A Riesz decomposition theorem on harmonic spaces without positive potentials

Ibtesam BAJUNAID, Joel M. COHEN, Flavia COLONNA and David SINGMAN (Received October 17, 2006) (Revised May 24, 2007)

ABSTRACT. In this paper, we give a new definition of the flux of a superharmonic function defined outside a compact set in a Brelot space without positive potentials. We also give a new notion of potential in a BS space (that is, a harmonic space without positive potentials containing the constants) which leads to a Riesz decomposition theorem for the class of superharmonic functions that have a harmonic minorant outside a compact set. Furthermore, we give a characterization of the local axiom of proportionality in terms of a global condition on the space.

1. Introduction

The Riesz decomposition theorem for positive superharmonic functions states that any positive superharmonic function on a region of hyperbolic type in C can be expressed uniquely as the sum of a nonnegative potential and a harmonic function. This result is of no interest when the region is parabolic because there are no nonconstant positive superharmonic functions.

By a *Riesz decomposition theorem for a class of superharmonic functions* we mean a unique representation of each member of this class as a global harmonic function plus a member of the class of a special type. For a harmonic space with a Green function, this special class is the class of nonnegative potentials. In this case the most natural class to consider is the *admissible* superharmonic functions, which are the superharmonic functions that have a harmonic minorant outside a compact set. Indeed, the admissible superharmonic functions are precisely the superharmonic functions which can be written uniquely as sums of a nonnegative potential plus a harmonic function. This follows from the fact that every admissible superharmonic function in a harmonic space with a Green function minus its greatest harmonic minorant is a nonnegative potential.

Part of this work was done while the first author was visiting George Mason University, Fairfax, Virginia.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 31D05; Secondary: 31A05.

Key words and phrases. harmonic space, superharmonic, flux.

In this article, we give a Riesz decomposition theorem for the class of the admissible superharmonic functions on a harmonic space without positive potentials. This class was first studied by Anandam in [2]. See also [6] for a reference on the admissible subharmonic functions.

In this paper, we give a new definition of the flux of a function that is superharmonic outside a compact set which is equivalent to the various definitions of flux in the works of Anandam (see [2] through [8]). It also emcompasses the definitions of flux in the discrete setting given in [1], [9], and [15]. We then introduce a new class of potentials (called H-potentials) in the axiomatic setting that was first introduced in the recurrent tree and the complex plane settings in [15] and [16]. This new class allows us to obtain a global Riesz decomposition theorem for the class of superharmonic functions that have a harmonic minorant outside a compact set. We also give a characterization of the local axiom of proportionality in terms of a global condition on the space.

Many axiomatic treatments of potential theory have been formulated (for a survey and a historical context, see [13]). In this work we make use of the axiomatic theory of harmonic and superharmonic functions developed by Brelot (see [12]).

DEFINITION 1.1. A **Brelot space** is a connected, locally connected, locally compact but not compact Hausdorff space Ω together with a harmonic structure in the following sense. For each open set $U \subset \Omega$ there is an associated real vector space of real-valued continuous functions on U (which are called **harmonic functions on** U) satisfying the sheaf property, the regularity axiom, and the Harnack property.

The harmonic support of a superharmonic function s is the complement of the largest open set on which s is harmonic.

In a Brelot space, the Minimum Principle for superharmonic functions holds: A nonnegative superharmonic function on a domain U in a Brelot space is either identically zero or positive everywhere on U ([12], p. 71).

DEFINITION 1.2. A superharmonic function s on a Brelot space Ω is said to be **admissible** if there are a compact set K and a harmonic function h on $\Omega \setminus K$ such that $h(x) \leq s(x)$ for all $x \in \Omega \setminus K$.

Clearly, positive superharmonic functions and superharmonic functions of compact harmonic support are admissible. We shall see in Proposition 2.3 that K may be taken to be K_0 , any fixed compact set independent of the superharmonic function.

Any nonnegative superharmonic function which has a harmonic minorant has a greatest harmonic minorant (see [12], p. 87).

DEFINITION 1.3. A nonnegative superharmonic function on an open subset U of a Brelot space is called a **positive potential** (or briefly, a **potential**) if its greatest harmonic minorant on U is identically zero.

DEFINITION 1.4. A **BH space** is a Brelot space whose sheaf of harmonic functions contains the constants. A **BP space** is a BH space on which there is a positive potential. A **BS space** (short for *espace Brelot sans potentiel positif*) is a BH space on which no positive potential exists.

Any open subset of \mathbb{R}^n for $n \ge 3$ is a BP space, while the complement of any subset of \mathbb{R}^2 of logarithmic capacity zero is a BS space.

