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Abstract

We study the potential theory of trees with nearest-neighbor transition probability that yields a recurrent
random walk and show that, although such trees have no positive potentials, many of the standard results
of potential theory can be transferred to this setting. We accomplish this by defining a non-negative function
H, harmonic outside the root e and vanishing only at e, and a substitute notion of potential which we call
H-potential. We define the flux of a superharmonic function outside a finite set of vertices, give some simple
formulas for calculating the flux and derive a global Riesz decomposition theorem for superharmonic functions
with a harmonic minorant outside a finite set. We discuss the connection of the H-potentials with other notions
of potentials for recurrent Markov chains in the literature.

1. Introduction

The study of potential theory on trees was introduced by Cartier [9], although its consideration
on Markov chains goes back to the beginning of Markov chain theory. Subsequent developments
include [10], [18], and [20]. Trees, under the harmonic structure determined by nearest-
neighbor transition probabilities, are harmonic spaces which may or may not have positive
potentials. In [6], we used the tools of Brelot theory to derive on trees several properties that
were not previously known, and we related these results to the potential-theoretic aspects of
trees that had been studied in [9] in the special case of trees with positive potentials.

In this paper, we continue the study begun in [6] of the potential theory of trees for which
the random walk is recurrent, without making explicit use of the Brelot theory.

In the transient case, a Riesz decomposition theorem holds for the positive superharmonic
functions, that is, each positive superharmonic function can be written uniquely as the sum
of a positive potential and a harmonic function. In the recurrent case, there are no non-
constant positive superharmonic functions, and hence there are no positive potentials. Instead,
we consider admissible superharmonic functions, namely superharmonic functions which are
bounded below by a function harmonic outside a compact set (hence, a finite set in this setting).
Motivation for this definition is provided by the work of Anandam in axiomatic potential theory
(cf. [1,3]).

Our aim here is to develop a theory of flux and to introduce a class of superharmonic
functions (which we call H-potentials) behaving as positive potentials in the transient case,
in order to obtain a Riesz decomposition theorem, that is, a complete characterization of
admissible superharmonic functions as sums of H-potentials and global harmonic functions.
In classical potential theory in the complex plane, there is a notion of potential, more general
than logarithmic potential, that yields a Riesz decomposition of all admissible superharmonic
functions. Not all such potentials, however, are admissible (cf. [5]).

The H-potentials (introduced in [6]) are defined in terms of a non-negative unbounded
function H that is harmonic and positive outside the root.

Anandam [1] gives various definitions of flux on different classes of functions. We condense
these into a single definition of the flux of any function on a recurrent tree. We define the flux
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of a function s which is superharmonic outside a finite set as the supremum of all real numbers
α such that s − αH is bounded below by a harmonic function on the tree. This allows us to
define a kernel G that we call the H-Green function, which plays a role similar to that of the
Green function on transient trees, except that it is not non-negative. We show that, in analogy
to the transient case, the H-potentials are precisely the functions of the form Gf , where f is
a non-negative function satisfying a certain growth condition.

To put this paper in the proper perspective from the point of view of Markov chains on
discrete structures, we relate the concepts developed in our study to the corresponding ones
given in the literature and explain the connection and the differences between our results and
those established in earlier works. Specifically, we discuss the connection between our work and
the potential theory developed in [11–16,19,23].

The topic of recurrent potential theory on denumerable Markov chains has lain dormant for
many years. One reason is that in the early studies of trees, the greatest concentration was on
homogeneous isotropic trees which can be represented by groups. Kesten [16] had completely
settled the theory on groups. A second reason is that the notion of admissible superharmonic
function came later and was heretofore used almost exclusively in an analytic setting.

1.1. Trees

Let (P, T ) be a stochastic Markov chain, where T is a countable set of states and P =
{p(v, u)}v,u∈T is the matrix of transition probabilities of finite type, that is, rows and columns
have only finitely many non-zero entries.

A path is a finite or infinite sequence of states [v0, v1, . . .] such that p(vk, vk+1) > 0 for all
integers k � 0. The path is said to be geodesic if furthermore vk+1 �= vk−1 for all k � 1. In
particular, the paths [v0] and [v0, v1] are always geodesic. An infinite geodesic path is also
called a ray. A tree is the set of states T of such a Markov chain which has the property that
for all v, u ∈ T there is a unique geodesic path from v to u. The states are called the vertices
of the tree. Throughout this paper, we fix a vertex e called the root.

