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Abstract. We extend a discrete version of an extension of Carleson’s theorem
proved in [5] to a large class of trees T that have certain radial properties. We
introduce the geometric notion of s-vanishing Carleson measure on such a tree
T (with s ≥ 1) and give several characterizations of such measures. Given a
measure σ on T and p ≥ 1, let Lp(σ) denote the space of functions g defined
on T such that |g|p is integrable with respect to σ and let Lp(∂T ) be the space
of functions f defined on the boundary of T such that |f |p is integrable with
respect to the representing measure of the harmonic function 1. We prove the
following extension of the discrete version of a classical theorem in the unit
disk proved by Power.

A finite measure σ on T is an s-vanishing Carleson measure if and only
if for any real number p > 1, the Poisson operator P : Lp(∂T ) → Lsp(σ) is
compact.

Characterizations of weak type for the case p = 1 and in terms of the tree
analogue of the extended Poisson kernel are also given. Finally, we show that
our results hold for homogeneous trees whose forward probabilities are radial
and whose backward probabilities are constant, as well as for semihomogeneous
trees.

1. Introduction

For s ≥ 1, a positive measure σ on the open unit disk D in the complex plane is
said to be an s-Carleson measure if there exists C > 0 such that for each θ0 ∈ R
and h ∈ (0, 1),

σ(Sθ0(h)) ≤ Chs,

where
Sθ0(h) := {reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h/2}.

In [2], Carleson proved that a positive measure σ is 1-Carleson if and only if for
each p > 1, the Poisson operator P , which associates to each function f ∈ Lp(∂D)
its Poisson integral Pf , is bounded from Lp(∂D) to Lp(σ), where g ∈ Lp(σ) means∫

D
|g(z)|p dσ(z) < ∞.

In [3], Carleson obtained a similar characterization of such measures in terms
of the boundedness of the inclusion map from the Hardy space Hp (0 < p < ∞)
into Lp(σ). In [7], Duren extended the latter result by showing that for s ≥ 1 and
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0 < p < ∞, σ is an s-Carleson measure if and only if for all f ∈ Hp,∫
D
|f(z)|sp dσ(z) ≤ C‖f‖sp

Hp .

A positive measure σ on D is said to be an s-vanishing Carleson measure if

lim
h→0

sup
θ∈R

σ(Sθ(h))
hs

= 0.

The 1-vanishing Carleson measures are commonly referred to as vanishing Carleson
measures.

For z ∈ D and w ∈ D, the extended Poisson kernel at (z, w) is defined by

P(z, w) =
1− |z|2

|1− zw|2
.

Note that the formula for P(z, w) coincides with that of the ordinary Poisson kernel
when |w| = 1.

In [11], Theorem 8.2.5., vanishing Carleson measures were characterized in terms
of the compactness of the Poisson operator and of the above extension of the Poisson
kernel P.

Theorem 1.1. [11] For a positive measure σ on D, the following conditions are
equivalent:

(a) σ is a vanishing Carleson measure.
(b) For 1 < p < ∞, the Poisson operator P is compact as a mapping from

Lp(∂D) into Lp(σ).

(c) lim
|z|→1

∫
D
P(z, w) dσ(w) = 0.

The equivalence of (a) and (b) first appeared in [10] (Theorem 2).
In [5], motivated by the important role Carleson measures play in analytic func-

tion space theory and operator theory, we introduced the notion of s-Carleson
measure on an isotropic homogeneous tree and gave several characterizations of
such measures. In particular, we proved a discrete version of a characterization
of s-Carleson measures due to Duren ([7]). Carleson-type measures in a discrete
setting have previously been considered in [1].

In this work we define what are radial trees, and we extend the definitions and
the theorems derived in [5] to radial trees satisfying some additional axioms. Fur-
thermore, in this more general setting we develop a discrete notion of s-vanishing
Carleson measure (where s ≥ 1) and provide several characterizations of such mea-
sures, some of which are the discrete analogues of Theorem 1.1 in the special case
s = 1. We conclude the paper by showing that the results given in the present
work hold in particular on non isotropic homogeneous trees whose forward prob-
abilities are radial and whose backward probabilities are constant, as well as on
semi-homogeneous trees.

We are not aware of any references involving vanishing Carleson measures in a
discrete setting, nor of any results similar to Theorem 1.1 for s-Carleson measures
in the classical setting of the unit disk for the case s > 1.

2. Preliminaries on trees

By a tree T we mean a locally finite, connected, and simply-connected graph,
which, as a set, we identify with the collection of its vertices. Two vertices u and
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v are called neighbors if there is an edge connecting them, and we use the notation
u ∼ v. The degree of a vertex is the number of its neighbors. The tree is called
homogeneous if all its vertices have the same degree. A path is a finite or infinite
sequence of vertices [v0, v1, . . . ] such that vk ∼ vk+1, for all k. It is a geodesic path
if in addition vk−1 6= vk+1, for all k. For any pair of vertices u, v there is a unique
geodesic path from u to v, which we denote by [u, v].

Given a tree T rooted at e and a vertex u ∈ T , a vertex v is called a descendant
of u if u lies in the unique path from e to v. The vertex u is then called an ancestor
of v. Given a vertex v 6= e, we denote by v− the unique neighbor which is an
ancestor of v. For v ∈ T , The set Sv consisting of v and all its descendants is called
the sector determined by v. The sectors are the sets of vertices that will play the
role of Carleson squares in the tree setting.

Define the length of the finite path [u0, u1, . . . , un] to be n. The distance, d(u, v),
between vertices u and v is the length of the geodesic path [u, v].

The tree T is a metric space under the distance d. Fixing e as the root of the
tree, we define the length of a vertex v, by |v| = d(e, v).

The boundary ∂T of T is the set of infinite geodesic paths ω of the form [e =
ω0, ω1, ω2, . . . ]. We denote by [e, ω) the set of vertices in the path ω. Then, ∂T is
a compact space under the topology generated by the sets

Iv = {ω ∈ ∂T : v ∈ [e, ω)},

which yields a compactification of T . Clearly, ∂T = Ie. Furthermore, for any n ∈ N,
∂T is the disjoint union of the sets Iv over the vertices v of length n. Under this
topology, ∂Sv = Iv for each v ∈ T .

For v ∈ T with 0 ≤ n ≤ |v|, define vn to be the vertex of length n in the path
[e, v].

Define a partial order ≤ on T ∪ ∂T as follows: For v ∈ T and x ∈ T ∪ ∂T , v ≤ x
if v ∈ [e, x]. Since T ∪ ∂T has e as the minimum, for any x, y ∈ T ∪ ∂T the greatest
lower bound of x and y is well defined. We denote this greatest lower bound by
x ∧ y.

A nearest-neighbor transition probability on the vertices of T is a function p :
T × T → [0, 1] such p(v, u) > 0 if and only if v ∼ u, and

∑
v∼u p(v, u) = 1 for each

vertex v. The tree is called isotropic if for every vertex u, the transition probabilities
p(u, v) all equal the reciprocal of the degree of u.

By a function on a tree we mean a real-valued function on the set of its vertices.
The Laplacian operator ∆ is defined as the averaging operator minus the identity

operator; that is, for a function f on T ,

∆f(v) =
∑
w∼v

p(v, w)f(w)− f(v), v ∈ T.

A function on T is harmonic at v if ∆f(v) = 0, and it is harmonic on T if it is
harmonic at every v ∈ T . It is superharmonic on T if ∆f(v) ≤ 0 for all v ∈ T .