DEFINITION 1.5. A BP space is said to satisfy the **axiom of proportionality** if any two potentials with the same one-point harmonic support are proportional.

THEOREM 1.1 ([17], p. 139). In a Brelot space without potentials all positive superharmonic functions are harmonic and proportional. In particular, in a BS space, every positive superharmonic function must be constant.

Thus, a Brelot space which possesses positive superharmonic functions which are not harmonic, has potentials.

The following result is the Riesz decomposition theorem for admissible superharmonic functions on a BP space.

THEOREM 1.2 ([6], p. 66). In a BP space a superharmonic function is admissible if and only if it can be written uniquely as the sum of a potential and a function harmonic on the whole space.

THEOREM 1.3 ([20], Theorem 16.1, [2], Theorem 3.6, and [14]). If Ω is a Brelot space with positive potentials and a countable base of neighborhoods or if Ω is a BS space, then for any $x \in \Omega$, there exists a superharmonic function with harmonic support $\{x\}$.

By Theorem 1.3 and Theorem 1.2, if Ω is a Brelot space with potentials and a countable base of neighborhoods, then for each $x \in \Omega$ there exists a potential with harmonic support $\{x\}$.

2. The flux of a superharmonic function

The concept of flux on a BS space was introduced for the purpose of associating a harmonic function on Ω to a function that is harmonic outside a compact set.

Nakai (see [22] or Theorem 1.20 of [2]) proved that if h is a function defined on a BP space Ω and harmonic on the complement of a compact set K,

then $h = h_{\Omega} + b$ outside a compact set, where h_{Ω} is harmonic on Ω and b is bounded. This is not true if Ω is a BS space, but we shall describe an obstruction, called the *flux of h*, so that when the flux of *h* is zero, then *h* is the sum of a global harmonic function and a bounded function.

The concept of flux of a function superharmonic outside a compact subset of a BS space appeared in [8] and [19].

PROPOSITION 2.1 ([3], Theorem 1.17). Let Ω be a BS space, $K \subset \Omega$ compact not locally polar. Then there exists a function $H \ge 0$ unbounded and harmonic off K. If K is outer regular, then H may be chosen so that it tends continuously to 0 on ∂K .

DEFINITION 2.1. Let Ω be a BS space, $K \subset \Omega$ a nonempty compact set. A function H harmonic off K is called a **standard for** Ω associated with K if the following is true: given any function h which is harmonic off an arbitrary compact set, there exist a unique function h_{Ω} harmonic on the whole space and a unique real number α such that $b = h - \alpha H - h_{\Omega}$ is bounded off a compact set and $\liminf_{x\to\infty} b(x) = 0$, where the liminf is taken with respect to the Alexandrov one-point compactification of Ω . This means that for any increasing exhaustion $\{C_n\}$ consisting of compact sets, and for any positive number ε there exists $N \in \mathbb{N}$ such that for all integers $n \ge N$ there is a point $x \in \Omega \setminus C_n$ such that $b(x) < \varepsilon$, and for all $y \in \Omega \setminus C_n$, $b(y) > -\varepsilon$. Note that by the uniqueness of α , H must be unbounded.

By Theorem 9.7 of [10], the function $H(z) = \log|z|$ is a standard for **C** associated with the closed unit disk. In this case, *b* has an actual limit of 0 at infinity because a function which is harmonic and bounded outside a compact set in **C** has a limit at infinity. On the other hand, for $\Omega = \mathbf{C} \setminus \{2\}$, *H* is still a standard for Ω associated with the closed unit disk, but a bounded harmonic function outside a compact set will have two limits as we approach the boundary of Ω in the extended plane (i.e. as $z \to 2$ and as $z \to \infty$).

In [8] (see note following Lemma 2) the following result is shown.

THEOREM 2.1. Let Ω be a BS space and let H be a nonnegative harmonic function defined outside an outer regular compact set K, not identically 0, and tending to 0 at the boundary of K. Then H is a standard for Ω .

In [11] (Theorem 4.2), we proved that the outer regularity of the compact set is unnecessary.

In the remainder of this section and in the next section, we shall fix a BS space Ω , a nonempty compact subset K_0 which is not locally polar, and a standard H associated with K_0 tending to 0 on ∂K_0 , which for convenience we extend to be identically 0 in the interior of K_0 . Observe that this extension is subharmonic on all of Ω .

The following is the key result which we shall use to calculate the flux of a superharmonic function outside a compact set.