Observe that, for all v ∈ T , p(v, v) = 0, otherwise both [v] and [v, v] would be geodesics.
Moreover, all finite geodesic paths can be reversed, that is, if p(u, v) > 0 then p(v, u) > 0, since
the unique geodesic path [v = v0, . . . , vn = u] from v to u must be [v, u], otherwise [u, v0, . . . , vn]
would be a geodesic from u to u.

Two vertices v and u are neighbors and [v, u] is called an edge if p(v, u) > 0, in which case
we use the notation v ∼ u.

Let [u, v] denote the unique geodesic path between the vertices u and v. A vertex with a
single neighbor is called terminal.

The distance d(u, v) between the vertices u and v is the number of edges in the unique
geodesic path from u to v. The length of a vertex v is |v| = d(e, v). The predecessor u− of a
vertex u �= e is the next to the last vertex of the geodesic path from e to u. We call children of
a vertex v the vertices u such that u− = v. Children of the same vertex are called siblings. A
vertex v is an ancestor of u and u is a descendant of v if v is in the geodesic path from e to u−.
The sector determined by the vertex v is the set S(v) consisting of v and all its descendants.

By a function on a tree T , we mean a function on its set of vertices. The Laplacian of a
function f on T at v ∈ T is defined as Δf(v) =

∑
u∼v p(v, u)f(u) − f(v).

A function f on T is said to be harmonic, superharmonic or subharmonic at a vertex v if
Δf(v) is equal to, at most or at least zero, respectively. The function is said to be harmonic,
superharmonic or subharmonic on a set of vertices K if it is harmonic, superharmonic or
subharmonic, respectively, at each point of K. If K = T , then we will simply call the function
harmonic, superharmonic or subharmonic. The harmonic support of a function s is the set of
vertices where the Laplacian of s is non-zero. A potential is a positive superharmonic function
whose only non-negative harmonic minorant is the constant zero. A superharmonic function s
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on T is said to be admissible if there is a finite set K and a function h on T , harmonic at each
vertex of T \ K, such that h(x) � s(x) for all x ∈ T .

A function harmonic off a finite set of vertices does not necessarily extend to a function
harmonic on the whole tree. Indeed, since a single vertex v0 disconnects the tree, a function
harmonic off v0 cannot necessarily be extended to a function harmonic everywhere.

On the other hand, there is an extension result for functions harmonic off a finite set of
vertices and this motivates much of what we do in this paper (see Definition 2.1).

Definition 1.1. Given a finite subset K of T , the interior of K is the set int K consisting
of all non-terminal vertices v ∈ K such that every vertex of T which is a neighbor of v belongs
to K. The boundary of K in T is defined as the set ∂K of all vertices v ∈ K such that exactly
one neighbor ṽ of v is in intK. We say that K is a complete subtree of T if K = int K ∪ ∂K.

Remark 1.1 (Dirichlet problem). Any complete finite set K satisfies the following
property: if f is any function defined on ∂K, then there exists a unique extension of f to
K, non-negative if f is non-negative, which is harmonic on the interior of K.

A useful property of superharmonic functions is the minimum principle: let K be a connected
complete set and assume that a function s on K attains its minimum at v0 ∈ int K and is
superharmonic on int K \ {v0}. If s is not constant, then it is not superharmonic at v0. In
particular, if s is superharmonic on int K and non-constant, then its minimum cannot be
attained on intK. Since the negative of a subharmonic function is superharmonic, there is an
analogous maximum principle for subharmonic functions.

Definition 1.2. Let s be a function on T and K a set of vertices. By a harmonic
(subharmonic) minorant of s on K, we mean a function h such that h � s on T and is harmonic
(subharmonic) on intK. Note that although these functions are defined globally, the values of
h outside of K have no bearing on its harmonicity on intK.

We state the following theorem on trees, but it is easy to see that it holds for an arbitrary
denumerable Markov chain. We believe that the results are part of the folklore, but we include
an elementary proof since we have not been able to locate one in print.

