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Abstract. In this paper, we give a new definition of the flux of a superharmonic

function defined outside a compact set in a Brelot space without positive potentials.

We also give a new notion of potential in a BS space (that is, a harmonic space without

positive potentials containing the constants) which leads to a Riesz decomposition

theorem for the class of superharmonic functions that have a harmonic minorant outside

a compact set. Furthermore, we give a characterization of the local axiom of

proportionality in terms of a global condition on the space.

1. Introduction

The Riesz decomposition theorem for positive superharmonic functions

states that any positive superharmonic function on a region of hyperbolic type

in C can be expressed uniquely as the sum of a nonnegative potential and a

harmonic function. This result is of no interest when the region is parabolic

because there are no nonconstant positive superharmonic functions.

By a Riesz decomposition theorem for a class of superharmonic functions

we mean a unique representation of each member of this class as a global

harmonic function plus a member of the class of a special type. For a

harmonic space with a Green function, this special class is the class of

nonnegative potentials. In this case the most natural class to consider is the

admissible superharmonic functions, which are the superharmonic functions that

have a harmonic minorant outside a compact set. Indeed, the admissible

superharmonic functions are precisely the superharmonic functions which can

be written uniquely as sums of a nonnegative potential plus a harmonic

function. This follows from the fact that every admissible superharmonic

function in a harmonic space with a Green function possesses a global

harmonic minorant and hence, the function minus its greatest harmonic

minorant is a nonnegative potential.
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In this article, we give a Riesz decomposition theorem for the class of the

admissible superharmonic functions on a harmonic space without positive

potentials. This class was first studied by Anandam in [2]. See also [6]

for a reference on the admissible subharmonic functions.

In this paper, we give a new definition of the flux of a function that is

superharmonic outside a compact set which is equivalent to the various

definitions of flux in the works of Anandam (see [2] through [8]). It also

emcompasses the definitions of flux in the discrete setting given in [1], [9], and

[15]. We then introduce a new class of potentials (called H-potentials) in the

axiomatic setting that was first introduced in the recurrent tree and the complex

plane settings in [15] and [16]. This new class allows us to obtain a global

Riesz decomposition theorem for the class of superharmonic functions that

have a harmonic minorant outside a compact set. We also give a charac-

terization of the local axiom of proportionality in terms of a global condition

on the space.

Many axiomatic treatments of potential theory have been formulated (for

a survey and a historical context, see [13]). In this work we make use of the

axiomatic theory of harmonic and superharmonic functions developed by Brelot

(see [12]).

Definition 1.1. A Brelot space is a connected, locally connected, locally

compact but not compact Hausdor¤ space W together with a harmonic

structure in the following sense. For each open set U HW there is an

associated real vector space of real–valued continuous functions on U (which

are called harmonic functions on U) satisfying the sheaf property, the regularity

axiom, and the Harnack property.

The harmonic support of a superharmonic function s is the complement of

the largest open set on which s is harmonic.

In a Brelot space, the Minimum Principle for superharmonic functions

holds: A nonnegative superharmonic function on a domain U in a Brelot space

is either identically zero or positive everywhere on U ([12], p. 71).

Definition 1.2. A superharmonic function s on a Brelot space W is said

to be admissible if there are a compact set K and a harmonic function h on

WnK such that hðxÞa sðxÞ for all x A WnK .

Clearly, positive superharmonic functions and superharmonic functions

of compact harmonic support are admissible. We shall see in Proposition

2.3 that K may be taken to be K0, any fixed compact set independent of the

superharmonic function.

Any nonnegative superharmonic function which has a harmonic minorant

has a greatest harmonic minorant (see [12], p. 87).
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Definition 1.3. A nonnegative superharmonic function on an open subset

U of a Brelot space is called a positive potential (or briefly, a potential) if its

greatest harmonic minorant on U is identically zero.

Definition 1.4. A BH space is a Brelot space whose sheaf of harmonic

functions contains the constants. A BP space is a BH space on which there is

a positive potential. A BS space (short for espace Brelot sans potentiel positif )

is a BH space on which no positive potential exists.