PROPOSITION 2.2 ([8], Proposition 1). Let s be superharmonic outside some compact set. Then there exist a superharmonic function s_{Ω} on Ω and a constant β such that $s = s_{\Omega} + \beta H$ outside a compact set.

REMARK 2.1. Let *s* be a function superharmonic outside a compact set. When it is clear from the context that the values of *s* on any particular compact set are unimportant, we shall use Proposition 2.2 to change *s* on a compact set so that it is defined globally and it is superharmonic outside K_0 . In particular, whenever it is useful, we shall assume that *s* is defined globally, is superharmonic outside K_0 and is lower bounded on K_0 .

The decomposition in Proposition 2.2 is not unique because we may increase β by subtracting an appropriate multiple of -H from s_{Ω} , since -H is globally superharmonic. Thus, it would be interesting to know the following: let $\beta_0 = \inf \beta$ over all β such that $s = s_{\Omega} + \beta H$ for some s_{Ω} superharmonic on Ω . When is $\beta_0 > -\infty$? We shall discuss this question at the end of this section.

REMARK 2.2. Let s be an admissible superharmonic function, and let h_1 be a function which is harmonic outside a compact set K and such that $h_1 \leq s$ outside K. By taking the restriction of h_1 to an outer regular compact set containing K, we may assume that K is outer regular. We may extend h_1 to a continuous function on Ω . Let b_1 be a lower bound of s on K and let b_2 be an upper bound of h_1 on K. Then $h = h_1 - |b_2 - b_1| \leq s$ on Ω and h is harmonic outside K. Thus, when we say that s has a harmonic minorant h outside a compact set, we mean that $h \leq s$ globally and h is harmonic outside a compact set.

REMARK 2.3 ([2], p. 133). The difference of the greatest harmonic minorants h_i of a superharmonic function outside a compact set K_i (i = 1, 2) is bounded.

DEFINITION 2.2. Let s be superharmonic outside a compact set. Define

 $A_s = \{ \alpha \in \mathbf{R} : \text{ there exists } h_\Omega \text{ harmonic on } \Omega \text{ such that } s - \alpha H \ge h_\Omega \}.$

LEMMA 2.1. If s is superharmonic outside a compact set, then A_s is bounded above. Furthermore, $A_s \neq \emptyset$ if and only if s has a harmonic minorant outside a compact set.

PROOF. By Proposition 2.2, there exist $\beta \in \mathbf{R}$ and s_{Ω} superharmonic on Ω such that $s = \beta H + s_{\Omega}$ outside a compact set. For $\alpha \in A_s$, let h_{Ω} be harmonic

on Ω such that $s - \alpha H \ge h_{\Omega}$. If $\alpha > \beta$, then $s_{\Omega} - h_{\Omega}$ is a lower bounded superharmonic function (since it is necessarily bounded below on any compact set), hence is constant. But by Proposition 2.1, a constant cannot be bounded below by a positive multiple of H. Thus, $\alpha \le \beta$ and so A_s is bounded above by β .

Assume $\alpha \in A_s$. Then there exists h_Ω harmonic on Ω such that $s \ge \alpha H + h_\Omega$. Thus *s* has a harmonic minorant outside a compact set. Conversely, if *s* has a harmonic minorant *h* outside a compact set, then $h = \alpha H + h_\Omega + b$ outside a compact set, for some $\alpha \in \mathbf{R}$, h_Ω harmonic on Ω , and *b* bounded. Then outside a compact set $s - \alpha H \ge h_\Omega + \inf b$, a global harmonic function. Thus $\alpha \in A_s$.

DEFINITION 2.3. Let s be a function on Ω superharmonic outside a compact set. Define the flux of s at infinity (or simply the flux of s) with respect to H by

$$flux(s) = \sup A_s$$

By convention, flux(s) = $-\infty$ if $A_s = \emptyset$. By Lemma 2.1, the flux of s is finite if A_s is nonempty.

The following result ties together our definition of flux with various earlier definitions, as well as compiling many useful properties of flux.

THEOREM 2.2. (a) If h is harmonic outside a compact set, then the flux of h is the unique constant α of Definition 2.1 such that $h = \alpha H + h_{\Omega} + b$ outside a compact set with h_{Ω} harmonic on Ω and b bounded. In particular, $A_h = (-\infty, \alpha]$.

(b) If h is bounded harmonic outside a compact set or harmonic everywhere, then the flux of h is zero. If s is superharmonic everywhere, then $flux(s) \le 0$.

(c) Let s be an admissible superharmonic function on Ω . If h_1 and h_2 are the greatest harmonic minorants of s outside compact sets K_1 and K_2 , respectively, then the flux of h_1 and the flux of h_2 are equal.