For u, v ∈ T , define F (u, v) to be the probability that the associated random
walk starting at u hits v in positive time, and G(u, v) the expected number of visits
to vertex v by the random walk which begins at u. The tree T is called transient
provided the Green function G is finite at least at one (hence necessarily at every)
pair of vertices. This occurs if and only if F (v, v) < 1 for at least one (and so
necessarily at every) vertex v. Transience can be shown to be equivalent to the
existence of a positive superharmonic, nonharmonic function on T . In the transient
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case, we have the formulas

G(v, w) =

{
(1− F (v, v))−1 if v = w,

F (v, w)G(w,w) if v 6= w.
(1)

The function F is multiplicative in the sense that if [v0, v1, . . . , vn] is the geodesic
from v0 to vn, then F (v0, vn) =

∏n−1
k=0 F (vj , vj+1).

We shall assume henceforth that T is a transient tree.
For v ∈ T , ω ∈ ∂T, denote the value of the Poisson kernel at (ω, v) by Pω(v).

Every positive harmonic function on T can be written as

Pµ(·) :=
∫

∂T

Pω(·) dµ(ω)

for a unique Borel measure µ on ∂T .
The Poisson kernel is known to be related to the Green function by means of the

formula

Pω(v) =
G(v, v ∧ ω)
G(e, v ∧ ω)

.

Using (1), we see that the Poisson kernel can be written in terms of F as follows:

Pω(v) =


F (v,v∧ω)
F (e,v∧ω) if v ∧ ω 6= v,

1
F (e,v) if v ∧ ω = v 6= e,

1 if v = e.

For a general reference on the potential theory on trees, see [4].
In the following section, we shall consider a class of trees with radial properties

and shall give axioms that will allow us to extend to such trees the theory of Hardy
spaces and of Carleson measures developed in [5].

3. Radial trees

A tree is termed radial if for all neighboring vertices v, w, the transition prob-
abilities p(v, w) depend only on |v| and |w|. This condition places a restriction
on the degree of each vertex. Indeed, if w− = v and q is the number of forward
neighbors of v, then the total forward probability is q p(v, w) = 1 − p(v, v−), so
q = (1 − p(v, v−))/p(v, w). Thus the degree of vertex v is 1 + 1−p(v,v−)

p(v,w) , and so it
depends only on |v|.

For each k ≥ 0, let qk denote the number of forward neighbors of any vertex v
with |v| = k. For each n ≥ 1, the number of vertices of T of length n is

cn =
n−1∏
k=0

qk.(2)

Let m be the probability measure on ∂T for which

m(Iv) =

{
1 if v = e,

1
c|v|

if v 6= e.

If µ is absolutely continuous with respect to m with density function f , we shall
adopt the notation Pf instead of Pµ. In particular, m is the representing measure
of the harmonic function 1. We shall refer to it as the normalized Lebesgue measure
on ∂T .
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In addition to assuming that the tree is radial and transient, we shall suppose
that there exist constants q, C1, C2 > 0 and δ1, r ∈ (0, 1) such that the following
axioms hold:

A1 2 ≤ qj ≤ q for each j;

A2 Pω(v) ≤ C1(m(Iv∧ω))−1r|v|−|v∧ω|, for all v ∈ T, ω ∈ ∂T ;

A3 Pω(v) ≥ C2(m(Iv))−1, for all v ∈ T, ω ∈ Iv;

A4 F (v, v−) ≤ 1− δ1, for all v 6= e.

From A1 we obtain

q−|v| ≤ m(Iv) =
1

c|v|
≤ 2−|v|.(3)

Since for v 6= e we have m(Iv−) = q|v|−1 m(Iv), the measure m satisfies the “dou-
bling” condition

m(Iv) ≤ m(Iv−) ≤ q m(Iv).(4)

Observe that if h is harmonic on T , then∑
|w|=n

h(w) = cnh(e), n ≥ 1.(5)

This can be proved by induction on n, but follows more easily by symmetry and
the fact that h(e) is the weighted average of its boundary values on |v| = n, where
the weights are the hitting probabilities for the first hitting time on |v| = n of the
random walk beginning at e.

We remark that for T any radial tree satisfying A4, T is necessarily transient.
In fact, in the next proposition we provide a sufficient condition for transience
(which clearly holds under the assumption of the axiom A4) that to the best of our
knowledge has not appeared in the literature.

Proposition 3.1. If there is a vertex v 6= e such that F (v, v−) < 1 and F (u, v) < 1
for all children u of v, then T is transient.

Proof. Suppose v is a vertex satisfying the assumption. Choose δ > 0 such that
F (v, v−) ≤ 1 − δ and F (u, v) ≤ 1 − δ for all children u of v. Since p(v, v−) ≤
F (v, v−) ≤ 1− δ, then

F (v, v) = p(v, v−)F (v−, v) +
∑

u−=v

p(v, u)F (u, v)

≤ p(v, v−) +
∑

u−=v

p(v, u)(1− δ)

= p(v, v−) + (1− p(v, v−))(1− δ) = 1− δ(1− p(v, v−))
= 1− δ + δp(v, v−) ≤ 1− δ + δ(1− δ)
= 1− δ2,

proving that T is transient. �
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For the remainder of the paper, we shall assume T is a radial tree satisfying
axioms A1-A4.

In [5], we proved all of the theorems that appear below in Sections 4 and 5 for
the case of a homogeneous isotropic tree. It turns out that all of these results hold
in the case of a radial tree satisfying axioms A1-A4. In fact, all of the proofs are
virtually the same, except for the few parts below in which we give the needed
details.

4. The harmonic Hardy space Hp

For 1 ≤ p < ∞ we let Lp(∂T ) denote the functions f : ∂T → [−∞,∞] such that
|f |p is m-integrable.We let L∞(∂T ) be the set of bounded functions on ∂T .

For 1 ≤ p < ∞, n ≥ 1, and a function f on T , let Mp(f, n) be the average value
of |f |p over the vertices of length n, namely,

Mp(f, n) =

∑
|v|=n |f(v)|p

c|v|
= m(Iv)

∑
|v|=n

|f(v)|p.

We now define the harmonic Hardy space Hp on T for p ≥ 1.

Definition 4.1. Let 1 ≤ p < ∞ and let h be harmonic on T . Then h ∈ Hp

provided that
‖h‖p

Hp := sup
n∈N

Mp(h, n) < ∞.

Definition 4.2. Let f ∈ L1(∂T ). The Hardy-Littlewood maximal function of f is
the function Mf on ∂T defined as

Mf(ω) = sup
{v∈T : ω∈Iv}

∫
Iv
|f(τ)| dm(τ)

m(Iv)
= sup
{v∈T : ω∈Iv}

c|v|

∫
Iv

|f(τ)| dm(τ).

Lemma 4.1. (Covering Lemma) Let A ⊆ T . Then there exists Â ⊆ A such that⋃
v∈ bA

Sv =
⋃
v∈A

Sv,
⋃
v∈ bA

Iv =
⋃
v∈A

Iv, and for each pair of distinct vertices v, w ∈ Â,

Sv ∩ Sw = ∅ and Iv ∩ Iw = ∅.

Theorem 4.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp(∂T ). Then Mf < ∞ m-a.e. and the
following inequalities hold:

(a) If p = 1, then for every λ > 0,

m{ω ∈ ∂T : Mf(ω) > λ} ≤ 1
λ
‖f‖L1(∂T ).

(b) If 1 < p ≤ ∞, there exists a constant C > 0 such that for each f ∈ Lp(∂T ),

‖Mf‖Lp(∂T ) ≤ C‖f‖Lp(∂T ).