Any open subset of Rn for nb 3 is a BP space, while the complement of

any subset of R2 of logarithmic capacity zero is a BS space.

Definition 1.5. A BP space is said to satisfy the axiom of proportionality

if any two potentials with the same one–point harmonic support are propor-

tional.

Theorem 1.1 ([17], p. 139). In a Brelot space without potentials all positive

superharmonic functions are harmonic and proportional. In particular, in a BS

space, every positive superharmonic function must be constant.

Thus, a Brelot space which possesses positive superharmonic functions

which are not harmonic, has potentials.

The following result is the Riesz decomposition theorem for admissible

superharmonic functions on a BP space.

Theorem 1.2 ([6], p. 66). In a BP space a superharmonic function is

admissible if and only if it can be written uniquely as the sum of a potential and a

function harmonic on the whole space.

Theorem 1.3 ([20], Theorem 16.1, [2], Theorem 3.6, and [14]). If W is a

Brelot space with positive potentials and a countable base of neighborhoods or if

W is a BS space, then for any x A W, there exists a superharmonic function with

harmonic support fxg.

By Theorem 1.3 and Theorem 1.2, if W is a Brelot space with potentials

and a countable base of neighborhoods, then for each x A W there exists a

potential with harmonic support fxg.

2. The flux of a superharmonic function

The concept of flux on a BS space was introduced for the purpose of

associating a harmonic function on W to a function that is harmonic outside a

compact set.

Nakai (see [22] or Theorem 1.20 of [2]) proved that if h is a function

defined on a BP space W and harmonic on the complement of a compact set K ,
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then h ¼ hW þ b outside a compact set, where hW is harmonic on W and b is

bounded. This is not true if W is a BS space, but we shall describe an

obstruction, called the flux of h, so that when the flux of h is zero, then h is the

sum of a global harmonic function and a bounded function.

The concept of flux of a function superharmonic outside a compact subset

of a BS space appeared in [8] and [19].

Proposition 2.1 ([3], Theorem 1.17). Let W be a BS space, KHW

compact not locally polar. Then there exists a function Hb 0 unbounded

and harmonic o¤ K. If K is outer regular, then H may be chosen so that it

tends continuously to 0 on qK.

Definition 2.1. Let W be a BS space, KHW a nonempty compact set.

A function H harmonic o¤ K is called a standard for W associated with K if the

following is true: given any function h which is harmonic o¤ an arbitrary

compact set, there exist a unique function hW harmonic on the whole space and

a unique real number a such that b ¼ h� aH � hW is bounded o¤ a compact

set and lim inf
x!y

bðxÞ ¼ 0, where the lim inf is taken with respect to the

Alexandrov one-point compactification of W. This means that for any

increasing exhaustion fCng consisting of compact sets, and for any positive

number e there exists N A N such that for all integers nbN there is a point

x A WnCn such that bðxÞ < e, and for all y A WnCn, bðyÞ > �e. Note that by

the uniqueness of a, H must be unbounded.

By Theorem 9.7 of [10], the function HðzÞ ¼ logjzj is a standard for C

associated with the closed unit disk. In this case, b has an actual limit of 0 at

infinity because a function which is harmonic and bounded outside a compact

set in C has a limit at infinity. On the other hand, for W ¼ Cnf2g, H is still a

standard for W associated with the closed unit disk, but a bounded harmonic

function outside a compact set will have two limits as we approach the

boundary of W in the extended plane (i.e. as z ! 2 and as z ! y).

In [8] (see note following Lemma 2) the following result is shown.

Theorem 2.1. Let W be a BS space and let H be a nonnegative harmonic

function defined outside an outer regular compact set K, not identically 0, and

tending to 0 at the boundary of K. Then H is a standard for W.

In [11] (Theorem 4.2), we proved that the outer regularity of the compact

set is unnecessary.

In the remainder of this section and in the next section, we shall fix a BS

space W, a nonempty compact subset K0 which is not locally polar, and a

standard H associated with K0 tending to 0 on qK0, which for convenience we

extend to be identically 0 in the interior of K0. Observe that this extension is

subharmonic on all of W.
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The following is the key result which we shall use to calculate the flux of a

superharmonic function outside a compact set.

