct vertices v,w € A\,

veA vEA vEA vEA
SoNSy=0and I,NI, =0.

Theorem 4.1. Let 1 <p < oo and f € LP(OT). Then M f < co m-a.e. and the
following inequalities hold:

(a) If p=1, then for every A > 0,
1
m{w e 0T : Mf(w) > )\} < XHf”Ll(BT)
(b) If 1 < p < o0, there exists a constant C > 0 such that for each f € LP(9T),
M fllLrory < Ol fllLror)-

Definition 4.3. Let A be harmonic on T. The radial mazximal function of h is the
function h* defined on 9T by h*(w) = sup,, |h(wy)]-

Theorem 4.2. For every f € L*(0T) and w € T,
Gy

—r

(PF) (@) < - Mf(w).
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Proof. Let f € L*(0T) and w € T. Then for n € N,

Pf(wn) < / By(wn)| £ ()] dm(n)

n
< i@ [ Imdne)
k=0 Loy,
< Z Crr" FM f(w)
k=0
1 —pntl
= (O 1, Mf(w)
Ch
< M .
< STLMfW)
Taking the supremum over all n € N yields the result. O

Lemma 4.2. For a fized n > 1, let h be harmonic on {v € T : |v| < n} and let f,
be the function defined on 0T by

h(v) — F(v,v")h(v™
@ fom 3 (MO PO )

|[v]=n

where xg denotes the characteristic function of the set E. Then Pf, = h on
lv| < n.

Proof. Extend h harmonically to T so that for each v with |v| = n, h is radial on
S,. Fix such a v. Consider the function on T defined by

_ h(v)F(v—,e) — h(v™)F(v,e) n h(v™) = h(v) Flw,e).
F(v—,e) — F(v,e) F(v—,e) — F(v,e)

It is radial, harmonic outside of e, and it is easily verified that its value at v is h(v)
and its value at v~ is h(v ™). Thus this function equals h on S,,. It is clear that h is
bounded and its representing measure is absolutely continuous with respect to m.
By the Fatou radial limit theorem, the density of the representing measure is m-a.e.
equal to the radial limit function of h. By A4 and the multiplicative property of
F, F(w,e) — 0 as |w| — oo, so the radial limit of A is

h(w)F(v™,e) — h(v™)F(v, €)

F(v—,e) — F(v,e)

Factoring out F(v~,e) on top and bottom and using the fact that F(v,e) =
F(v,v7)F(v™,e) yields the desired result. O

In the following theorem, we extend the characterizations of the harmonic func-
tions to be in the Hardy space HP (for 1 < p < co) shown in [5] (Theorem 2.3) for
the homogeneous isotropic case. The proof of this extension, based on the same
argument provided in [5], makes use of Lemma 4.2 and the fact that, due to A4,
the function v — F(v,v™) is bounded away from 0.

Theorem 4.3. For a harmonic function h on T and 1 < p < oo, the following
propositions are equivalent:

(a) h € HP.

(b) h = Pf for some function f € LP(OT).
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(c) [[h*|[zeam) < 0.
(d) |h|? has a harmonic majorant.

Theorem 4.4. Let h be harmonic. Then h € H* if and only if h = P(u) for some
signed measure j on OT.

Theorem 4.5. There exists C > 0 such that for all f € LP(9T),
Cllfllizecory < P fllre < M fllzrar)-

5. DISCRETE VERSION OF DUREN’S EXTENSION OF CARLESON’S THEOREM

We note again that in this and the previous section we are generalizing results
on homogeneous isotropic trees considered in [5] to radial trees satisfying A1-A4.
Proofs are only given here in case they differ from those in [5].

Definition 5.1. For a measure ¢ on T and s > 1, define

ol = sup{nzgiv))s ‘v € T} .

A measure o on T is said to be s-Carleson if ||o|. < co.

Lemma 5.1. Givenm e N, 0=qap < ag < - < Qump, 41,---,m >0, and s > 0,
(7) > ok — ak—1)(pk + -+ + pm)® < (Z a}fﬂk) ;
k=1 k=1

with equality occurring only if m = 1.
As a consequence, we deduce the following result.

Proposition 5.1. Letp > 1, s > 1, m € N, 0 =a9 < a1 < -+ < G, and
Uiy ey by > 0. Then

m

D (@ —a” )k A+ pm)® < (Z aiw) :
k=1

k=1

Theorem 5.1. Let (2, 1) be a finite measure space, p > 1, s > 1, and g a nonneg-
ative measurable function on Q). Then

/ spA P p{w € Q:g(w) > AV dA < (/ g* d,u> .
0 Q

The extended Poisson kernel on the tree is defined by

1 if U,weT’Uze
1 . B
Pv,w) = W if vweT,vAhw=uv#e,
) Flowhw) e e T vAW# v
F(e,vAw) ; s ,

P,(v) i veTl, w=wedl.