(d) If s is a function superharmonic outside a compact set K and has a subharmonic minorant on $\Omega \setminus K$ (in particular, if s is admissible), then its flux is equal to the flux of its greatest harmonic minorant on $\Omega \setminus K$. Consequently, admissible superharmonic functions have finite flux.

(e) The flux of a nonadmissible superharmonic function s is equal to $-\infty$.

(f) Let *s* be superharmonic outside a compact set, and write $s = s_{\Omega} + \beta H$ as in Proposition 2.2. Then $flux(s) = flux(s_{\Omega}) + \beta$.

(g) The set of functions which are superharmonic outside a compact set is closed under addition and scalar multiplication by a positive number and the flux is linear on that set.

(h) If s is superharmonic outside a compact set and $A_s \neq \emptyset$, then $\operatorname{flux}(s) \in A_s$, so that $A_s = (-\infty, \operatorname{flux}(s)]$.

(j) If s is superharmonic on Ω and flux(s) = 0, then s is harmonic on Ω .

PROOF. We use Proposition 2.2, Lemma 2.1, Remark 2.3, and the following immediate facts:

(i) There are no nonconstant positive superharmonic functions, hence no nonharmonic superharmonic function can be bounded below on Ω by a harmonic function.

(ii) If s is superharmonic outside a compact set, then for all $\alpha \in \mathbf{R}$ and c > 0, $A_{s+\alpha H} = A_s + \alpha$, and $A_{cs} = cA_s$.

(iii) (Monotonicity of the flux) If $s_1 \le s_2$, with s_1 , s_2 superharmonic outside a compact set, then $A_{s_1} \subset A_{s_2}$, so that $\text{flux}(s_1) \le \text{flux}(s_2)$.

(iv) If h_{Ω} is harmonic on Ω and $h_{\Omega} + \gamma H$ is bounded below, then $\gamma \ge 0$.

(v) If s_1 and s_2 are superharmonic outside a compact set K, then the greatest harmonic minorant of $s_1 + s_2$ is the sum of the greatest harmonic minorants of s_1 and s_2 on K.

Part (a) follows from (iv). Part (b) follows from (a) and Lemma 2.1. Part (c) holds since Remark 2.3 implies that $A_{h_1} = A_{h_2}$.

To prove (d), let *h* be the greatest harmonic minorant of *s* on $\Omega \setminus K$. By (c), without loss of generality we may assume that *K* contains K_0 . By (a), $A_h \neq \emptyset$, and by (iii), $A_h \subset A_s$, so $A_s \neq \emptyset$. Let $\alpha \in A_s$ so that $s - \alpha H \ge h_\Omega$, a function harmonic on Ω . Thus $s \ge \alpha H + h_\Omega$, which is harmonic off K_0 . Then on $\Omega \setminus K$, $s \ge h \ge \alpha H + h_\Omega$, so by (iii) and (a), flux(s) \ge flux(h) $\ge \alpha$. Since this is true for all $\alpha \in A_s$, it follows that flux(s) = flux(h).

To prove (e), assume there exists $\alpha \in A_s$. Then $s \ge \alpha H + h_{\Omega}$, where h_{Ω} is a function harmonic on Ω . Since $\alpha H + h_{\Omega}$ is harmonic outside K_0 , s is admissible.

Part (f) follows from (ii). To prove (g), let s_1 , s_2 be superharmonic outside the same compact set K, and let h_1 and h_2 be their respective greatest harmonic minorants outside K. Then by (v), $h_1 + h_2$ is the greatest harmonic minorant of $s_1 + s_2$ outside K. Thus by (d) and (a), flux $(s_1 + s_2) =$ flux $(h_1 + h_2) =$ flux $(h_1) +$ flux $(h_2) =$ flux $(s_1) +$ flux (s_2) . Linearity with respect to multiplication by a positive constant follows from (ii).

Part (h) follows from (d) and (a). Part (j) follows from (h) and (i). \Box

REMARK 2.4. The original definitions of flux given by Anandam [8] separately first for harmonic functions outside a compact set, then for global superharmonic functions, and finally for functions superharmonic outside a compact set, are equivalent to ours, by Theorem 2.2, parts (a), (d), (e) and (f).

PROPOSITION 2.3. A superharmonic function on a BS space Ω is admissible if and only if it has a minorant which is harmonic outside K_0 .