Theorem 1.1. Let K be a set of vertices. Let s be superharmonic on int K and suppose
that s has a subharmonic minorant t0 on K. Then s has a greatest harmonic minorant h on
K that will be denoted by ghmK(s) and t0 � h. Furthermore, h is equal to the supremum of
all subharmonic minorants of s on K.

Proof. Let S denote the set of functions that are subharmonic minorants of s on K. Define h
by h(v) = sup{t(v) : t ∈ S}. By assumption, −∞ < h(v) � s(v). Let v ∈ int K. For each t ∈ S,
t(v) �

∑
w∼v p(v, w)t(w) �

∑
w∼v p(v, w)h(w) so, taking the supremum over all t ∈ S, we see

that h is subharmonic on intK and thus h is the greatest subharmonic minorant of s on K.
Let v ∈ int K and define hv by hv(u) = h(u) for u �= v and hv(v) =

∑
w∼v p(v, w)h(w). Then,

hv is harmonic at v and h � hv � s, since h is subharmonic on intK and s is superharmonic on
int K. Let u ∼ v, u ∈ int K. Then

∑
w∼u p(u,w)hv(w) �

∑
w∼u p(u,w)h(w) � h(u) = hv(u), so

hv is subharmonic on intK. Thus, hv ∈ S and thus hv = h. Since v is arbitrary, h is harmonic
on intK. Since any harmonic minorant of s on K is in S, h is the greatest harmonic minorant
of s on K.
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Corollary 1.1. Let K be a set of vertices and let s1 and s2 be superharmonic on int K,
each having a subharmonic minorant on K. Let hi = ghmK(si), i = 1, 2. Then, h1 + h2 =
ghmK(s1 + s2).

Proof. Let h = ghmK(s1 + s2). Since h1 + h2 is harmonic on intK, h1 + h2 � h. In order
to prove the opposite inequality, note that h − s1 is a subharmonic minorant of s2, so by
Theorem 1.1, h − s1 � h2. Thus, h − h2 is a harmonic minorant of s1, so h − h2 � h1, that is,
h � h1 + h2.

Let T be a tree with a nearest-neighbor transition probability p. The probability of a path
γ = [v0, . . . , vn] is defined as p(γ) =

∏n
j=1 p(vj−1, vj). For v, w ∈ T , let Γv,w be the set of

all finite paths from v to w. Define the Green function G of T as G(v, w) =
∑

γ∈Γv,w
p(γ).

Probabilistically, G(v, w) is the expected number of times the associated random walk starting
at v visits w. In [9], it is shown that if G(v, w) is finite for some vertices v and w, then it
is finite for all pairs of vertices. This means that the associated random walk is transient. In
this case, given w ∈ T , the function Gw : T → (0,∞) defined by Gw(v) = G(v, w) satisfies the
conditions ΔGw(v) = 0 for w �= v and ΔGw(w) = −1 (see [9, Proposition 2.3]). Therefore, Gw

is superharmonic (actually, a potential in the sense that its greatest harmonic minorant on
T is 0) with harmonic support {w}. The potentials are precisely the functions of the form
Gf(v) =

∑
w∈T G(v, w)f(w), where f is a non-negative function on T , not identically zero,

and Gf(e) < ∞.
If G is infinite, the random walk is recurrent, that is, for any pair of vertices v, w the

probability that a random walk starting at v will reach w in positive time is one. In this case,
there are no (positive) potentials and so, by Theorem 1.1, all positive superharmonic functions
are necessarily constant, a well-known result on recurrent irreducible Markov chains. We give
here an elementary proof. If s is positive superharmonic and h is its greatest harmonic minorant,
then s − h has the greatest harmonic minorant 0. Since there are no positive potentials,
s − h = 0. This shows that any positive superharmonic function is harmonic. The function
t = min{s, s(e)} is positive superharmonic, and hence harmonic. Since t attains its maximum
value at e, it must be constant by the maximum principle. Thus, s attains its minimum at e
and so, by the minimum principle, s must be constant.

Example 1.1. Let T be a homogeneous tree of degree 3, and define p(v, v−) = 1/2 if
v �= e, p(v−, v) = 1/4 if v− �= e and p(e, v) = 1/3 if v ∼ e. Then, T is a recurrent tree (see [6,
Example 4.1]), which we refer to as the (1/4, 1/2)-tree.