Definition 4.3. Let h be harmonic on T . The radial maximal function of h is the
function h∗ defined on ∂T by h∗(ω) = supn |h(ωn)|.

Theorem 4.2. For every f ∈ L1(∂T ) and ω ∈ ∂T ,

(Pf)∗(ω) ≤ C1

1− r
Mf(ω).
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Proof. Let f ∈ L1(∂T ) and ω ∈ ∂T . Then for n ∈ N,

|Pf(ωn)| ≤
∫

Pη(ωn)|f(η)| dm(η)

≤
n∑

k=0

C1 (m(Iωk
))−1

rn−k

∫
Iωk

|f(η)|dm(η)

≤
n∑

k=0

C1 rn−kMf(ω)

= C1
1− rn+1

1− r
Mf(ω)

≤ C1

1− r
Mf(ω).

Taking the supremum over all n ∈ N yields the result. �

Lemma 4.2. For a fixed n ≥ 1, let h be harmonic on {v ∈ T : |v| ≤ n} and let fn

be the function defined on ∂T by

fn =
∑
|v|=n

(
h(v)− F (v, v−)h(v−)

1− F (v, v−)

)
χIv

,(6)

where χE denotes the characteristic function of the set E. Then Pfn = h on
|v| ≤ n.

Proof. Extend h harmonically to T so that for each v with |v| = n, h is radial on
Sv. Fix such a v. Consider the function on T defined by

w 7→
[
h(v)F (v−, e)− h(v−)F (v, e)

F (v−, e)− F (v, e)

]
+
[

h(v−)− h(v)
F (v−, e)− F (v, e)

]
F (w, e).

It is radial, harmonic outside of e, and it is easily verified that its value at v is h(v)
and its value at v− is h(v−). Thus this function equals h on Sv. It is clear that h is
bounded and its representing measure is absolutely continuous with respect to m.
By the Fatou radial limit theorem, the density of the representing measure is m-a.e.
equal to the radial limit function of h. By A4 and the multiplicative property of
F , F (w, e) → 0 as |w| → ∞, so the radial limit of h is

h(v)F (v−, e)− h(v−)F (v, e)
F (v−, e)− F (v, e)

.

Factoring out F (v−, e) on top and bottom and using the fact that F (v, e) =
F (v, v−)F (v−, e) yields the desired result. �

In the following theorem, we extend the characterizations of the harmonic func-
tions to be in the Hardy space Hp (for 1 < p < ∞) shown in [5] (Theorem 2.3) for
the homogeneous isotropic case. The proof of this extension, based on the same
argument provided in [5], makes use of Lemma 4.2 and the fact that, due to A4,
the function v 7→ F (v, v−) is bounded away from 0.

Theorem 4.3. For a harmonic function h on T and 1 < p < ∞, the following
propositions are equivalent:

(a) h ∈ Hp.
(b) h = Pf for some function f ∈ Lp(∂T ).
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(c) ‖h∗‖Lp(∂T ) < ∞.
(d) |h|p has a harmonic majorant.

Theorem 4.4. Let h be harmonic. Then h ∈ H1 if and only if h = P (µ) for some
signed measure µ on ∂T .

Theorem 4.5. There exists C > 0 such that for all f ∈ Lp(∂T ),

C‖f‖Lp(∂T ) ≤ ‖Pf‖Hp ≤ ‖f‖Lp(∂T ).

5. Discrete version of Duren’s extension of Carleson’s theorem

We note again that in this and the previous section we are generalizing results
on homogeneous isotropic trees considered in [5] to radial trees satisfying A1-A4.
Proofs are only given here in case they differ from those in [5].

Definition 5.1. For a measure σ on T and s ≥ 1, define

‖σ‖∗ = sup
{

σ(Sv)
m(Iv)s

: v ∈ T

}
.

A measure σ on T is said to be s-Carleson if ‖σ‖∗ < ∞.

Lemma 5.1. Given m ∈ N, 0 = α0 < α1 < · · · < αm, µ1, . . . , µm > 0, and s > 0,
m∑

k=1

(αk − αk−1)(µk + · · ·+ µm)s ≤

(
m∑

k=1

α
1/s
k µk

)s

,(7)

with equality occurring only if m = 1.

As a consequence, we deduce the following result.

Proposition 5.1. Let p > 1, s ≥ 1, m ∈ N, 0 = a0 < a1 < · · · < am, and
µ1, . . . , µm > 0. Then

m∑
k=1

(asp
k − asp

k−1)(µk + · · ·+ µm)s ≤

(
m∑

k=1

ap
kµk

)s

.

Theorem 5.1. Let (Ω, µ) be a finite measure space, p > 1, s ≥ 1, and g a nonneg-
ative measurable function on Ω. Then∫ ∞

0

spλsp−1µ{ω ∈ Ω : g(ω) > λ}s dλ ≤
(∫

Ω

gp dµ

)s

.

The extended Poisson kernel on the tree is defined by

P(v, w) =


1 if v, w ∈ T, v = e
1

F (e,v∧w) if v, w ∈ T , v ∧ w = v 6= e,
F (v,v∧w)
F (e,v∧w) if v, w ∈ T , v ∧ w 6= v,

Pω(v) if v ∈ T , w = ω ∈ ∂T .

The relation between the Poisson kernel and the extended Poisson kernel is given
in the following proposition. The equality in the proposition is proved using the
multiplicative property of F . The inequalities in the proposition follow by applying
A2 and A3 with any ω ∈ Iw and recalling that F ≤ 1.
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Proposition 5.2. Let v, w ∈ T , and ω ∈ Iw. Then

P(v, w) =

{
Pω(v) if v ∧ w = v ∧ ω,
Pω(v)F (w, v ∧ ω)F (v ∧ ω, w) if v ∧ w 6= v ∧ ω.

In particular,
P(v, w) ≤ Pω(v).

If v ∈ {w} ∪ (T\Sw), then

C2(m(Iv))−1 ≤ P(v, w) ≤ C1(m(Iv∧w))−1r|v|−|v∧w|

Theorem 5.2. Let 1 < p < ∞, 1 ≤ s < ∞, and σ a finite measure on T . The
following statements are equivalent.

(a) σ is an s-Carleson measure.
(b) There exists C > 0 such that for all harmonic functions h and λ > 0,

σ{v ∈ T : |h(v)| > λ} ≤ C (m{ω : h∗(ω) > λ})s.

(c) There exists C > 0 such that for all f ∈ Lp(∂T ),

‖Pf‖Lsp(σ) ≤ C‖f‖Lp(∂T ).

(d) There exists C > 0 such that for all f ∈ L1(∂T ) and λ > 0,

σ({v ∈ T : |Pf(v)| > λ}) ≤ C

λs
‖f‖s

L1(∂T ).

(e) sup
v∈T

∑
w∈T

P(v, w)s σ({w}) < ∞.

Proof. (b) =⇒ (a): Suppose that σ is a measure on T satisfying (b). We must show
that σ(Sv)/(m(Iv))s is bounded. It is enough to prove this for all |v| sufficiently
large, since it obviously holds if v lies in any finite set of vertices.

Let C1, C2, r be the positive constants of A2 and A3. Choose a positive integer
k such that

C2

C1
> rk.(8)

We will get an upper bound on σ(Sv)/(m(Iv))s for all v with |v| > k. This will
prove that σ is s−Carleson.

For the balance of the proof of (b) ⇒ (a), fix v ∈ T , with n = |v| and n > k.
Let f = χIv and h = Pf . Define Sk

v := Svn−k
, and Ik

v := Ivn−k
.