PROOF. Let s be an admissible superharmonic function on Ω with flux α . Then by part (h) of Theorem 2.2, there exists a harmonic function h_{Ω} on Ω such that $s \ge \alpha H + h_{\Omega}$, which is harmonic outside K_0 . The converse is obvious.

We now respond to the question raised after Remark 2.1.

PROPOSITION 2.4. Let s be superharmonic outside a compact set in a BS space Ω . Let B be the set consisting of all $\beta \in \mathbf{R}$ such that $s = s_{\Omega} + \beta H$ outside a compact set as in Proposition 2.2. Then

(a) The set B is an interval unbounded above and $\inf B \ge \operatorname{flux}(s)$. In particular, if s has finite flux, then B is bounded below.

(b) When $\Omega = \mathbf{R}$ with the harmonic structure inherited from the Laplace operator, s has finite flux if and only if **B** is bounded below.

PROOF. To prove (a) assume $\beta \in B$ and $\gamma > \beta$. If $s = s_{\Omega} + \beta H$ outside a compact set K, then $s = s'_{\Omega} + \gamma H$ outside K, where $s'_{\Omega} = s_{\Omega} - (\gamma - \beta)H$ which is globally superharmonic. Thus $\gamma \in B$, proving that B is an interval unbounded above. On the other hand, since the flux of a superharmonic function on Ω is less than or equal to 0, if $s = s_{\Omega} + \beta H$ outside a compact set then $\beta \ge \text{flux}(s)$. Thus, if flux(s) is finite, B is bounded below.

By part (a), to prove (b) we need to show that if *B* is bounded below then *s* has finite flux. Let $K_0 = \{0\}$. The function H(x) = |x| is a standard for K_0 . Let us consider $s(x) = |x| - x^2$ for $x \in \mathbf{R}$, which has flux $-\infty$ since it does not have a harmonic minorant ouside a compact set. Since *s* is smooth on $\mathbf{R} \setminus \{0\}$ and its Laplacian is -2 there, *s* is superharmonic on $\mathbf{R} \setminus \{0\}$. For $n \in \mathbf{N}$, let $\tilde{s}_n(x) = s(x) + (2n-1)H(x)$ and observe that for $x \ge n$, $s'(x) \le 0$ and for $x \le -n$, $s'(x) \ge 0$, where *s'* denotes the derivative of *s*. Thus the function

$$s_n(x) = \begin{cases} \tilde{s}_n(n) & \text{for } |x| \le n\\ \tilde{s}_n(x) & \text{for } |x| \ge n \end{cases}$$

is globally superharmonic and $s(x) = s_n(x) + \beta_n H(x)$ outside [-n, n], where $\beta_n = -(2n-1)$. Thus, *B* is unbounded below.

3. Potentials in a BS space and Riesz decomposition of admissible superharmonic functions

In this section we shall present several classes of admissible superharmonic functions which in a BS space play the role analogous to that of positive potentials in a BP space. We first introduce two operators which we use to define these classes.

DEFINITION 3.1. Let *s* be superharmonic on $\Omega \setminus K_0$. Let $\mathscr{E} = \{U_n\}$ be an increasing exhaustion consisting of relatively compact regular sets containing K_0 (which exists by [21]). Let $h_n = h_s^{U_n}$, the solution of the Dirichlet problem with boundary values *s* on ∂U_n . Define

$$D_{\mathscr{E}}s(x) = \lim_{n \to \infty} h_n(x)$$

if this limit exists locally uniformly, in which case $D_{\mathscr{E}S}$ is harmonic on Ω .

DEFINITION 3.2. Let K_0 be outer regular and let *s* be superharmonic on $\Omega \setminus K_0$. Define *Ds* to be the greatest harmonic minorant of *s* on each component of the complement of K_0 if such minorant exists and $-\infty$ if it does not exist on that component.

We now present different classes of potentials introduced by Anandam in [6] and [7].

DEFINITION 3.3. An admissible superharmonic function s is said to be in the class \mathscr{P} if there exists an exhaustion \mathscr{E} such that $D_{\mathscr{E}}(s - \alpha H)$ exists and is constant, where α is the flux of s. If, furthermore, that constant is 0 for some exhaustion \mathscr{E} , s is called a **BS potential**. Define the class \mathscr{Q} as the collection of all admissible superharmonic functions s satisfying the property: there exists $s' \in \mathscr{P}$ such that the difference of the greatest harmonic minorants of s and s' outside a compact set is bounded. This class is independent of the choice of the compact set.