Example 1.2. Let T3 be the tree of Example 1.1, fix a ray ρ = [v0 = e, v1, v2, . . . ], and
fix p ∈ (0, 2/3). Let T be T3 with the transition probabilities p(v, u) modified only for v = vn

for each n � 1: let p(vn, vn−1) = 1/3, p(vn, vn+1) = p and p(vn, wn) = q = 2/3 − p, where wn

is the other neighbor of vn. In [6,7], we proved that T is a recurrent tree for 0 < p � 1/3 and
a transient tree for 1/3 < p < 2/3.

1.2. Outline of results

In Section 2, we define a non-negative unbounded subharmonic function H harmonic except
at e which plays a key role in the study of potential theory on recurrent trees. In Theorem 2.2,
we show that H satisfies the property that given any function h harmonic outside a finite set,
there exists a unique real number α such that h − αH is a sum of a global harmonic function and
a bounded function. The function H and the corresponding family of subharmonic functions
Hv with harmonic support at v are used to construct the H-potentials. In Theorem 2.4, we
give a direct proof on recurrent trees of an extension theorem (originally due to Nakai in a
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Riemann surface setting) that any function superharmonic outside a finite set can be written
as a sum of a global superharmonic function, a multiple of H and a function of finite support.
This is fundamental for our definition of the flux. In Theorem 2.5, we give the properties of
the flux of a function on T that is superharmonic outside a finite set.

In Section 3 (Theorem 3.2), we give an explicit construction of the H-potentials with one-
point harmonic support, which we then show (see Proposition 3.1) are unique up to a positive
multiplicative constant. We introduce the superharmonic functions Gv = Hv(e) − Hv and use
them to define the H-Green function G. Using H-potentials, we also construct (Theorem 3.3)
a function on a tree with arbitrary prescribed Laplacian.

In Section 4 (Theorem 4.2), we give an explicit formula for the flux of a function s which
is superharmonic outside a finite set in terms of its Laplacian and a formula in terms of its
normal derivative.

In Section 5 (Theorem 5.1), we show that the function Gf given by Gf(w) =∑
v∈T Gv(w)f(v) is defined if and only if

∑
v∈T |f(v)|αv < ∞. If, in addition, f is non-

negative, then Gf is admissible. In Theorem 5.2, we show that the H-potentials are precisely
the admissible superharmonic functions s of the form Gf , where f = −Δs. Furthermore, we
prove that every admissible superharmonic function can be written uniquely as the sum of
an H-potential and a harmonic function (global Riesz decomposition). After defining the flux
of an arbitrary function whose Laplacian satisfies a certain summability condition, we show
(Theorem 5.3) that a function of finite flux is the sum of a harmonic function and the difference
of two H-potentials.

In Section 6, we give a description of the connections between the H-potentials and the
potentials developed for Markov chains by other authors.

2. Standard and the flux on a recurrent tree

In this section, we introduce the concept of flux of a superharmonic function outside a finite
set of vertices of a recurrent tree.

Definition 2.1. Let T be a recurrent tree, K ⊂ T a non-empty finite set. A function
H harmonic off K is called a standard associated with K if the following is true: given any
function h which is harmonic off an arbitrary finite set, there exists a function hT harmonic on
the whole space, a unique real number α and a bounded function b such that h = αH + hT + b.

Let T be any tree. If v is a vertex of length n � 1 and [v0, . . . , vn] is the geodesic path from
e to v, let

εk(v) =
p(vk, vk−1)

1 − p(vk, vk−1)
for 1 � k � n − 1, ε0(v) = 1,

and define

H(v) =
n−1∑
k=0

ε0(v)ε1(v) · · · εk(v) (2.1)

for |v| = n � 1, with H(e) = 0. Then H is non-negative and constant on siblings (that is,
H(u) = H(w) if u− = w−). If |u| = 1, then H(u) = 1, so that ΔH(e) = 1. In [6, Theorems 5.1
and 5.2], we showed that H is harmonic except at e (so that H is subharmonic), and gave the
following result.