Let u ∈ Sv. If ω ∈ Iu, then by A3,

h(u) =
∫

Iv

Pω(u) dm(ω) ≥
∫

Iu

Pω(u) dm(ω) ≥ C2,

proving that

Sv ⊂ {u ∈ T : h(u) ≥ C2}.(9)

Notice that (9) holds for all v, whether or not |v| > k.
We claim that

{ω ∈ ∂T : h∗(ω) > C2} ⊂ Ik
v .(10)
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To see this, let u /∈ Sk
v . For any ω ∈ Iv we have u ∧ ω = u ∧ v, so by A2,

h(u) =
∫

Iv

Pω(u) dm(ω) ≤ C1 (m(Iu∧v))−1r|u|−|u∧v|m(Iv)

≤ C1r
|v|−|u∧v| ≤ C1r

k < C2,

establishing the claim.
Thus, by (9), the hypothesis, (10), and (4) we have

σ(Sv) ≤ σ{u ∈ T : h(u) > C2}
≤ C (m{ω : h∗(ω) > C2})s

≤ C (m(Ik
v ))s

≤ C qks(m(Iv))s,

completing the proof.
(c) =⇒ (a): Let v, f , and h be as in the proof of (b) ⇒ (a). Then using (9),

Csp
2 σ(Sv) ≤

∫
Sv

|Pf |sp dσ ≤
∫

T

|Pf |sp dσ

≤ C‖f‖sp
Lp(∂T ) = C (m(Iv))s,

proving σ is an s - Carleson measure.
(d) =⇒ (a): The proof is done by choosing f and C2 as in the proof of b ⇒ a,

evaluating σ on both sides of (9), and applying the inequality in (d) to f = χIv

with λ = C2.
(a) =⇒ (e): Assume (a) holds. Let C > 0 be such that σ(Sv) ≤ C(m(Iv))s for

each v ∈ T . Fix v ∈ T and let n = |v|. Let v0 = e, v1, . . . , vn = v be the sequence of
vertices of the path [e, v] with |vk| = k for k = 0, . . . , n. Then we may decompose T
into the disjoint union of the sets Wk = Svk

\Svk+1 (0 ≤ k ≤ n− 1) and Sv. Thus,
by Proposition 5.2,∑
w∈T

P(v, w)sσ({w}) =
n−1∑
k=0

∑
w∈Wk

P(v, w)sσ({w}) +
∑

w∈Sv

P(v, w)sσ({w})

≤
n−1∑
k=0

(C1 m(Ivk
))−sr(n−k)sσ(Svk

) + (C1 m(Iv))−sσ(Sv)

≤ C

[
n−1∑
k=0

(m(Ivk
))−sr(n−k)s(m(Ivk

))s + (m(Iv))−s(m(Iv))s

]

≤ C

[
rns

n−1∑
k=0

r−ks + 1

]
≤ C.

Condition (e) follows by taking the supremum over all v ∈ T .
(e) =⇒ (a): Suppose (e) holds. Let B be the supremum in (e). Let v ∈ T . Then,

by Proposition 5.2 we obtain

B ≥
∑

w∈Sv

P(v, w)sσ({w}) ≥
∑

w∈Sv

(C2m(Iv))−sσ({w}) = (C2m(Iv))−sσ(Sv)

�
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Remark 5.1. If σ is s-Carleson, let σ′ = σ/‖σ‖∗. Applying Theorem 5.2 to σ′,
we deduce that in part (c) of the theorem, the constant C may be replaced by a
multiple of ‖σ‖1/sp

∗ , and in parts (b) and (d), C may be replaced by a multiple
of ‖σ‖∗. Furthermore, the proof of Theorem 5.2 shows that the above multiple is
independent of σ, that is, if ‖σ‖∗ = 1, then C depends only on universal constants
and parameters associated with the tree.

6. Vanishing Carleson measures

We now introduce the notion of s-vanishing Carleson measure on a homogeneous
tree T .

Definition 6.1. Let s ≥ 1. A measure σ on T is said to be an s-vanishing Carleson
measure if

lim
|v|→∞

σ(Sv)
m(Iv)s

= 0.

Lemma 6.1. Let σ be an s-vanishing Carleson measure. For N ∈ N let σN be σ
times the characteristic function of the N -ball, {v ∈ T : |v| ≤ N}. Then lim

N→∞
‖σ−

σN‖∗ = 0.

Proof. Let ε > 0. Choose M such that for all |v| > M , σ(Sv) < ε(m(Iv))s.
Since σ is a finite measure, we can choose N1 such that for all N > N1, (σ −
σN )(T ) < ε min|v|≤M (m(Iv))s. Let N > N1. For any v ∈ T , if |v| > M , then
(σ−σN )(Sv)

(m(Iv))s ≤ σ(Sv)
(m(Iv))s < ε, and if |v| ≤ M , then (σ−σN )(Sv)

(m(Iv))s ≤ (σ−σN )(T )
(m(Iv))s < ε. Thus

‖σ − σN‖∗ < ε, proving that lim
N→∞

‖σ − σN‖∗ = 0. �

Our main result of this paper is the little “oh” version of Theorem 5.2.

Theorem 6.1. Let σ be a finite measure on T and s ≥ 1. Then the following
statements are equivalent.

(a) σ is an s-vanishing Carleson measure.
(b) For 1 < p < ∞, the Poisson operator P : Lp(∂T ) → Lsp(σ) is compact.
(c) lim

|v|→∞

∑
w∈T

P(v, w)sσ({w}) = 0.

(d) For any sequence {fn} in L1(∂T ) converging to 0 weakly and for all λ > 0,

lim
n→∞

σ({v ∈ T : |Pfn(v)| > λ})
‖fn‖s

L1(∂T )

= 0.

(e) For any sequence {hn} of harmonic functions on T converging to 0 point-
wise and for all λ > 0,

lim
n→∞

σ({v ∈ T : |hn(v)| > λ})
m({ω : h∗n(ω) > λ})s

= 0.

(f) For any sequence {fn} in L1(∂T ) converging to 0 weakly and for all λ > 0,

lim
n→∞

σ({v ∈ T : |Pfn(v)| > λ})
m({ω : (Pfn)∗(ω) > λ})s

= 0.

For the proof we need the following lemma.
Recall that a sequence {fn} in L1(∂T ) converges to 0 weakly if for each g ∈

L∞(∂T ),
∫

fng dm → 0, as n →∞.
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Lemma 6.2. If {fn} is a sequence in L1(∂T ) converging to 0 weakly, then {Pfn}
converges to 0 pointwise as n →∞.

Proof. Let {fn} be a sequence converging to 0 weakly in L1(∂T ). For n ∈ N
and v ∈ T , decomposing ∂T into the disjoint union of the sets Ivk

\Ivk+1 (for
k ∈ {0, . . . , |v| − 1) and Iv, we have

|Pfn(v)| =
∣∣∣∣∫ Pω(v)fn(ω) dm(ω)

∣∣∣∣
≤ C1 (m(Iv))−1

|v|−1∑
k=0

∫
Ivk

\Ivk+1

|fn(ω)| dm(ω) +
∫

Iv

|fn(ω)| dm(ω)

 ,

which can be made arbitrarily small due to the weak convergence of {fn}. There-
fore, Pfn converges to 0 pointwise. �

Proof of Theorem 5.2. (a) ⇒ (b): Suppose σ is an s-vanishing Carleson measure.
Then, given ε > 0, there exists n ∈ N such that (m(Iv))−sσ(Sv) < ε for |v| > N.