OBSERVATION 3.1. Suppose s is in class \mathcal{P} and has flux α , so that for some exhaustion \mathscr{E} , $D_{\mathscr{E}}(s - \alpha H)$ exists and is constant. By Lemma 2, p. 235 in [4], $s - \alpha H$ is lower bounded. If $D_{\mathscr{E}'}(s - \alpha H)$ exists for some other exhaustion \mathscr{E}' , then $D_{\mathscr{E}'}(s - \alpha H)$ is a lower bounded harmonic function, hence it is also constant.

Anandam proved the following partial Riesz decomposition theorem for admissible superharmonic functions on a BS space.

PROPOSITION 3.1 ([5], Lemmas 2 and 3). Any admissible superharmonic function s on a BS space is a sum of a function in the class 2 and a harmonic function. This decomposition is unique up to an additive constant. If s has compact harmonic support, then the element of 2 can be chosen uniquely to be a BS potential.

One difficulty in working with these classes of potentials is that given an admissible superharmonic function s, there is no procedure for determining

whether s is in such classes. To overcome this difficulty and the lack of uniqueness in the decomposition of Proposition 3.1, we introduce a new class of potentials.

DEFINITION 3.4. An admissible superharmonic function s is an H-potential if

$$\liminf_{x\to\infty} \{Ds(x) - \alpha H(x)\} = 0,$$

where D is the operator of Definition 3.2, α is the flux of s, and the limit is taken with respect to the Alexandrov one-point compactification of Ω .

The following theorem shows that the *H*-potentials are the class of potentials best suited to describe all admissible superharmonic functions.

THEOREM 3.1 (Global Riesz Decomposition Theorem). In a BS space Ω every admissible superharmonic function can be written uniquely as the sum of an *H*-potential and a harmonic function.

PROOF. Let s be an admissible superharmonic function. Since Ds is the greatest harmonic minorant of s outside K_0 , by Theorem 2.2(a) and (d), there exist h_{Ω} harmonic and b bounded such that $Ds = \alpha H + h_{\Omega} + b$ outside a compact set, where α is the flux of s. By adding the condition that

(1)
$$\liminf_{x \to \infty} b(x) = 0,$$

we get uniqueness in the above decomposition. Then the function $p = s - h_{\Omega}$ is admissible superharmonic with flux α and $Dp = Ds - h_{\Omega} = \alpha H + b$. By (1), $Dp - \alpha H$ has inferior limit 0 at infinity, thus p is an H-potential and $s = p + h_{\Omega}$, proving the existence of the decomposition.

To prove the uniqueness, assume $p_1 + h_1 = p_2 + h_2$ where p_1 and p_2 are H-potentials and h_1 and h_2 are harmonic on Ω . Then $p_1 - p_2 = h_2 - h_1$, which is globally harmonic. In particular, p_1 and p_2 have the same flux α . By definition of H-potential, $Dp_j = \alpha H + b_j$ where b_j (j = 1, 2) is bounded and harmonic outside a compact set with liminf 0 at infinity. Since $h_2 - h_1 = p_1 - p_2 = D(p_1 - p_2) = Dp_1 - Dp_2 = b_1 - b_2$, the function $b_1 - b_2$ can be extended to a global bounded harmonic function. Thus, $b_1 - b_2$ is constant. Since lim inf $b_1 = \lim \inf b_2 = 0$, $b_1 = b_2$ and hence $h_1 = h_2$.

COROLLARY 3.1. If s is an H-potential with flux α , then $Ds - \alpha H$ is bounded.

PROOF. By the proof of Theorem 3.1, for any admissible superharmonic function s, the unique global harmonic function h_{Ω} in the decomposition of *Ds* as $\alpha H + h_{\Omega} + b$ (with b bounded) is the **same** global harmonic function in the

46

decomposition of s as an H-potential plus a global harmonic function. Thus if s is itself an H-potential, then $h_{\Omega} = 0$, and so $Ds = \alpha H + b$.

In [15], where we restricted our attention to recurrent trees, we defined an *H*-potential to be an admissible superharmonic function *s* for which $Ds = \alpha H$, where $\alpha = \text{flux}(s)$ and K_0 is taken to be a single point. It can be easily shown that in this setting the two definitions of *H*-potential are equivalent.

4. Proportionality in BS spaces

DEFINITION 4.1. A Brelot space Ω satisfies the local axiom of proportionality if for each $x \in \Omega$ and each relatively compact neighborhood U of x, all potentials on U with harmonic support at x are proportional.

THEOREM 4.1 (Local Riesz Decomposition Theorem). If Ω is a BS space satisfying the local axiom of proportionality, then the following properties hold.

(a) For all $x \in \Omega$ there exists a unique BS potential p_x with harmonic support $\{x\}$ such that $\operatorname{flux}(p_x) = -1$.