The relation between the Poisson kernel and the extended Poisson kernel is given
in the following proposition. The equality in the proposition is proved using the
multiplicative property of F'. The inequalities in the proposition follow by applying
A2 and A3 with any w € [,, and recalling that F' < 1.
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Proposition 5.2. Let v,w €T, andw € I,. Then
Plow) — P,(v) z:fv/\wzv/\w,
P,(0)F(w,o A\w)Flv Aw,w)  ifvAw#vAw.
In particular,
Pv,w) < P,(v).
If v e {w} U (T\Sw), then
Ca(m(1,))"" < P(v,w) < Cr(m(Iypy))~ o= oAw!

Theorem 5.2. Let 1 < p < oo, 1 < s < 00, and o a finite measure on T. The
following statements are equivalent.

(a) o is an s-Carleson measure.
(b) There exists C > 0 such that for all harmonic functions h and A > 0,

o{veT:|h(w)| > A} <C(m{w:h"(w) > A})°.

(¢) There exists C > 0 such that for all f € LP(0T),
1P
(d) There exists C > 0 such that for all f € L*(0T) and X > 0,

Lor(o) < CllfllLrar)-

C
o({v e T:|Pf()| > A}) < £z or)-

(e) sup Z P, w)’ oc({w}) < oc.

veT weT

Proof. (b) = (a): Suppose that o is a measure on T satisfying (b). We must show
that o(S,)/(m(I,))* is bounded. It is enough to prove this for all |v| sufficiently
large, since it obviously holds if v lies in any finite set of vertices.

Let Cy,Cy,r be the positive constants of A2 and A3. Choose a positive integer
k such that

Cy &

(8) c; >
We will get an upper bound on o(S,)/(m(I,))* for all v with |v| > k. This will
prove that o is s—Carleson.

For the balance of the proof of (b) = (a), fix v € T, with n = |v| and n > k.
Let f = x;, and h = Pf. Define S¥:= S, ,,and I¥:=1, .

Let u € S,. If w € I, then by A3,

h(u) = ’ P,(u) dm(w) > ’ P, (u) dm(w) > Cy,

proving that
9) Sy C{ueT: h(u) > Cs}.

Notice that (9) holds for all v, whether or not |v| > k.
We claim that

(10) {wedT : h*(w) > Cy} C IF.
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To see this, let u ¢ S. For any w € I, we have u A w = u A v, so by A2,

h(u) = / P(u) dm(w) < Cy (m(Iupy)) " rlv=14"m(1,)
< Clr|v|—|u/\v\ < ClTk < 02,

establishing the claim.
Thus, by (9), the hypothesis, (10), and (4) we have

o(Sy) o{u €T : h(u) > Cq}
C (m{w: h*(w) > Ca})°®
O (m(I}))*

C ¢ (m(1,))’,

VAN VAN VAN VAN

completing the proof.
(¢) = (a): Let v, f, and h be as in the proof of (b) = (a). Then using (9),

CPo(S,) < /\Pf|5pda§/|Pf|Spda
Sy T

< C f”Lp(aT) =C(m(1,))*,

proving o is an s - Carleson measure.

(d) = (a): The proof is done by choosing f and Cj as in the proof of b = a,
evaluating o on both sides of (9), and applying the inequality in (d) to f = xi,
with A = C.

(a) = (e): Assume (a) holds. Let C' > 0 be such that o(S,) < C(m(l,))® for
eachv € T. Fix v € T and let n = |v|. Let v9 = e, v1,...,v, = v be the sequence of
vertices of the path [e,v] with |vx| = k for K =0, ...,n. Then we may decompose T'
into the disjoint union of the sets Wy = S, \Sy,,, (0 <k <n—1) and S,. Thus,
by Proposition 5.2,

> P(v,w)o {w})zizp(v,w {wh) + Y Po,w)o({w})

weT k=0 weWy, weS,

L)~ r" %0 (8,,) + (Crm(1,)) "o (S,)

INA
7
Q

2

k=0
n—1
= C[ (m(1y,) 5" (m(I,,))* + (m(1,))~* (m(1,,))*
k=0
< C r"syirfks—i—l
k=0
< C.