Proposition 2.2 ([8], Proposition 1). Let s be superharmonic outside some

compact set. Then there exist a superharmonic function sW on W and a constant

b such that s ¼ sW þ bH outside a compact set.

Remark 2.1. Let s be a function superharmonic outside a compact set.

When it is clear from the context that the values of s on any particular compact

set are unimportant, we shall use Proposition 2.2 to change s on a compact set

so that it is defined globally and it is superharmonic outside K0. In particular,

whenever it is useful, we shall assume that s is defined globally, is super-

harmonic outside K0 and is lower bounded on K0.

The decomposition in Proposition 2.2 is not unique because we may

increase b by subtracting an appropriate multiple of �H from sW, since �H is

globally superharmonic. Thus, it would be interesting to know the following:

let b0 ¼ inf b over all b such that s ¼ sW þ bH for some sW superharmonic

on W. When is b0 > �y? We shall discuss this question at the end of this

section.

Remark 2.2. Let s be an admissible superharmonic function, and let h1
be a function which is harmonic outside a compact set K and such that h1 a s

outside K. By taking the restriction of h1 to an outer regular compact set

containing K , we may assume that K is outer regular. We may extend h1 to a

continuous function on W. Let b1 be a lower bound of s on K and let b2 be an

upper bound of h1 on K . Then h ¼ h1 � jb2 � b1ja s on W and h is harmonic

outside K . Thus, when we say that s has a harmonic minorant h outside a

compact set, we mean that ha s globally and h is harmonic outside a compact

set.

Remark 2.3 ([2], p. 133). The di¤erence of the greatest harmonic

minorants hi of a superharmonic function outside a compact set Ki

ði ¼ 1; 2Þ is bounded.

Definition 2.2. Let s be superharmonic outside a compact set. Define

As ¼ fa A R: there exists hW harmonic on W such that s� aHb hWg:

Lemma 2.1. If s is superharmonic outside a compact set, then As is bounded

above. Furthermore, As 0q if and only if s has a harmonic minorant outside a

compact set.

Proof. By Proposition 2.2, there exist b A R and sW superharmonic on W

such that s ¼ bH þ sW outside a compact set. For a A As, let hW be harmonic
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on W such that s� aHb hW. If a > b, then sW � hW is a lower bounded

superharmonic function (since it is necessarily bounded below on any compact

set), hence is constant. But by Proposition 2.1, a constant cannot be bounded

below by a positive multiple of H. Thus, aa b and so As is bounded above

by b.

Assume a A As. Then there exists hW harmonic on W such that sb aH þ
hW. Thus s has a harmonic minorant outside a compact set. Conversely, if s

has a harmonic minorant h outside a compact set, then h ¼ aH þ hW þ b

outside a compact set, for some a A R, hW harmonic on W, and b bounded.

Then outside a compact set s� aHb hW þ inf b, a global harmonic function.

Thus a A As. r

Definition 2.3. Let s be a function on W superharmonic outside a

compact set. Define the flux of s at infinity (or simply the flux of s) with

respect to H by

fluxðsÞ ¼ sup As:

By convention, fluxðsÞ ¼ �y if As ¼ q. By Lemma 2.1, the flux of s is finite

if As is nonempty.

The following result ties together our definition of flux with various earlier

definitions, as well as compiling many useful properties of flux.

Theorem 2.2. (a) If h is harmonic outside a compact set, then the flux of h

is the unique constant a of Definition 2.1 such that h ¼ aH þ hW þ b outside a

compact set with hW harmonic on W and b bounded. In particular, Ah ¼ ð�y; a�.
(b) If h is bounded harmonic outside a compact set or harmonic every-

where, then the flux of h is zero. If s is superharmonic everywhere, then

fluxðsÞa 0.

(c) Let s be an admissible superharmonic function on W. If h1 and h2 are

the greatest harmonic minorants of s outside compact sets K1 and K2, respec-

tively, then the flux of h1 and the flux of h2 are equal.