(b) [18] For all s superharmonic on Ω there exists a unique Radon measure $\mu \ge 0$ such that for each relatively compact domain $U \subset \Omega$ and for all $x \in U$

$$s(x) = \int_U p_y(x)d\mu(y) + h(x),$$

where h is harmonic on U and p_y is the unique BS potential with harmonic support y and flux equal to -1.

PROOF. (a) By Theorem 1.3, given any $x \in \Omega$, there exists a superharmonic function s_{Ω} with harmonic support $\{x\}$. By Proposition 3.1, there exists a BS potential p with harmonic support $\{x\}$. Since the flux of an admissible superharmonic function which is not harmonic is negative, the function $p_x = -\frac{p}{\text{flux}(p)}$ is superharmonic, and hence, a BS potential with harmonic support $\{x\}$ and flux -1, proving the existence.

For the uniqueness, assume that p and q are BS potentials on Ω having harmonic support $\{x\}$ and flux -1. Let U be a relatively compact regular neighborhood of x. Since p and q are superharmonic on U and U is a BP space, there exist potentials p_1 and p_2 on U with harmonic support $\{x\}$, and h_1 , h_2 harmonic on U, such that $p = p_1 + h_1$, and $q = p_2 + h_2$. By the local axiom of proportionality, there exists $\lambda > 0$ such that $p_1 = \lambda p_2$. Thus $h = p - \lambda q$ is harmonic on U, but it is also harmonic off x, and therefore is harmonic on Ω . Thus

$$-1 = \operatorname{flux}(p) = \operatorname{flux}(h + \lambda q) = -\lambda,$$

so $\lambda = 1$. This shows that p - q is harmonic on Ω . By Observation 3.1 we deduce that p - q is constant. Since p and q are BS-potentials, that constant must be 0. Thus p = q on Ω .

The following result is a superharmonic extension theorem for BH spaces. It was proved by Hervé [20] in the BP case and later by Anandam (Theorem 3.4 of [2]) in the BS case.

THEOREM 4.2. Let Ω be a BH space and let U be an open subset of Ω . If s is a superharmonic function on U with compact harmonic support K, then there exists a superharmonic function s_{Ω} on Ω with harmonic support on K such that $s_{\Omega} - s$ is harmonic in a neighborhood of K.

The following is a new characterization of the local axiom of proportionality.

THEOREM 4.3. In a BH space, the following statements are equivalent.

(a) The local axiom of proportionality holds.

(b) For any two superharmonic functions with the same one-point harmonic support, some nonzero linear combination of them is harmonic.

PROOF. Assume that the local axiom of proportionality holds on Ω , and let s_1 , s_2 be superharmonic on Ω with harmonic support at $x \in \Omega$. Let U be a relatively compact neighborhood of x. Then $s_1|U$ and $s_2|U$ are superharmonic on U with harmonic support at x, and being lower-semicontinuous, they are bounded below on a relatively compact set, so they have harmonic minorants. Let h_1 and h_2 be the greatest harmonic minorants of $s_1|U$ and $s_2|U$, respectively. Thus $s_1|U - h_1$ and $s_2|U - h_2$ are potentials on U with harmonic support at x, and so for some $\alpha > 0$, $s_1|U - h_1 = \alpha(s_2|U - h_2)$. Hence $(s_1 - \alpha s_2) | U = h_1 - \alpha h_2$ which is harmonic on U. But $s_1 - \alpha s_2$ is harmonic outside x, thus $s_1 - \alpha s_2$ is harmonic on Ω , proving that (b) holds.

Conversely, suppose (b) holds. Let $x \in \Omega$, U a relatively compact neighborhood of x, and let p_1 and p_2 be potentials on U with harmonic support at x. By Theorem 4.2, there exist superharmonic functions s_1 and s_2 on Ω with harmonic support at x such that $s_1 - p_1$ and $s_2 - p_2$ are harmonic on a neighborhood of x. Thus, there exist nonzero $\alpha, \beta \in \mathbf{R}$ such that $\alpha s_1 + \beta s_2$ is harmonic on Ω . Then $\alpha(s_1 - p_1) + \beta(s_2 - p_2)$ is harmonic on U, so $\alpha p_1 + \beta p_2$ is harmonic on U. Letting $\lambda = -\frac{\beta}{\alpha}$, we have that $p_1 - \lambda p_2$ is a harmonic function h on U. Notice that λ cannot be negative since otherwise $-\lambda p_2$ would be a potential on U and the sum of two potentials cannot be harmonic. Thus, $\lambda > 0$ and $p_1 = \lambda p_2 + h$. But the greatest harmonic minorant of p_1 and of p_2 is zero. Hence h = 0 and so $p_1 = \lambda p_2$ on U, proving the local axiom of proportionality.