Condition (e) follows by taking the supremum over all v € T'.
(e) = (a): Suppose (e) holds. Let B be the supremum in (e). Let v € T'. Then,
by Proposition 5.2 we obtain

B> Y Plow)yolw)) > Y (Com(l)*o({w}) = (Cam(L,)) "o (S,)

weS, weS,
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Remark 5.1. If o is s-Carleson, let ¢’ = o/||o||«. Applying Theorem 5.2 to o,
we deduce that in part (c) of the theorem, the constant C' may be replaced by a
multiple of ||O'||,.1</Sp, and in parts (b) and (d), C' may be replaced by a multiple
of ||o]|«. Furthermore, the proof of Theorem 5.2 shows that the above multiple is
independent of o, that is, if ||o||« = 1, then C' depends only on universal constants
and parameters associated with the tree.

6. VANISHING CARLESON MEASURES

We now introduce the notion of s-vanishing Carleson measure on a homogeneous
tree T

Definition 6.1. Let s > 1. A measure o on T is said to be an s-vanishing Carleson
measure if

|v]|—o00 m([v)S

Lemma 6.1. Let o be an s-vanishing Carleson measure. For N € N let on be o
times the characteristic function of the N-ball, {v € T : |v| < N}. Then A}im lo—
— 00

UNH* = 0

Proof. Let € > 0. Choose M such that for all [v| > M, o(S,) < e(m(l,))*.
Since o is a finite measure, we can choose Nj such that for all N > Ny, (o —
on)(T) < eminjy<pr(m(ly,))°. Let N > Ny. For any v € T, if |v| > M, then
(c—on)(Sy o (S, . o—on)(Sy (c—on)(T
i < e < e and if [o] < M, then raaiEed < (20D < ¢ Thus
lo — on|l« < &, proving that im o —on|.=0. O
—00

Our main result of this paper is the little “oh” version of Theorem 5.2.
Theorem 6.1. Let o be a finite measure on T and s > 1. Then the following
statements are equivalent.

(a) o is an s-vanishing Carleson measure.
(b) For 1< p < oo, the Poisson operator P : LP(OT) — L*P(c) is compact.

¢) lim Pv,w)’c({w}) = 0.

©) Jim 3 Pleswo((u)
(d) For any sequence {f,} in L*(0T) converging to 0 weakly and for all A > 0,
lim oc{veT:|Pf.(v)| > A})

n—oo

=0.

aleom,
(e) For any sequence {h,} of harmonic functions on T converging to 0 point-
wise and for all X > 0,
T:
g 2 ET B> )
n—oo m({w : hn(W) > A})
(f) For any sequence {fn} in L*(OT) converging to 0 weakly and for all X > 0,

(e T PRI A
n—oo m({w : (Pfn)*(w) > A})®
For the proof we need the following lemma.
Recall that a sequence {f,} in L'(dT) converges to 0 weakly if for each g €
L>(9T), [ fngdm — 0, as n — oo.
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Lemma 6.2. If {f,} is a sequence in L*(OT) converging to 0 weakly, then {Pf,}
converges to 0 pointwise as n — Q.

Proof. Let {f,} be a sequence converging to 0 weakly in L'(9T). For n € N
and v € T, decomposing 0T into the disjoint union of the sets I, \I,, , (for
ke{o,.. |v|—1 ) and I,,, we have

P = \/P ) f() di(w >]
< CmlL)! E / o ) dm / @) dm(w) | |

which can be made arbitrarily small due to the weak convergence of {f,}. There-
fore, P f, converges to 0 pointwise. O

Proof of Theorem 5.2. (a) = (b): Suppose o is an s-vanishing Carleson measure.
Then, given € > 0, there exists n € N such that (m(1l,)) °0(S,) < € for |v| > N.

By Proposition 3.3(b), Chapter VI in [6], to prove that P : LP(9T) — L*P(o) is
compact, it suffices to show that if {f,} is a sequence in L?(9T) converging to 0
weakly, then ||Pf,[|» o) — 0 as n — oo.

For N € N let oy be o times the characteristic function of the N-ball, {v €
T : |v] < N}. Since oy has finite support, the operator P : LP(9T) — L*P (o) is
compact. Indeed, let { fn} be a sequence in L?(0T) converging to 0 weakly. Then
for each w € T, letting p’ , the conjugate index of p, and taking as a test

function in L (OT) the characterlstlc function of I,,, we have
/ fanlw)dm(w) =0 asn — co.
Iy

Thus, since o is a finite measure, by A2 and (3), we have

1Pl = 3 IPAu() o ({u})
lwl<N
\/P Vo) dm(w)| o ({w))
w]<N
|w|—1 sp
<3 ¢ (s [ ) 1@ dmw)| o(qw))
= awo| (], /fw) |

Jw|—1 °
””(Z > [fa(@ldm@) + > [ |fa(w) dm(w )
|lw|<N k=0 wk\lwk+1 |lw| <N Tw
which approaches 0 as n — oo. This proves the compactness of P as an operator

mapping into L*P (o).