By Proposition 3.3(b), Chapter VI in [6], to prove that P : Lp(∂T ) → Lsp(σ) is
compact, it suffices to show that if {fn} is a sequence in Lp(∂T ) converging to 0
weakly, then ‖Pfn‖Lsp(σ) → 0 as n →∞.

For N ∈ N let σN be σ times the characteristic function of the N -ball, {v ∈
T : |v| ≤ N}. Since σN has finite support, the operator P : Lp(∂T ) → Lsp(σN ) is
compact. Indeed, let {fn} be a sequence in Lp(∂T ) converging to 0 weakly. Then
for each w ∈ T , letting p′ := p

p−1 , the conjugate index of p, and taking as a test
function in Lp′(∂T ) the characteristic function of Iw, we have∫

Iw

fn(ω) dm(ω) → 0 as n →∞.

Thus, since σ is a finite measure, by A2 and (3), we have

‖Pfn‖sp
Lsp(σN ) =

X
|w|≤N

|Pfn(w)|spσ({w})

=
X

|w|≤N

˛̨̨̨Z
Pω(w)fn(ω) dm(ω)

˛̨̨̨sp

σ({w})

≤
X

|w|≤N

C1 (m(Iw))−sp

240@|w|−1X
k=0

Z
Iwk

\Iwk+1

+

Z
Iw

1A |fn(ω)| dm(ω)

35sp

σ({w})

≤ CqspN

0@ X
|w|≤N

|w|−1X
k=0

Z
Iwk

\Iwk+1

|fn(ω)| dm(ω) +
X

|w|≤N

Z
Iw

|fn(ω)| dm(ω)

1Asp

which approaches 0 as n → ∞. This proves the compactness of P as an operator
mapping into Lsp(σN ).

Let {fn} be a sequence in Lp(∂T ) converging to 0 weakly. By the uniform
boundedness principle, there exists a constant M > 0 such that ‖fn‖sp

Lp < M for
all n ∈ N. By Lemma 6.1, there exists a positive integer N such that ‖σ − σN‖∗ <
ε/M . Since σ is an s-Carleson measure, so is σ − σN . Thus, by Theorem 5.2 and
Remark 5.1, there exists C > 0 (independent of N) such that∫

|Pfn(w)|sp d(σ − σN )(w) ≤ C‖σ − σN‖∗ ‖fn‖sp
Lp(∂T ) < Cε.
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Thus,

‖Pfn‖sp
Lsp(σ) =

∫
|Pfn(w)|sp dσN (w) +

∫
|Pfn(w)|sp d(σ − σN )(w)

≤
∫
|Pfn(w)|sp dσN (w) + Cε.

Letting n → ∞ and using the compactness of P as an operator mapping into
Lsp(σN ), we obtain lim sup

n→∞
‖Pfn‖sp

Lsp(σ) ≤ Cε. Since ε is arbitrary, lim
n→∞

‖Pfn‖sp
Lsp(σ) =

0, and we are done.
(b) ⇒ (c): Suppose (b) holds. For v ∈ T , define fv : ∂T → R by

fv(ω) = Pω(v)1/p, ω ∈ ∂T.

We now show that fv converges to 0 weakly in Lp(∂T ) as |v| → ∞, that is, for all
g ∈ Lp′(∂T ) with 1

p + 1
p′ = 1,∫

fvg dm → 0 as |v| → ∞.(11)

Fix v ∈ T and set |v| = n. In the special case when g is the constant function 1,
using the decomposition of ∂T as the disjoint union of the sets Ivk

\Ivk+1 (0 ≤ k ≤
n− 1) with Iv, and applying A2 and (3), we have∫

fv(ω) dm(ω) ≤ C

[
n−1∑
k=0

(m(Ivk
))−1/p r(n−k)/pm(Ivk

) + (m(Iv))−1/pm(Iv)

]

= C

[
rn/p

n−1∑
k=0

(m(Ivk
))1−1/p r−k/p + (m(Iv))1−1/p

]

≤ C

[
rn/p

n−1∑
k=0

(
2(1−1/p) r1/p

)−k

+ 2−(1−1/p)n

]
Since 1 < p < ∞, the last term on the right side goes to 0 as n → ∞. If
21−1/p r1/p < 1, the first term on the right side is at most Crn/p

(
2(1−1/p)r1/p

)−n
=

C
(
2−(1−1/p)n

)
, and if 21−1/p r1/p ≥ 1, it is at most Cnrn/p. In either case, we ob-

tain
∫

fv(ω) dm(ω) → 0 as |v| = n → ∞. Thus, (11) holds if g is any simple
function.

Next, denote by p′ the conjugate index of p and suppose g ∈ Lp′(∂T ). Choose a
sequence {gk} of simple functions such that ‖gk − g‖Lp′ (∂T ) → 0 as k →∞. Then∫

|fv(ω)g(ω)| dm(ω) ≤
∫
|fv(ω)gk(ω)| dm(ω)

+
∫
|fv(ω)(g(ω)− gk(ω))| dm(ω) = I + II.

By the above remarks, I → 0 as |v| → ∞, whereas, by Hölder’s inequality,

II ≤
(∫

Pω(v) dm(ω)
)1/p

‖g − gk‖Lp′ (∂T ) = ‖g − gk‖Lp′ (∂T ),

which can be made arbitrarily small by choosing k sufficiently large. This proves
the weak convergence to 0 of fv.

Since by assumption, the operator P : Lp(∂T ) → Lsp(σ) is compact, it follows
that ‖Pfv‖Lsp(σ) → 0 as |v| → ∞.
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Fix v and w in T . Since both the Poisson kernel and the function fv are positive,
by Proposition 5.2 and A3, we have

Pfv(w) =
∫

Pω(w)fv(ω) dm(ω)

≥
∫

Iw

Pω(w)fv(ω) dm(ω)

≥
∫

Iw

Pω(w)P(v, w)1/p dm(ω)

≥ C2 P(v, w)1/p.

Hence, raising both sides of the resulting inequality to the power sp, multiplying
by σ({w}), and summing over all w ∈ T , we obtain∑

w∈T

P(v, w)sσ({w}) ≤ C
∑
w∈T

|Pfv(w)|spσ({w}) = C ‖Pfv‖sp
Lsp(σ)

which, as we showed above, converges to 0 as |v| → ∞. Thus (c) holds.
(c) ⇒ (a): Assume (c) holds and fix ε > 0. Then there exists N ∈ N such that

for |v| > N ∑
w∈T

P(v, w)s σ({w}) < ε.(12)

For |v| > N , we obtain from Proposition 5.2 that(
C2(m(Iv))−1

)s
σ(Sv) ≤

∑
w∈Sv

P(v, w)sσ({w}) ≤
∑
w∈T

P(v, w)sσ({w}) < ε.

proving that σ is an s-vanishing Carleson measure.
(a) ⇒ (d): Assume σ is an s-vanishing Carleson measure and let {fn} be a

sequence in L1(∂T ) converging to 0 weakly. Fix λ, ε > 0. For N ∈ N, let σN be
the restriction of σ to the ball of radius N . By Lemma 6.1, we can choose N such
that ‖σ − σN‖∗ < ελs. We need to show that

σ({v ∈ T : |Pfn(v)| > λ, |v| < N})
‖fn‖s

L1(∂T )

< ε and(13)

σ({v ∈ T : |Pfn(v)| > λ, |v| ≥ N})
‖fn‖s

L1(∂T )

< C ε(14)

for all n sufficiently large.
Using Lemma 6.2, we have Pfn → 0 pointwise as n → ∞. Thus, the set