Theorem 2.1. If T is recurrent, then H is unbounded on each sector S(v), and if H is
unbounded on each ray, then T is recurrent.
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The special case of T = Z+ ∪ {0} is well known (see [11, Theorem 1]).
On the other hand, in Example 2.2 we show examples of both a transient and a recurrent

tree whose associated function H is bounded only on a single ray.
If T is a homogeneous tree of degree greater than 2 with isotropic transition probability,

then T is transient and H is the function Q of [8, p. 454].
Let us now assume that T is recurrent. The following theorem was proved in [6, Section 4]

using a result from axiomatic potential theory in [2,4]. We shall give here a simple self-contained
proof.

Theorem 2.2. H is a standard on T associated with {e}.

For the proof, we introduce a family {Hv}v∈T of non-negative subharmonic functions with
one-point harmonic support. On a recurrent tree, the Green function is identically infinity, and
hence it has no practical use. The functions Hv will also be used to take the first step toward
defining a substitute notion for the Green function, and hence for potentials.

For v ∈ T , define αv = p([e, v])/p([v, e]) for v �= e, and αe = 1. Set He = H and for each
v ∈ T define the function Hv harmonic off v with ΔHv(v) = 1 and such that Hv − αvH is
bounded. Let [e, v] = [e = v0, v1, . . . , vn = v] and, for k = 0, . . . , n − 1, let pk = p(vk, vk+1) and
rk+1 = p(vk+1, vk). Define

Sk =

{
S(vk) − S(vk+1) for k = 0, . . . , n − 1,

S(vn) for k = n,
(2.2)

so that T = S(e) is the disjoint union of the sets S0, . . . , Sn. Let bn = αvH(v), and

bk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bn − 1

rn

(
1 +

n−1∑
m=k+1

n−1∏
j=m

pj/rj

)
for k = 0, . . . , n − 2,

bn − 1
rn

for k = n − 1.

(2.3)

Define Hv to be αvH − bk on Sk, k = 0, . . . , n. It is straightforward to show that Hv has
the following properties: Hv(v) = 0, Hv is harmonic everywhere except at v and ΔHv(v) = 1.
Furthermore, outside the ball of radius n, Hv is strictly increasing as a function of the modulus,
since H has this property. Thus, since Hv takes only finitely many values on the ball, it has a
minimum which cannot be attained at a point where the function is harmonic. Hence, by the
minimum principle, that minimum is attained at v where its value is 0. Thus, Hv is positive
except at v.

Theorem 2.3 [6, Theorem 4.3]. For each v ∈ T , Hv is the unique function harmonic except
at v, non-negative, such that Hv(v) = 0, ΔHv(v) = 1 and the function bv = αvH − Hv takes
on finitely many values. These values are b0, . . . , b|v|. In particular, He = H.

Proof of Theorem 2.2. Let h be a function on T harmonic outside a finite set K. Let hT =
h − ∑

v∈K Δh(v)Hv, α =
∑

v∈K Δh(v)αv and b = −∑
v∈K Δh(v)bv. Then, hT is harmonic on

T and h = hT +
∑

v∈K Δh(v)Hv = hT + αH + b. To prove that α is unique, assume that h
can be written as h′

T + α′H + b′, where h′
T is harmonic, b′ is bounded and α′ � α. Then

k = (α − α′)H + hT − h′
T = b′ − b is a bounded superharmonic function, and hence a constant.

Thus, 0 = Δk(e) = α − α′, completing the proof.

Throughout the rest of the paper, we shall fix the standard to be the function H defined by
(2.1), with K = {e}, the set associated with this standard.
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Example 2.1. If p(vk, vk−1) is a constant r ∈ [1/2, 1) and ε = r/(1 − r), then H(v) =
(ε|v| − 1)/(ε − 1) for r �= 1/2 and H(v) = |v| for r = 1/2. (If r < 1/2, then T is transient.) In
particular, if T is the (1/4, 1/2)-tree, then H(v) = |v|.

Example 2.2. Let T be the tree in Example 1.2. Observe that the values xn of H
at a vertex of length n must satisfy the recurrence relation xn+1 + xn−1 = 2xn if xn /∈ ρ
and the relation 2xn+1 + xn−1 = 3xn if xn ∈ ρ. Thus, if v ∈ S(vn) − S(vn+1), then H(v) =
2 + (|v| − n − 2)2−n. Notice that the values of H are completely independent of the probability
p on the ray ρ, even though the value of p determines whether T is transient.