(d) If s is a function superharmonic outside a compact set K and has a

subharmonic minorant on WnK (in particular, if s is admissible), then its flux is

equal to the flux of its greatest harmonic minorant on WnK. Consequently,

admissible superharmonic functions have finite flux.

(e) The flux of a nonadmissible superharmonic function s is equal to �y.

(f ) Let s be superharmonic outside a compact set, and write s ¼ sW þ bH

as in Proposition 2.2. Then fluxðsÞ ¼ fluxðsWÞ þ b.

(g) The set of functions which are superharmonic outside a compact set is

closed under addition and scalar multiplication by a positive number and the flux

is linear on that set.
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(h) If s is superharmonic outside a compact set and As 0q, then

fluxðsÞ A As, so that As ¼ ð�y; fluxðsÞ�.
( j) If s is superharmonic on W and fluxðsÞ ¼ 0, then s is harmonic on

W.

Proof. We use Proposition 2.2, Lemma 2.1, Remark 2.3, and the

following immediate facts:

(i) There are no nonconstant positive superharmonic functions, hence

no nonharmonic superharmonic function can be bounded below on W by a

harmonic function.

(ii) If s is superharmonic outside a compact set, then for all a A R and

c > 0, AsþaH ¼ As þ a, and Acs ¼ cAs.

(iii) (Monotonicity of the flux) If s1 a s2, with s1, s2 superharmonic

outside a compact set, then As1 HAs2 , so that fluxðs1Þa fluxðs2Þ.
(iv) If hW is harmonic on W and hW þ gH is bounded below, then gb 0.

(v) If s1 and s2 are superharmonic outside a compact set K , then the

greatest harmonic minorant of s1 þ s2 is the sum of the greatest harmonic

minorants of s1 and s2 on K .

Part (a) follows from (iv). Part (b) follows from (a) and Lemma 2.1.

Part (c) holds since Remark 2.3 implies that Ah1 ¼ Ah2 .

To prove (d), let h be the greatest harmonic minorant of s on WnK . By

(c), without loss of generality we may assume that K contains K0. By (a),

Ah 0q, and by (iii), Ah HAs, so As 0q. Let a A As so that s� aHb hW, a

function harmonic on W. Thus sb aH þ hW, which is harmonic o¤ K0. Then

on WnK , sb hb aH þ hW, so by (iii) and (a), fluxðsÞb fluxðhÞb a. Since this

is true for all a A As, it follows that fluxðsÞ ¼ fluxðhÞ.
To prove (e), assume there exists a A As. Then sb aH þ hW, where hW is

a function harmonic on W. Since aH þ hW is harmonic outside K0, s is

admissible.

Part (f ) follows from (ii). To prove (g), let s1, s2 be superharmonic

outside the same compact set K , and let h1 and h2 be their respective greatest

harmonic minorants outside K . Then by (v), h1 þ h2 is the greatest harmonic

minorant of s1 þ s2 outside K . Thus by (d) and (a), fluxðs1 þ s2Þ ¼
fluxðh1 þ h2Þ ¼ fluxðh1Þ þ fluxðh2Þ ¼ fluxðs1Þ þ fluxðs2Þ. Linearity with respect

to multiplication by a positive constant follows from (ii).

Part (h) follows from (d) and (a). Part ( j) follows from (h) and (i).r

Remark 2.4. The original definitions of flux given by Anandam [8]

separately first for harmonic functions outside a compact set, then for global

superharmonic functions, and finally for functions superharmonic outside a

compact set, are equivalent to ours, by Theorem 2.2, parts (a), (d), (e) and

(f ).
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Proposition 2.3. A superharmonic function on a BS space W is admissible

if and only if it has a minorant which is harmonic outside K0.

Proof. Let s be an admissible superharmonic function on W with flux a.

Then by part (h) of Theorem 2.2, there exists a harmonic function hW on W

such that sb aH þ hW, which is harmonic outside K0. The converse is

obvious. r

We now respond to the question raised after Remark 2.1.