{v ∈ T : |Pfn(v)| > λ, |v| < N} is empty for n sufficiently large. Thus, (13) holds.
Next, using the fact that σ − σN is an s-Carleson measure, it follows from

Theorem 5.2 and Remark 5.1 that, for each n ∈ N we have

σ({v ∈ T : |Pfn(v)| > λ, |v| ≥ N}) ≤ C
‖σ − σN‖∗

λs
‖fn‖s

L1(∂T ) < Cε‖fn‖s
L1(∂T ),

where C is independent of n and N . This proves (14).
(d) ⇒ (a): Assume (d) holds. To prove (a), it suffices to show that if {vn}

is any sequence of vertices such that |vn| → ∞, then (m(Ivn))−sσ(Svn) → 0 as
n → ∞. Let {vn} be such a sequence and for n ∈ N, define fn = χIvn

. Then
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‖fn‖L1(∂T ) = m(Ivn) and fn → 0 weakly in L1(∂T ). Indeed, for all g ∈ L∞(∂T ),
by (3) we have∣∣∣∣∫ fn(ω)g(ω) dm(ω)

∣∣∣∣ =
∣∣∣∣∣
∫

Ivn

g(ω) dm(ω)

∣∣∣∣∣ ≤ ‖g‖∞m(Ivn) → 0,

as n →∞.
If v ∈ Svn , then by A3,

Pfn(v) =
∫

Ivn

Pω(v) dm(ω) ≥
∫

Iv

Pω(v) dm(ω) ≥ C2.

Thus, if 0 < λ < C2, then Svn ⊂ {v ∈ T : Pfn(v) > λ}, and so, since ‖fn‖L1(∂T ) =
m(Ivn

), then

(m(Ivn))−sσ (Svn) ≤ σ ({v ∈ T : Pfn(v) > λ})
‖fn‖s

L1(∂T )

.

By assumption, the weak convergence of fn implies that the latter goes to 0 as n
goes to ∞, proving the result.

(a) ⇒ (e): Suppose (a) holds and fix ε > 0. Then, there exists N ∈ N such
that σ(Sv) < ε m(Iv)s for |v| > N . Let {hn} be a sequence of harmonic functions
converging to 0 pointwise and let λ > 0. Then for |v| ≤ N and n sufficiently large,
|hn(v)| < λ. In particular, for such an n, the set {v ∈ T : |v| ≤ N, |hn(v)| > λ} is
empty. Define An = {v ∈ T : |hn(v)| > λ} = {v ∈ T : |v| > N, |hn(v)| > λ} and let
Ân be as in Lemma 4.1.

Since for ω ∈ Iv with v ∈ An, h∗n(ω) ≥ |hn(v)| > λ, we have

σ({v : |hn(v)| > λ}) ≤ σ

 ⋃
v∈ bAn

Sv

 =
∑

v∈ bAn

σ(Sv)

< ε
∑

v∈ bAn

m(Iv)s ≤ ε

∑
v∈ bAn

m(Iv)

s

= ε

m

 ⋃
v∈ bAn

Iv

s

= ε

(
m

( ⋃
v∈An

Iv

))s

≤ ε m({ω : h∗n(ω) > λ})s,

which yields (e).
(e) ⇒ (f) follows immediately from Lemma 6.2.
(f)⇒ (a): Suppose (f) holds. To prove that σ is an s-vanishing Carleson measure,

it suffices to show that if {vn} is a sequence of vertices such that |vn| → ∞, then
σ(Svn)/m(Ivn)s → 0 as n → ∞. Let {vn} be such a sequence and, for n ∈ N,
let fn = χIvn

. As shown in the proof of (d) ⇒ (a), {fn} converges to 0 weakly in
L1(∂T ). Let ε > 0. Then

σ({v ∈ T : |Pfn(v)| > C2}) < ε m({ω : (Pfn)∗(ω) > C2})s

for all n sufficiently large. The proof then follows from the proof of (b) ⇒ (a) in
Theorem 5.2, replacing v by vn and f by fn.

�



16 JOEL M. COHEN, FLAVIA COLONNA, AND DAVID SINGMAN

7. Axiomatics in the radial case

The following theorem gives a condition on the transition probabilities which
guarantees that A4 holds.

Theorem 7.1. Let T be a radial, transient tree for which there exists 0 < δ < 1/2
such that p(v, v−) < 1/2− δ for all v 6= e. Then

F (v, v−) ≤ 1/2− δ

1/2 + δ
, for all v 6= e.

In the appendix of [9], it is proved that a tree is transient if it satisfies the
stronger condition that there exists δ > 0 such that δ < p(v, w) < 1/2 − δ for all
vertices v and w. The proof of Theorem 7.1 is a modification of that proof.

We shall need the following result.

Lemma 7.1. The sequence {αk} defined inductively by α1 = 1/2− δ, and

αk =
1/2− δ

1− (1/2 + δ)αk−1
, for k ≥ 2,

is increasing and lim
k→∞

αk =
1/2− δ

1/2 + δ
.

Proof. We first show, using induction, that

αk <
1/2− δ

1/2 + δ
, for k ≥ 1,(15)

or equivalently

1− (1/2 + δ)αk > 1/2 + δ, for k ≥ 1.(16)

Inequality (15) holds for k = 1 since 1/2 + δ < 1. Now suppose it holds for some
k ≥ 1. Then using the inductive hypothesis stated as in (16),

αk+1 =
1/2− δ

1− (1/2 + δ)αk
<

1/2− δ

1/2 + δ
,

completing the inductive proof.
Since αk < 1/2−δ

1/2+δ < 1, we see by (15) that

(1/2 + δ)α2
k − αk + (1/2− δ) = [(1/2 + δ)αk − (1/2− δ)][αk − 1] > 0,

so
1/2− δ > αk − (1/2 + δ)α2

k = αk(1− (1/2 + δ)αk).
Thus, by (16),

αk <
1/2− δ

1− (1/2 + δ)αk
= αk+1.(17)

We have shown that {αk} is increasing and bounded above by 1/2−δ
1/2+δ , which we note

is less than 1. Thus the sequence has a finite limit, and letting k → ∞ on both
sides of αk = 1/2−δ

1−(1/2+δ)αk−1
gives that the limiting value is 1/2−δ

1/2+δ . �

For each k ≥ 1 and v ∈ T with |v| = k, let pk = 1 − p(v, v−) denote the total
forward probability at v and let Fk = F (v, v−). For each m ≥ 1, let Fk,m be the
conditional probability that the random walk starting at v visits v− given that the
path is never farther than distance m from v−.
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Proof of Theorem 7.1. We claim that for all k, m ≥ 1, Fk,m < αm. We argue
by induction on m. Consider the case m = 1. By definition, Fk,1 = 1 − pk, so
the fact that the claim holds for m = 1 is immediate from our assumption that
1 − pk < 1/2 − δ. Suppose m ≥ 2 and the formula holds for all k ≥ 1 and m − 1.
Then

Fk,m = 1− pk + pkFk+1,m−1Fk,m,

so by the inductive hypothesis,

Fk,m =
1− pk

1− pkFk+1,m−1
<

1− pk

1− pkαm−1
=

1− pk

1− αm−1 + (1− pk)αm−1
.

Since the function x 7→ x
1−αm−1+xαm−1

is increasing for x > 0, and 1−pk < 1/2−δ,
we obtain

Fk,m <
1/2− δ

1− αm−1 + (1/2− δ)αm−1
= αm,

completing the proof of the claim. Letting m →∞ and applying Lemma 7.1 gives

Fk = lim
m→∞

Fk,m ≤ lim
m→∞

αm =
1/2− δ

1/2 + δ

and we are done.
�

8. The P -tree

In this and the next section we give an example of a tree to which we can apply
the theory developed in the paper.