Let {fn} be a sequence in LP(9T) converging to 0 weakly. By the uniform
boundedness principle, there exists a constant M > 0 such that [|f,||7, < M for
all n € N. By Lemma 6.1, there exists a positive integer N such that || — on|« <
e/M. Since o is an s-Carleson measure, so is o — o. Thus, by Theorem 5.2 and
Remark 5.1, there exists C' > 0 (independent of N) such that

/ P ()] dlo — o) () < Cllo — ol |fall oy < Ce.
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Thus,

1P full 7

oy = [ IPR@Pdos(w) + [ Ph )7 do — ox)(w)

(w)|*? don (w) + Ce.

IN
—
~
=

Letting n — oo and using the compactness of P as an operator mapping into
L*?(oy), we obtain limsup || P f,,|| 7%, < Ce. Since ¢ is arbitrary, hm 1P fnll5h

sp
R, Lep (o)

0, and we are done.
(b) = (c): Suppose (b) holds. For v € T, define f, : 0T — R by

fv()— ()1/p,w68T

We now show that f, converges to 0 weakly in LP(9T) as |v| — oo, that is, for all
g € L (9T) with + + L =1,

Lsp(o) —

(11) /fvgdm — 0 as |v] — oo.

Fix v € T and set |v| = n. In the special case when g is the constant function 1,
using the decomposition of 9T as the disjoint union of the sets I,, \I,, ., (0 <k <
n — 1) with I, and applying A2 and (3), we have

n—1
[r@dnte) < Y () ) + <m<fv>>1/f°m<fv>]

LE=0

= C T”/”7i<m(lvk>)1‘””r—k/p+(m(fv))l—l/p]

IN

B n—1
C | /e Z (2@,1/,)) Tl/p) - T 2(11/p>n]
k=0
Since 1 < p < oo, the last term on the right side goes to 0 as n — oo. If
21=1/p p1/P < 1, the first term on the right side is at most Cr"/? (2(1_1/”)7“1/1”)7” =
C (2*(1’1/7’)") ,and if 217121/ > 1 it is at most Cnr™/P. In either case, we ob-
tain [ f,(w)dm(w) — 0 as [v] = n — co. Thus, (11) holds if g is any simple
function.

Next, denote by p’ the conjugate index of p and suppose g € Lp/(aT). Choose a
sequence {gi} of simple functions such that ||gx — gl (o7) — 0 as k — oo. Then

/va w)| dm(w /\fv w)gr(w)| dm(w)
+ / o) (9() — gu(@))] dm(w) = T +IT.

By the above remarks, I — 0 as |v| — oo, whereas, by Holder’s inequality,

1/p
1< ([ Puwan@) o= aulwon = lo - oo

which can be made arbitrarily small by choosing k sufficiently large. This proves
the weak convergence to 0 of f,.

Since by assumption, the operator P : LP(9T) — L°P(o) is compact, it follows
that || P f,|

Ler(o) — 0 as |v| — oo.
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Fix v and w in T'. Since both the Poisson kernel and the function f, are positive,
by Proposition 5.2 and A3, we have

/ Py (w) £, (w) dm(w)
> / Pufw) o) dmi)

w)P (v, w)? dm(w
> /Iwm YP (v, w) /P dim(w)
> CoP(v,w)'/?.

P fy(w)

Hence, raising both sides of the resulting inequality to the power sp, multiplying
by o({w}), and summing over all w € T, we obtain

Y Pw)ro{w}) < CY [Pf(w)|Po({w}) =CPL7"

weT weT

L%(0)

which, as we showed above, converges to 0 as |v| — oco. Thus (c) holds.
(c) = (a): Assume (c) holds and fix € > 0. Then there exists N € N such that
for |v| > N

(12) Z Pl,w)’c({w}) <e
weT
For |v| > N, we obtain from Proposition 5.2 that
(Ca(m(L,) ™) 0(Sy) < Y Pw,w)o({w}) < Y Po,w)o({w}) <
weS, weT

proving that ¢ is an s-vanishing Carleson measure.

(a) = (d): Assume o is an s-vanishing Carleson measure and let {f,} be a
sequence in L'(dT) converging to 0 weakly. Fix \,e > 0. For N € N, let oy be
the restriction of ¢ to the ball of radius N. By Lemma 6.1, we can choose N such
that ||o — on|l« < eA®. We need to show that

o({veT: [Pha(v)] > Ao <N}) _

(13) and
altsor)
>
(14) o({veT: |Pfu(v)| > Ao 2 NY) _
A

for all n sufficiently large.
Using Lemma 6.2, we have Pf, — 0 pointwise as n — oo. Thus, the set
{veT: |Pf,(v)] > A, |v] < N} is empty for n sufficiently large. Thus, (13) holds.
Next, using the fact that ¢ — on is an s-Carleson measure, it follows from
Theorem 5.2 and Remark 5.1 that, for each n € N we have

lo — onll

o({v e T:[Pfu(v)] > Afv] 2 N}) < O = fullLr(or) < Cellfallzr(or),

where C is independent of n and N. This proves (14).