Proposition 2.4. Let s be superharmonic outside a compact set in a BS

space W. Let B be the set consisting of all b A R such that s ¼ sW þ bH outside

a compact set as in Proposition 2.2. Then

(a) The set B is an interval unbounded above and inf Bb fluxðsÞ. In

particular, if s has finite flux, then B is bounded below.

(b) When W ¼ R with the harmonic structure inherited from the Laplace

operator, s has finite flux if and only if B is bounded below.

Proof. To prove (a) assume b A B and g > b. If s ¼ sW þ bH outside a

compact set K , then s ¼ s 0W þ gH outside K, where s 0W ¼ sW � ðg� bÞH which is

globally superharmonic. Thus g A B, proving that B is an interval unbounded

above. On the other hand, since the flux of a superharmonic function on W is

less than or equal to 0, if s ¼ sW þ bH outside a compact set then bb fluxðsÞ.
Thus, if fluxðsÞ is finite, B is bounded below.

By part (a), to prove (b) we need to show that if B is bounded below then

s has finite flux. Let K0 ¼ f0g. The function HðxÞ ¼ jxj is a standard for K0.

Let us consider sðxÞ ¼ jxj � x2 for x A R, which has flux �y since it does not

have a harmonic minorant ouside a compact set. Since s is smooth on Rnf0g
and its Laplacian is �2 there, s is superharmonic on Rnf0g. For n A N, let

~ssnðxÞ ¼ sðxÞ þ ð2n� 1ÞHðxÞ and observe that for xb n, s 0ðxÞa 0 and for

xa�n, s 0ðxÞb 0, where s 0 denotes the derivative of s. Thus the function

snðxÞ ¼
~ssnðnÞ for jxja n

~ssnðxÞ for jxjb n

�

is globally superharmonic and sðxÞ ¼ snðxÞ þ bnHðxÞ outside ½�n; n�, where

bn ¼ �ð2n� 1Þ. Thus, B is unbounded below. r

3. Potentials in a BS space and Riesz decomposition of admissible

superharmonic functions

In this section we shall present several classes of admissible superharmonic

functions which in a BS space play the role analogous to that of positive
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potentials in a BP space. We first introduce two operators which we use to

define these classes.

Definition 3.1. Let s be superharmonic on WnK0. Let E ¼ fUng be an

increasing exhaustion consisting of relatively compact regular sets containing

K0 (which exists by [21]). Let hn ¼ hUn
s , the solution of the Dirichlet problem

with boundary values s on qUn. Define

DEsðxÞ ¼ lim
n!y

hnðxÞ

if this limit exists locally uniformly, in which case DEs is harmonic on W.

Definition 3.2. Let K0 be outer regular and let s be superharmonic

on WnK0. Define Ds to be the greatest harmonic minorant of s on each

component of the complement of K0 if such minorant exists and �y if it does

not exist on that component.

We now present di¤erent classes of potentials introduced by Anandam in

[6] and [7].

Definition 3.3. An admissible superharmonic function s is said to be in

the class P if there exists an exhaustion E such that DEðs� aHÞ exists and is

constant, where a is the flux of s. If, furthermore, that constant is 0 for some

exhaustion E, s is called a BS potential. Define the class Q as the collection of

all admissible superharmonic functions s satisfying the property: there exists

s 0 A P such that the di¤erence of the greatest harmonic minorants of s and s 0

outside a compact set is bounded. This class is independent of the choice of

the compact set.

Observation 3.1. Suppose s is in class P and has flux a, so that for some

exhaustion E, DEðs� aHÞ exists and is constant. By Lemma 2, p. 235 in [4],

s� aH is lower bounded. If DE 0 ðs� aHÞ exists for some other exhaustion E 0,

then DE 0 ðs� aHÞ is a lower bounded harmonic function, hence it is also constant.

Anandam proved the following partial Riesz decomposition theorem for

admissible superharmonic functions on a BS space.

Proposition 3.1 ([5], Lemmas 2 and 3). Any admissible superharmonic

function s on a BS space is a sum of a function in the class Q and a harmonic

function. This decomposition is unique up to an additive constant. If s has

compact harmonic support, then the element of Q can be chosen uniquely to be a

BS potential.