A tree is termed homogeneous of degree q +1 (with q ∈ N) if all its vertices have
q + 1 neighbors. The number of vertices of T of length n is

cn =

{
(q + 1)qn−1 if n ≥ 1,

1 if n = 0.

We fix once and for all a real number P such that 1/2 < P < 1 and an integer
q ≥ 2. Throughout this section we shall assume that T is a homogeneous tree
of degree q + 1 with radial forward probabilities p(e, v) = 1

q+1 for |v| = 1, and
p(v−, v) = P/q and backward probabilities p(v, v−) = 1− P for v 6= e.

Define r = 1−P
P . Then 0 < r < 1 and pr2 − r + 1− p = 0. A simple calculation

shows that the function v 7→ r|v| is harmonic on T \ {e}, and the Laplacian at e
is negative. Thus, since there exists a positive superharmonic function that is not
harmonic, T is transient. The transience of T also follows from Theorem 7.1.

For u, v ∈ T , recall that F (u, v) is the probability that the random walk starting
at u hits v in positive time. We calculate F as follows. First observe that since
all backward probabilities are equal, for v 6= e, F (v, v−) is independent of v and
F (v, v−) = 1− P + PF (v, v−)2, which easily yields the factorization

(F (v, v−)− 1)(PF (v, v−)− (1− P )) = 0.

Since F (v, v−) < 1, due to the transience of the random walk on T , it follows that
F (v, v−) = 1−P

P or

F (v, v−) = r.(18)
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We next calculate F (v, w) for |v| = n and w− = v. Due to the radiality of the
transition probabilities, F (v, w) only depends on n. Thus, we shall denote its value
by Fn. Observe that F0 = 1

q+1 + q
q+1rF0, so that

F0 =
1

q + 1− qr
.

For n ≥ 1, we have

Fn =
P

q
+ (q − 1)

P

q
rFn + (1− P )Fn−1Fn,

whence, a straightforward computation yields

Fn =
1

q + r − qrFn−1
.(19)

Proposition 8.1. For each n ∈ N, Fn =
xn

xn+1
where

xn = (q + 1)(1− r)qn + (qr − 1)rn.(20)

Proof. We argue by induction on n. For n = 0, we have
x0

x1
=

q − r

qr2 − (q2 + q + 1)r + q(q + 1)
=

1
q + 1− qr

= F0.

Assume the result holds for some integer n ≥ 0. Then, by (19),

Fn+1 =
1

q + r − qrFn
=

xn+1

(q + r)xn+1 − qrxn

=
(q + 1)(1− r)qn+1 + (qr − 1)rn+1

(q + 1)(1− r)qn+2 + (qr − 1)rn+2

=
xn+1

xn+2
,

proving the result. �

We now calculate the Poisson kernel.

Theorem 8.1. Let v ∈ T with |v| = n, ω ∈ ∂T , and let k = |v ∧ ω|. Then

Pω(v) =
(

(q + 1)(1− r)qk + (qr − 1)rk

q − r

)
rn−k.

In particular, if the transition probability on T is isotropic, then

Pω(v) = q2k−n.

Proof. For v ∧ ω 6= v we have G(v, v ∧ ω) = F (v, v ∧ ω)G(v ∧ ω, v ∧ ω), so recalling
that Pω(v) = G(v,v∧ω)

G(e,v∧ω) we obtain

Pω(v) =

{
F (v,v∧ω)
F (e,v∧ω) if v ∧ ω 6= v

1
F (e,v∧ω) if v ∧ ω = v

=

∏n
j=k+1 F (vj , vj−1)∏k−1

j=0 F (vj , vj+1)
,

where [v0, v1, . . . , vn] = [e, v] and the product in the numerator is 1 in case k = n.
In particular, vk = v ∧ ω. Thus, from (18) and Proposition 8.1, we obtain

Pω(v) =
rn−k∏k−1

j=0
xj

xj+1

= rn−k xk

x0
.

The result follows at once from (20). �
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We shall now calculate the Green function using the formulas

G(v, v) =
1

1− F (v, v)
and G(v, w) = F (v, w)G(w,w), for v 6= w.

First we need to evaluate F (v, v).
Clearly, F (e, e) = (q + 1) 1

q+1r = r, while for v 6= e, |v| = n,

F (v, v) =
∑
u∼v

p(v, u)F (u, v) = Pr + (1− P )Fn−1 = (1− P )(1 + Fn−1).

Thus, for |v| = n > 0,

G(v, v) =
1

P − (1− P )Fn−1
=

1 + r

1− rFn−1
.(21)

In general, for |v| = n, |w| = m, and |v ∧ w| = k, from (20), we have

G(v, w) = F (v, w)G(w,w) = rn−k xk

xm

1 + r

1− rFm−1

= rn−k (1 + r)xk

xm − rxm−1

=
rn−k(1 + r)[(q + 1)(1− r)qk + (qr − 1)rk]

(q + 1)(1− r)(q − r)qm−1
.(22)

A direct calculation applied to (21) shows that for |v| = n,

G(v, v) =
(1 + r)[(q + 1)(1− r)qn + (qr − 1)rn]

(q + 1)(1− r)(q − r)qn−1
.

Therefore, formula (22) also holds for v = w. Thus, we have proved:

Theorem 8.2. The Green function on a homogeneous tree T with forward radial
transition probabilities given by p(e, v) = 1

q+1 for |v| = 1, p(v−, v) = P
q for |v| > 1,

is given by

G(v, w) =
rn−k(1 + r)[(q + 1)(1− r)qk + (qr − 1)rk]

(q + 1)(1− r)(q − r)qm−1
,

where |v| = n, |w| = m, and |v ∧ w| = k. In particular, in the isotropic case, the
Green function is given by

G(v, w) =
(

q

q − 1

)
q−(n+m)+2k.

It can be easily verified using Theorem 8.1 and (18) that the P -tree satisfies the
required properties A1-A4.

9. The semi-homogeneous tree

Let q0, q1 be positive integers and let T be a tree such that for v ∈ T , if |v| is
even, then v has q0 + 1 neighbors, and if |v| is odd, then v has q1 + 1 neighbors.
In particular, the root e has q0 + 1 neighbors each of which has q1 children, each
if which has q0 children, etc. Thus, the number of the vertices of T of length n is
given by

mn =


1 for n = 0,

q0+1
q0

αn for 0 < n even,
q0+1√
q0q1

αn for n odd,

(23)
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where α =
√

q0q1. We say that T is semihomogeneous of degrees q0 and q1 if T
satisfies the above conditions and the transition probabilities of T are isotropic.

Let T be semihomogeneous of degrees q0 and q1. Let T̂ be the tree whose set
of vertices is {v ∈ T : |v| = 2} and let two vertices v and w in T̂ be neighbors
if and only if d(v, w) = 2, where d denotes the distance function in T . Then T̂
is a homogeneous tree of degree Q + 1, where Q = q1(q0 + 1) − 1. We define the
transition probabilities so that T̂ is isotropic. Clearly, ∂T = ∂T̂ .

For any function f on T , let f̂ be its restriction to T̂ .

Proposition 9.1. The mapping f 7→ f̂ is a bijection between the set of harmonic
functions on T and the set of harmonic functions on T̂ .