(d) = (a): Assume (d) holds. To prove (a), it suffices to show that if {v,}
is any sequence of vertices such that |v,| — oo, then (m(I,,)) *0(S,,) — 0 as
n — oo. Let {v,} be such a sequence and for n € N, define f, = xz, . Then
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| fallLrory = m(Ly,) and f, — 0 weakly in L'(9T). Indeed, for all g € L>(9T),
by (3) we have

\ [ @) dm(e)

as n — 00.
Ifvels,,, then by A3,

bro- |

I,

Thus, if 0 < A < Cy, then Svn C{veT: Pf,(v) > A}, and so, since || fn |1 o1y =
m(I,, ), then

< lgllocm (Lo, ) — 0,

/ o))

P, (v)dm(w / P,(v)dm(w) > Cs.

oc{veT:Pfp(v) > )\})

(m(L,)) "0 (S1,) < '
[ fllZror)

By assumption, the weak convergence of f, implies that the latter goes to 0 as n
goes to oo, proving the result.

(a) = (e): Suppose (a) holds and fix € > 0. Then, there exists N € N such
that o(S,) < em(l,)® for |[v| > N. Let {h,} be a sequence of harmonic functions
converging to 0 pointwise and let A > 0. Then for |v| < N and n sufficiently large,
|hn(v)| < A. In particular, for such an n, the set {v € T : |v| < N, |h,(v)] > A} is
empty. Define A, = {v € T : |h,(v)| > A} ={v €T :|v]| > N, |h,(v)] > A} and let
A, be as in Lemma 4.1.

Since for w € I, with v € Ay, hl(w) > |hy(v)] > A, we have

o(fv:lhn(v)] > A}) < o ( U s |= Z o (Sy)

A
™
2
£
A
o™
2
<

Il
™
3
A
D>)C
&
Il
[0
/N
3
C/—\
m
= C
&
~
~_—
w0

which yields (e).

(e) = (f) follows immediately from Lemma 6.2.

(f) = (a): Suppose (f) holds. To prove that o is an s-vanishing Carleson measure,
it suffices to show that if {v,} is a sequence of vertices such that |v,| — oo, then
o(Sy,)/m(I,,)* — 0 as n — co. Let {v,} be such a sequence and, for n € N,
let f, = x1,, . As shown in the proof of (d) = (a), {f.} converges to 0 weakly in
LY(dT). Let € > 0. Then

oc{veT :|Pfp(v)] > Co}) <em({w: (Pfn)"(w) > Ca})®

for all n sufficiently large. The proof then follows from the proof of (b) = (a) in
Theorem 5.2, replacing v by v, and f by f,.

O
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7. AXIOMATICS IN THE RADIAL CASE

The following theorem gives a condition on the transition probabilities which
guarantees that A4 holds.

Theorem 7.1. Let T be a radial, transient tree for which there exists 0 < < 1/2
such that p(v,v™) <1/2 =46 for all v # e. Then

1/2 -5
)<
Fv,07) < 1/2+6

, forall v+#e.

In the appendix of [9], it is proved that a tree is transient if it satisfies the
stronger condition that there exists 6 > 0 such that § < p(v,w) < 1/2 — ¢ for all
vertices v and w. The proof of Theorem 7.1 is a modification of that proof.

We shall need the following result.

Lemma 7.1. The sequence {ay} defined inductively by aq =1/2 — 46, and
o 12-9
1= (1/24 0)ok—1

. ) . 1/2—-46
is increasing and lim ap = ———.

e ,fO?"kZQ,

Proof. We first show, using induction, that
1/2-4§

(15) WS TRy

for k>1,

or equivalently
(16) 1—(1/248)ax >1/246, for k> 1.
Inequality (15) holds for & = 1 since 1/2 + § < 1. Now suppose it holds for some
k > 1. Then using the inductive hypothesis stated as in (16),
1/2—-6 1/2—-46
T T (12 ) 1246
completing the inductive proof.