One di‰culty in working with these classes of potentials is that given an

admissible superharmonic function s, there is no procedure for determining
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whether s is in such classes. To overcome this di‰culty and the lack of

uniqueness in the decomposition of Proposition 3.1, we introduce a new class of

potentials.

Definition 3.4. An admissible superharmonic function s is an H-potential

if

lim inf
x!y

fDsðxÞ � aHðxÞg ¼ 0;

where D is the operator of Definition 3.2, a is the flux of s, and the lim inf is

taken with respect to the Alexandrov one-point compactification of W.

The following theorem shows that the H-potentials are the class of

potentials best suited to describe all admissible superharmonic functions.

Theorem 3.1 (Global Riesz Decomposition Theorem). In a BS space W

every admissible superharmonic function can be written uniquely as the sum of an

H-potential and a harmonic function.

Proof. Let s be an admissible superharmonic function. Since Ds is the

greatest harmonic minorant of s outside K0, by Theorem 2.2(a) and (d), there

exist hW harmonic and b bounded such that Ds ¼ aH þ hW þ b outside a

compact set, where a is the flux of s. By adding the condition that

lim inf
x!y

bðxÞ ¼ 0;ð1Þ

we get uniqueness in the above decomposition. Then the function p ¼ s� hW
is admissible superharmonic with flux a and Dp ¼ Ds� hW ¼ aH þ b. By (1),

Dp� aH has inferior limit 0 at infinity, thus p is an H-potential and

s ¼ pþ hW, proving the existence of the decomposition.

To prove the uniqueness, assume p1 þ h1 ¼ p2 þ h2 where p1 and p2 are

H-potentials and h1 and h2 are harmonic on W. Then p1 � p2 ¼ h2 � h1,

which is globally harmonic. In particular, p1 and p2 have the same flux a.

By definition of H-potential, Dpj ¼ aH þ bj where bj ð j ¼ 1; 2Þ is bounded and

harmonic outside a compact set with liminf 0 at infinity. Since h2 � h1 ¼ p1 �
p2 ¼ Dðp1 � p2Þ ¼ Dp1 �Dp2 ¼ b1 � b2, the function b1 � b2 can be extended

to a global bounded harmonic function. Thus, b1 � b2 is constant. Since

lim inf b1 ¼ lim inf b2 ¼ 0, b1 ¼ b2 and hence h1 ¼ h2. r

Corollary 3.1. If s is an H-potential with flux a, then Ds� aH is

bounded.

Proof. By the proof of Theorem 3.1, for any admissible superharmonic

function s, the unique global harmonic function hW in the decomposition of Ds

as aH þ hW þ b (with b bounded) is the same global harmonic function in the
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decomposition of s as an H-potential plus a global harmonic function. Thus if

s is itself an H-potential, then hW ¼ 0, and so Ds ¼ aH þ b. r

In [15], where we restricted our attention to recurrent trees, we defined an

H-potential to be an admissible superharmonic function s for which Ds ¼ aH,

where a ¼ fluxðsÞ and K0 is taken to be a single point. It can be easily shown

that in this setting the two definitions of H-potential are equivalent.

4. Proportionality in BS spaces

Definition 4.1. A Brelot space W satisfies the local axiom of proportion-

ality if for each x A W and each relatively compact neighborhood U of x, all

potentials on U with harmonic support at x are proportional.

Theorem 4.1 (Local Riesz Decomposition Theorem). If W is a BS space

satisfying the local axiom of proportionality, then the following properties hold.

(a) For all x A W there exists a unique BS potential px with harmonic

support fxg such that fluxðpxÞ ¼ �1.

(b) [18] For all s superharmonic on W there exists a unique Radon measure

mb 0 such that for each relatively compact domain U HW and for all x A U

sðxÞ ¼
ð
U

pyðxÞdmðyÞ þ hðxÞ;

where h is harmonic on U and py is the unique BS potential with harmonic

support y and flux equal to �1.