Proof. We first show that if f is harmonic on T , then f̂ is harmonic on T̂ . Fix
v ∈ T̂ and reserve the notation v ∼ w for neighboring vertices v and w in T and
u∼ for the neighbor of u closest to v in T . Since v has q0 + 1 neighbors, by the
harmonicity of f at v and at its neighbors in T , we have

f(v) =
1

q0 + 1

∑
w∼v

f(w), and for each w ∼ v,

f(w) =
1

q1 + 1

∑
u∼w

f(u) =
1

q1 + 1

[ ∑
u∼=w

f(u) + f(v)

]
,

Thus, eliminating the intermediate step and substituting the value of f(w) from
the second equation into the first equation, we have

f(v) =
1

(q0 + 1)(q1 + 1)

[∑
w∼v

f(v) +
∑
w∼v

∑
u∼=w

f(u)

]

=
1

(q0 + 1)(q1 + 1)

(q0 + 1)f(v) +
∑

d(u,v)=2

f(u)


=

1
q1 + 1

f(v) +
1

(q0 + 1)(q1 + 1)

∑
d(u,v)=2

f(u).

Combining the terms in f(v) in the resulting equation and multiplying both sides
by (q1 + 1), we obtain

q1f(v) =
1

q0 + 1

∑
d(u,v)=2

f(u),

whence

f̂(v) = f(v) =
1

q1(q0 + 1)

∑
d(u,v)=2

f(u) =
1

Q + 1

∑
bd(u,v)=1

f̂(u),

where d̂ denotes the distance function in T̂ . Therefore, f̂ is harmonic at v in T̂ .
Conversely, suppose f̃ is harmonic on T̂ . For all v ∈ T̂ , let f(v) = f̃(v) and for

all w ∈ T\T̂ , let

f(w) =
1

q1 + 1

∑
v∼w

f̃(v).
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Then, by construction, f is harmonic at each w ∈ T\T̂ . Moreover, for v ∈ T̂ ,

1
q0 + 1

∑
w∼v

f(w) =
1

q0 + 1

∑
w∼v

1
q1 + 1

[∑
u∼w

f̃(u)

]

=
1

q0 + 1

∑
w∼v

1
q1 + 1

[ ∑
u∼=w

f̃(u) + f̃(v)

]

=
1

(q0 + 1)(q1 + 1)

∑
w∼v

∑
u∼=w

f̃(u) +
1

q1 + 1
f(v)

=
1

(q0 + 1)(q1 + 1)
(Q + 1)f̃(v) +

1
q1 + 1

f(v)

=
q1

q1 + 1
f̃(v) +

1
q1 + 1

f(v) = f(v),

proving the harmonicity of f on T . This proves the result. �

Theorem 9.1. Let T be a semihomogeneous tree of degrees q0 and q1 with qj ≥ 2
for j = 0, 1. Then T satisfies axioms A1-A4.

Proof. Axiom A1 clearly holds. Next note that since qj ≥ 2 for j = 0, 1, then for
any vertex v ∈ T , v 6= e, p(v, v−) ≤ 1

3 = 1
2 −

1
6 . Thus, Theorem 7.1 holds with

δ = 1
6 . Therefore A4 holds.

For any v ∈ T , ω ∈ ∂T , let Pω(v) be the Poisson kernel in T . If v ∈ T̂ , let
P̂ω(v) be the Poisson kernel in T̂ . By Proposition 9.1 and the uniqueness of the
representation of a positive harmonic function as a Poisson integral, it follows that
P̂ω is just the restriction of Pω to T̂ . Let n(v, ω) = 2|v∧ω|− |v| measured in T and
let n̂(v, ω) = 2|v ∧ ω| − |v| measured in T̂ . If v ∧ ω ∈ T̂ , then n(v, ω) = 2n̂(v, ω),
but if v ∧ ω /∈ T̂ , then n(v, ω) = 2n̂(v, ω) + 2. Thus, for v ∈ T̂ , if v ∧ ω ∈ T̂ , then

Pω(v) = P̂ω(v) = Qbn(v,ω).

Let β = Q1/2 and note that β > α > 1. Then

Pω(v) = β2bn(v,ω) =

{
βn(v,ω) if v ∧ ω ∈ T̂ ,

βn(v,ω)−2 if v ∧ ω /∈ T̂ .

Setting k = |v ∧ ω| and n = |v| measured in T , we have

Pω(v) = β2k−nε, where ε =

{
1 if v ∧ ω ∈ T̂ ,

β−2 if v ∧ ω /∈ T̂ .

Since m(Iv∧ω) = 1
mk

, by (23) we may write

cq0,q1m(Iv∧ω) = α−k

for an appropriate constant cq0,q1 . Therefore,

cq0,q1Pω(v)m(Iv∧ω) = εβ2k−nα−k = ε

(
1
β

)n−2k ( 1
α

)k

≤ ε

(
1
α

)n−2k ( 1
α

)k

= ε

(
1
α

)n−k

.(24)
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If ω ∈ Iv, then

cq0,q1Pω(v)m(Iv) = εβ2n−nα−n = ε

(
β

α

)n

> ε.

Next, assume w ∈ T\T̂ and ω ∈ ∂T . Then,

cq0,q1Pω(w) =
cq0,q1

q1 + 1

∑
v∼w

Pω(v).

Therefore, if ω /∈ Iw, then v∧ω = w∧ω for all v ∼ w, so by (24), letting k = |w∧ω|,
we have

cq0,q1Pω(w)m(Iw∧ω) =
cq0,q1

q1 + 1

∑
v∼w

Pω(v)m(Iv∧ω)

≤ ε

q1 + 1

∑
v∼w

(
1
α

)|v|−k

≤ ε

q1 + 1

[
q1

(
1
α

)|w|+1−k

+
(

1
α

)|w|−1−k
]

=
ε

q1 + 1

(q1

α
+ α

)( 1
α

)|w|−k

=
q1(1 + q0)ε
(q1 + 1)α

(
1
α

)|w|−k

.

On the other hand, if ω ∈ Iw, then w ∧ ω = w, w− ∧ ω = w− and ω belongs to
Iv0 for exactly one child v0 of w, so that v0 ∧ ω = v0, while for v ∼ w, v 6= v0, w

−,
v ∧ ω = w ∧ ω = w. Thus, by (24),

cq0,q1Pω(w)m(Iw∧ω) =
cq0,q1

q1 + 1

Pω(w−) + Pω(v0) +
∑

v−=w,v 6=v0

Pω(v)

m(Iw)

=
cq0,q1

q1 + 1

[
Pω(w−)

1
q0

m(Iw−) + Pω(v0)m(Iv0)q1

]
+

cq0,q1

q1 + 1

∑
v−=w,v 6=v0

Pω(v)m(Iv∧ω)

≤ ε

q1 + 1

(
1
q0

+ q1 +
q1 − 1

α

)
(25)

= C

(
1
α

)|w|−k

,
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where k = |w ∧ ω| = |w|. Moreover,

cq0,q1Pω(w)m(Iw) =
1

q1 + 1

(∑
v∼w

Pω(v)

)
α−|w|

=
α−|w|

q1 + 1

Pω(v0) + Pω(w−) +
∑

v−=w,v 6=v0,w−

Pω(v)


=

α−|w|ε

q1 + 1

[
β|w|+1 + β|w|−1 + (q1 − 1)β|w|−1

]
=

(
β

α

)|w|
ε

q1 + 1
[
β + β−1 + (q1 − 1)β−1

]
>

ε

q1 + 1

(
β +

q1

β

)
.

This proves that axioms A2 and A3 are satisfied with r =
1
α

=
1

√
q0q1

. �
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