Since aj, < 1;3;2 < 1, we see by (15) that

(1/2+ 8)a} — a + (1/2 = 8) = [(1/2+ ) — (1/2 = )] — 1] > 0,

S0
1/2 6> ap — (1/2468)ai = ap(l — (1/2 + 8)ag).
Thus, by (16),
1/2-4§

17 S e .

(17) NS T (12 Oy
We have shown that {«} is increasing and bounded above by %, which we note
is less than 1. Thus the sequence has a finite limit, and letting & — oo on both

sides of oy, = Hl}fﬁ gives that the limiting value is %ﬁ;g O

For each k > 1 and v € T with |v| = k, let pr = 1 — p(v,v—) denote the total
forward probability at v and let Fy, = F(v,v~). For each m > 1, let Fy ,, be the
conditional probability that the random walk starting at v visits v~ given that the
path is never farther than distance m from v~—.
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Proof of Theorem 7.1. We claim that for all k,m > 1, Fi ., < ay,. We argue
by induction on m. Consider the case m = 1. By definition, Fy; = 1 — pi, so
the fact that the claim holds for m = 1 is immediate from our assumption that
1—pr <1/2—46. Suppose m > 2 and the formula holds for all £ > 1 and m — 1.
Then

Fk,m =1- Pk +kak+1,m—1Fk,m7
so by the inductive hypothesis,

oo 1 —pk l—pr 1—pg
k.m — < = .
1—peFrt1m-1  l—prom—1  1—apmo1+ (1 —pr)am—1

Since the function z —
we obtain

- - is increasing forz >0,and 1—p < 1/2-94,

l1—am—1+Ta,—
1/2—-90

1—ap_1+ (1/2 — 5)Oém_1

completing the proof of the claim. Letting m — oo and applying Lemma 7.1 gives

1/2—6
Fi= lim Fem < lim am =
k mgnoo k, _mgnooa 1/2+(5

Fk,m <

= Qm,

and we are done.

8. THE P-TREE

In this and the next section we give an example of a tree to which we can apply
the theory developed in the paper.

A tree is termed homogeneous of degree g+ 1 (with ¢ € N) if all its vertices have
q + 1 neighbors. The number of vertices of T' of length n is

. (g+1)g" ! ifn>1,
R if n = 0.

We fix once and for all a real number P such that 1/2 < P < 1 and an integer
q > 2. Throughout this section we shall assume that 7' is a homogeneous tree
of degree ¢ + 1 with radial forward probabilities p(e,v) = qlﬁ for |v| = 1, and
p(v—,v) = P/q and backward probabilities p(v,v™) =1 — P for v # e.

Define r = %. Then 0 <7 <1 and pr2 —r+1—p=0. A simple calculation
shows that the function v — r!”l is harmonic on T\ {e}, and the Laplacian at e
is negative. Thus, since there exists a positive superharmonic function that is not
harmonic, T is transient. The transience of 1" also follows from Theorem 7.1.

For uw,v € T, recall that F(u,v) is the probability that the random walk starting
at u hits v in positive time. We calculate F' as follows. First observe that since
all backward probabilities are equal, for v # e, F(v,v™) is independent of v and

F(v,v7)=1— P+ PF(v,v™)?, which easily yields the factorization
(F(o.v7) ~ D(PF(v,07) — (1 - P)) =0,

Since F'(v,v~) < 1, due to the transience of the random walk on T, it follows that
F(v,v) =L or

(18) Flu,o7)=r.
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We next calculate F(v,w) for |v] = n and w™ = v. Due to the radiality of the
transition probabilities, F'(v, w) only depends on n. Thus, we shall denote its value

by F,. Observe that Fy = ﬁ + #HTFO, so that
1

FO = .
q+1—gqr
For n > 1, we have
P P
F,=—+ (q - 1)7TF7L + (1 - P)F”_IF"’
q q

whence, a straightforward computation yields

1
1) T
Proposition 8.1. For eachn e N, F,, = where
Ln+1
(20) zn = (g + (L =r)g" + (qr — 1)r".
Proof. We argue by induction on n. For n = 0, we have
To _ a—r -1 _p
v g — (P HqtDr+qlg+1)  g+l-g 7
Assume the result holds for some integer n > 0. Then, by (19),
Py = 1 _ Tn+1
g+r—qrF, (q+7)Tpt1 —qre,
_ (g+1)A =g+ (gr — Drm
(g DA = r)gnt2 4 (gr — 1)rnt
_ Tan
= oo
proving the result. O

We now calculate the Poisson kernel.