Proof. (a) By Theorem 1.3, given any x A W, there exists a super-

harmonic function sW with harmonic support fxg. By Proposition 3.1, there

exists a BS potential p with harmonic support fxg. Since the flux of an

admissible superharmonic function which is not harmonic is negative, the

function px ¼ � p

fluxðpÞ is superharmonic, and hence, a BS potential with

harmonic support fxg and flux �1, proving the existence.

For the uniqueness, assume that p and q are BS potentials on W having

harmonic support fxg and flux �1. Let U be a relatively compact regular

neighborhood of x. Since p and q are superharmonic on U and U is a BP

space, there exist potentials p1 and p2 on U with harmonic support fxg, and h1,

h2 harmonic on U , such that p ¼ p1 þ h1, and q ¼ p2 þ h2. By the local

axiom of proportionality, there exists l > 0 such that p1 ¼ lp2. Thus h ¼ p�
lq is harmonic on U , but it is also harmonic o¤ x, and therefore is harmonic

on W. Thus

�1 ¼ fluxðpÞ ¼ fluxðhþ lqÞ ¼ �l;
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so l ¼ 1. This shows that p� q is harmonic on W. By Observation 3.1 we

deduce that p� q is constant. Since p and q are BS-potentials, that constant

must be 0. Thus p ¼ q on W. r

The following result is a superharmonic extension theorem for BH spaces.

It was proved by Hervé [20] in the BP case and later by Anandam (Theorem

3.4 of [2]) in the BS case.

Theorem 4.2. Let W be a BH space and let U be an open subset of W. If

s is a superharmonic function on U with compact harmonic support K, then there

exists a superharmonic function sW on W with harmonic support on K such that

sW � s is harmonic in a neighborhood of K.

The following is a new characterization of the local axiom of proportion-

ality.

Theorem 4.3. In a BH space, the following statements are equivalent.

(a) The local axiom of proportionality holds.

(b) For any two superharmonic functions with the same one-point harmonic

support, some nonzero linear combination of them is harmonic.

Proof. Assume that the local axiom of proportionality holds on W, and

let s1, s2 be superharmonic on W with harmonic support at x A W. Let U be a

relatively compact neighborhood of x. Then s1jU and s2jU are superharmonic

on U with harmonic support at x, and being lower-semicontinuous, they are

bounded below on a relatively compact set, so they have harmonic minor-

ants. Let h1 and h2 be the greatest harmonic minorants of s1jU and s2jU ,

respectively. Thus s1jU � h1 and s2jU � h2 are potentials on U with harmonic

support at x, and so for some a > 0, s1jU � h1 ¼ aðs2jU � h2Þ. Hence

ðs1 � as2Þ jU ¼ h1 � ah2 which is harmonic on U . But s1 � as2 is harmonic

outside x, thus s1 � as2 is harmonic on W, proving that (b) holds.

Conversely, suppose (b) holds. Let x A W, U a relatively compact neigh-

borhood of x, and let p1 and p2 be potentials on U with harmonic support at

x. By Theorem 4.2, there exist superharmonic functions s1 and s2 on W with

harmonic support at x such that s1 � p1 and s2 � p2 are harmonic on a

neighborhood of x. Thus, there exist nonzero a; b A R such that as1 þ bs2 is

harmonic on W. Then aðs1 � p1Þ þ bðs2 � p2Þ is harmonic on U , so ap1 þ bp2
is harmonic on U . Letting l ¼ � b

a
, we have that p1 � lp2 is a harmonic

function h on U . Notice that l cannot be negative since otherwise �lp2
would be a potential on U and the sum of two potentials cannot be harmonic.

Thus, l > 0 and p1 ¼ lp2 þ h. But the greatest harmonic minorant of p1 and

of p2 is zero. Hence h ¼ 0 and so p1 ¼ lp2 on U , proving the local axiom of

proportionality. r
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Example 4.1. Let W be an open subset of Rn whose harmonic structure is

defined by the Laplace operator D. Then W satisfies part (b) of Theorem 4.3,

hence satisfies the local axiom of proportionality, since if s1 and s2 are

superharmonic functions on W with support at x A W, then Ds2ðxÞs1 � Ds1ðxÞs2
is harmonic on W.
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