EXAMPLE 4.1. Let Ω be an open subset of \mathbb{R}^n whose harmonic structure is defined by the Laplace operator Δ . Then Ω satisfies part (b) of Theorem 4.3, hence satisfies the local axiom of proportionality, since if s_1 and s_2 are superharmonic functions on Ω with support at $x \in \Omega$, then $\Delta s_2(x)s_1 - \Delta s_1(x)s_2$ is harmonic on Ω .

References

- K. Abodayeh, V. Anandam, Dirichlet problem and Green's formula on trees, Hiroshima Math. J., 35 (2005), 413–424.
- V. Anandam, Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier (Grenoble), 22 (1972), no. 4, 97–160.
- [3] V. Anandam, Harmonic spaces with positive potentials and nonconstant harmonic functions, Rend. Circ. Mat. Palermo (2), 21 (1972), 149–167.
- [4] V. Anandam, Potentials in a BS harmonic space, Bull. Math. de la Soc. Sci. Math. de la R. S. de Roumanie, 18 (1974), 233–248.
- [5] V. Anandam, Pseudo-potentiels dans un espace harmonique sans potentiel positif, Bull. Sc. Math. 2^e série, **100** (1976), 369–376.
- [6] V. Anandam, Admissible subharmonic functions and associated measures, J. London Math. Soc. (2), 19 (1979), no. 1, 65–78.
- [7] V. Anandam, Subharmonic extensions outside a compact set in \mathbb{R}^n , Proc. Amer. Math. Soc., **84** (1982), no. 1, 52–54.
- [8] V. Anandam, Superharmonic functions and the flux, Bull. Sc. Math., 106 (1982), 85-92.
- [9] V. Anandam, S. I. Othman, Flux in an infinite network, Mem. Fac. Sci. Eng. Shimane Univ. Series B. Mathematical Sciences, 38 (2005), 7–16.
- [10] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, 2nd ed., Graduate Texts in Mathematics 137, Springer-Verlag, New York, (2001).
- [11] I. Bajunaid, J. M. Cohen, F. Colonna, D. Singman, Trees as Brelot spaces, Adv. in Appl. Math. 30 (2003), 706–745.
- [12] M. Brelot, Lectures on Potential Theory, Tata Institute, Bombay (1960).
- [13] M. Brelot, Historical introduction, Potential Theory (C.I.M.E., I Ciclo, Stresa, 1969) Edizioni Cremonese, Rome (1970), pp. 1–21.
- [14] M. Brelot, Axiomatique des Fonctions Harmoniques, Séminaire de Mathématiques Supérieures, No. 14 (Été, 1965), Les Presses de l'Université de Montréal, Montréal, (1969).
- [15] J. M. Cohen, F. Colonna, D. Singman, A global Riesz decomposition theorem on trees without positive potentials, J. London Math. Soc., (2), 75 (2007), 1–17.
- [16] J. M. Cohen, F. Colonna, D. Singman, Riesz decomposition and flux in potential theory, preprint.
- [17] N. Du Plessis, An Introduction to Potential Theory, Oliver & Boyd, Edinburgh (1970).
- [18] H. Guessous, Sur le procédé alterné et le prolongement surharmonique, Thèse, Université Paris VI, 1977.
- [19] H. Guessous, Prolongement surharmonique dans un espace harmonique. Notion de flux, Potential Theory, Copenhagen 1979, Berlin, Springer-Verlag, 1980 (Lecture Notes in Mathematics, 787), 121–143.
- [20] R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962), 415–571.

Ibtesam BAJUNAID et al.

- [21] P. A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16/2 (1966), 167–208.
- [22] B. Rodin, L. Sario, Principal functions, In collaboration with M. Nakai, Van Nostrand, Princeton, NJ, 1968.

Ibtesam Bajunaid P. O. box 60618, Riyadh 11555 Kingdom of Saudi Arabia E-mail: ibajunaid@ksu.edu.sa

Joel M. Cohen Department of Mathematics University of Maryland College Park, Maryland, 20742-4015 USA E-mail: jcohen@umd.edu

Flavia Colonna & David Singman Dept. of Mathematical Sciences George Mason University 4400 University Dr. Fairfax, VA 22030 USA E-mail: fcolonna@gmu.edu E-mail: dsingman@gmu.edu

50