Theorem 8.1. Let v € T with |v| =n, w € T, and let k = [v Aw|. Then

(1 —r)g" —1)rk

Pw(v) _ <(q + )( T’)q + (q’l’ )7" ) Tn—k.
q—r

In particular, if the transition probability on T is isotropic, then

Py(v) = ¢** "
Proof. For v Aw # v we have G(v,v Aw) = F(v,v Aw)G(v Aw,v Aw), so recalling
that P, (v) = S2%) e obtain

G(e,vAw)
F(v,0A .
P(v) = {ngz/\zg foAw#v . H;'l:kJrl F(vj,vj-1)
wiV) = 1 . o k—1 J
F(e,vAw) fvAw=wv Hj:O F(Uj’ Uj"rl)
where [vg, v1,...,v,] = [e,v] and the product in the numerator is 1 in case k = n.
In particular, vy = v Aw. Thus, from (18) and Proposition 8.1, we obtain
ok T
Py(v) = —1 =z, Tnikik~
Mo = =
J=0 x4

The result follows at once from (20). O
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We shall now calculate the Green function using the formulas
1
G(v,v) = T Fo and G(v,w) = F(v,w)G(w,w), for v+# w.
First we need to evaluate F(v,v).

Clearly, F(e,e) = (¢ + l)ﬁr = r, while for v # e, |v| = n,

F(v,v) = Zp(v,u)F(u, v)=Pr+(1—-P)F,_1=(1—-P)1+ F,—1).
Thus, for |v| =n >0,
1 1+7r
P-—(1-P)F,y1 1—r1Fp
In general, for |v| =n, |w| =m, and |v A w| = k, from (20), we have
ek Tk L+T
a 1—rF,_1

(21) G(v,v) =

G(U7 w) = F(U, w)G(w, w) =17r

ok (1+7)zk
Ty — TTym_1
r" R4+ r)[(g + D = r)g" + (gr — 1)r*]
(¢+ 1A =r)(g—r)gm! '
A direct calculation applied to (21) shows that for |v| = n,
(A+r)lg+ 1)1 —r)q" + (gr —)r"]
(¢+1@A—=r)(g—r)g"" '
Therefore, formula (22) also holds for v = w. Thus, we have proved:

(22)

G(v,v) =

Theorem 8.2. The Green function on a homogeneous tree T with forward radial
transition probabilities given by p(e,v) = qul for lv| =1, plv=,v) = % for v > 1,
is given by
A4+ DA = r)gt + (gr — 1)r]

(¢+ 1)1 —r)(g—r)gm! ’
where |v| = n, |lw| =m, and |[v Aw| = k. In particular, in the isotropic case, the
Green function is given by

— q —(n+m)+2k
G(v,w) <q — 1) q .

It can be easily verified using Theorem 8.1 and (18) that the P-tree satisfies the
required properties A1-A4.

Gv,w) =

9. THE SEMI-HOMOGENEOUS TREE

Let go,q1 be positive integers and let T be a tree such that for v € T, if |v] is
even, then v has gg + 1 neighbors, and if |v| is odd, then v has ¢; + 1 neighbors.
In particular, the root e has gy + 1 neighbors each of which has ¢; children, each
if which has qg children, etc. Thus, the number of the vertices of T' of length n is
given by

1 for n =0,
(23) My = q‘;—ﬁl a™ for 0 < n even,
Aotl on for n odd,

V4091
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where o = /qoqr. We say that T' is semihomogencous of degrees qo and qy if T
satisfies the above conditions and the transition probabilities of T are isotropic.

Let T be semihomogeneous of degrees qg and ¢;. Let T be the tree whose set
of vertices is {v € T : |v| = 2} and let two vertices v and w in 7' be neighbors
if and only if d(v,w) = 2, where d denotes the distance function in 7. Then T
is a homogeneous tree of degree Q + 1, where Q = q1(q0 + ) — 1. We define the
transition probabilities so that T is isotropic. Clearly, 8T oT.

For any function f on T, let f be its restriction to 7.

Proposition 9.1. The mapping f — f is a bijection between the set of harmonic
functions on T and the set of harmonic functions on T.

Proof. We first show that if f is harmonic on T, then f is harmonic on 7. Fix
v € T and reserve the notation v ~ w for neighboring vertices v and w in T and
u™ for the neighbor of u closest to v in T'. Since v has gg + 1 neighbors, by the
harmonicity of f at v and at its neighbors in 7', we have

flv) = q0+1§)f , and for each w ~ v,
flw) = qﬁlz;uf q+1 uzwf

Thus, eliminating the intermediate step and substituting the value of f(w) from
the second equation into the first equation, we have

1DSUTED o ot ]

w~v U

fv)

(QOJFl (@1 +1)

1
T @y | d%j

1
- Q1+1f(v)+(QO+ W+ 1) Z flu

d(u,v)=2

Combining the terms in f(v) in the resulting equation and multiplying both sides
by (g1 + 1), we obtain

a1 f(v) Z flu
d(u v)=2
whence
Bo) = fo) = — L ) = Flu)
N - q1 (qO + 1) d(u,v)=2 - Q +1 d(u,v)=1 ,

where d denotes the distance function in T. Therefore, fis harmonic at v in T.
Conversely, suppose f is harmonic on T'. For all v € T, let f(v) = f(v) and for
all we T\T, let

flw) = Q1+lzf
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Then, by construction, f is harmonic at each w € T\f Moreover, for v € f,

1
QO+1Zf QO+1ZQ1+1 Zf ]

wn~v u~w

> Fw) + fv)

~=w

1
T (ot D@+ sz +q +1f()

~v Ut =w

1 .
= @EaED @V o

1
B (I0+11;JQ1+1

qa oz
= v) + V)= v),
A fw)+ — ) = 1)
proving the harmonicity of f on 7. This proves the result. O

Theorem 9.1. Let T' be a semihomogeneous tree of degrees qo and q1 with q; > 2
for 7 =0,1. Then T satisfies axioms A1-A4.

Proof. Axiom Al clearly holds. Next note that since ¢; > 2 for j = 0,1, then for
any vertex v € T, v # e, p(v,v7) < % = Thus, Theorem 7.1 holds with
0= % Therefore A4 holds.

For any v € T, w € 9T, let P,(v) be the Poisson kernel in T. If v € f, let
ﬁ (v) be the Poisson kernel in T. By Proposition 9.1 and the uniqueness of the
representatlon of a positive harmomc function as a Poisson integral, it follows that
P, is just the restriction of P, to 7. Let n(v,w) = 2[v Aw| — |v| measured in T and
let n(v,w) = 2|v Aw| = |v| measured in T. If v Aw € T, then n(v,w) = 2n(v w),
but if v Aw ¢ T, then n(v,w) = 2A(v,w) + 2. Thus, for v € T, if v Aw € T, then

Pu(v) = () = @70
Let 8 = QY2 and note that 8 > a > 1. Then

pa ==

1_1
2 6"

grvw) ifvAwe i
pr(vew) =2 ifoAwé¢T.

Setting k = |v Aw| and n = |v| measured in T, we have

1 ifvAwe f,
P,(v) = 8*~"e, where ¢ = ) 1 vAwE L

8- ifoAwéT.
Since m(Iypw) = m%c, by (23) we may write

€0, M Topw) = a™*

for an appropriate constant cq, 4,. Therefore,

Cq0,q1 Pw (v)m(IvAw)

o
g
S~—
A Il
[0 Q)
P Qw
QI+ =
N— 3
3
! |
N ES
7N
o= ™
~—  —
T =
Il S———
o 7
7N N
Q= =
~_
3 O
wv
>
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If w e I,, then

Cqo,0 Po(0)m(l,) = e "a™" = ¢ (5)” > €.

[e%

Next, assume w € T\f and w € 0T. Then,

¢
Cq0.q1 Poo(w) = qlqo% Z Py (v).

v~vw

Therefore, if w ¢ I, then vAw = wAw for all v ~ w, so by (24), letting k = |[wAw],
we have

C,
CQO,lh Pw (w)m(IwAw) = qlq:ihl Z P v/\w)
VW
(1

S _

@+l VAW «

Jw|+1-k |lw|—1—k

< k@) G)

g1 +1

|w|—k

B q +1 ( ) ( )

_ a(l+q)e (1 ol =k
- farte (a)

On the other hand, if w € I, then w A w = w, w~ Aw = w™ and w belongs to
I,,, for exactly one child vy of w, so that vy A w = vy, while for v ~ w, v # v, w™,
vAw=wAw=w. Thus, by (24),

(& _
Cqorqr Po(W)m(Iupw) = ﬁ Py(w™)+Py(vo)+ > Pu(v)| m()
v =w,v#Vg
Cq01q1 — 1
= —= P, (w™)—m(Il,-)+ P,(vg)m(I,
St ur) Lonl,) + Polun)in(T)|
Cqu1
— P,(v)m(Iyns
Ch+1v——%:v¢vo (V)m(Iyrw)
€ 1 ql—l
25 < —+aq+
(25) < S(prart)

|w|—k
s o)t
(0%
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where k = |w A w| = |w|. Moreover,
1
— —|wl
go,q1 P (W)m(ly) = o+ 1 § P,(v) | a

v~Yw

ol
_ Po)+ P+ Y B)

1
a1+ VT =w,vFEvg, W
—|wl
Q@ €
= & C gl glwl-1 o g |w|—1]
o [P T - 1)
[w]
B € -1 —1
= = -1
(a P @ ns
€ q1
> +=1.
g1 +1 (6 5)
. . . . 1 1
This proves that axioms A2 and A3 are satisfied with r = — = . O
«a v/ 4091
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