A key step toward defining flux is Theorem 2.4. We begin with two lemmas.

Lemma 2.1 (Harnack’s property). Let {sn} be a non-decreasing sequence of functions on
T which are superharmonic (respectively, harmonic) on a connected set K. Then, on K, lim sn

is either identically infinity or superharmonic (respectively, harmonic).

Proof. Let s(u) = lim sn(u) � ∞ for u ∈ K and assume that s(v) < ∞. If w ∼ v,
then s(v) � sn(v) �

∑
u∼v p(v, u)sn(u) � p(v, w)sn(w) +

∑
u∼v,u �=w p(v, u)s1(u) so sn(w) is

bounded above by a quantity independent of n. Hence, s(w) < ∞. Since K is connected, s
is finite on K. The superharmonicity (harmonicity) of s is immediate.

Lemma 2.2. For each n ∈ N, let Bn = {v ∈ T : |v| � n} and let hn be the solution to the
Dirichlet problem on the interior of Bn with boundary values H on ∂Bn. Then limn→∞ hn(v) =
∞ for each v ∈ T .

Proof. Fix any positive integer N . Since H is subharmonic, by the maximum principle, it
follows that hn � H on Bn−1, thus hn � hn−1 on Bn−1 so {hn}n>N is an increasing sequence
of harmonic functions on BN . By Harnack’s property, the limit h is either identically infinity
or harmonic on BN for all N , and hence on T , and h � H. Assume that h is not identically
infinity. Then, h is harmonic and so h − H is a non-negative superharmonic function, and hence
a constant c. Thus, h = c + H, contradicting the fact that H is not harmonic at e.

Theorem 2.4. Let s be a function superharmonic outside a finite set in T . Then, there
exist β ∈ R and sT superharmonic on T such that s = sT + βH outside a finite set.

Proof. Let C = {v ∈ T : Δs(v) > 0}, and define s1 = s − ∑
v∈C Δs(v)Hv. Then, Δs1 is 0 on

C and equal to Δs off C, so s1 is superharmonic on T . Pick α > max{αv : v ∈ C}. For v ∈ C, let
kn be the solution to the Dirichlet problem in the interior of Bn with boundary values Hv − αH.
Note that Hv − αH = (Hv − αvH) − (α − αv)H. Since Hv − αvH is bounded, it follows from
Lemma 2.2 that n can be chosen so that kn � Hv − αH on ∂B|v|+1. Since kn = Hv − αH
on ∂Bn, by the minimum principle, it follows that kn(u) � Hv(u) − αH(u) for |v| < |u| � n.
Define

sv(u) =

{
kn(u) if |u| � n,

Hv(u) − αH(u) if |u| � n.

Then, sv is superharmonic on T and Hv = αH + sv outside a finite set. Let β = α
∑

v∈C Δs(v)
and sT = s1 +

∑
v∈C Δs(v)sv. Then, outside a finite set s = s1 +

∑
v∈C Δs(v)(αH + sv) =

βH + sT .

Remark 2.1. Let s be a function superharmonic outside a finite set. When it is clear
from the context that the values of s on any particular finite set are unimportant, we shall
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use Theorem 2.4 to change s on a finite set so that it is defined globally and superharmonic
except at e.

Definition 2.2. If s is defined on T and superharmonic outside a finite set, define the flux
of s to be flux(s) = supAs, where As is the set of α ∈ R such that s − αH is bounded below
by a function harmonic on T . As is customary, if As = ∅, then the flux of s is −∞.

Remark 2.2. Using the notation of Theorem 2.4, flux(s) � β because if α > β, then
s − αH = sT − (α − β)H which is a non-harmonic superharmonic function; hence, it has no
harmonic lower bound. Thus, α /∈ As, so As ⊂ (−∞, β] and −∞ � flux(s) < ∞.

Lemma 2.3. For i = 1, 2, let hi be a globally defined function which is the greatest harmonic
minorant of some superharmonic function s outside a finite set Ki. Then, h1 − h2 is bounded.

Proof. Using Theorem 1.1, without loss of generality, we may assume that K1 ⊂ K2. Using
the definition of standard, there exists a function hT harmonic on T and a unique real
number α such that h2 − αH − hT is bounded. Fix any v0 ∈ K1. By Theorem 2.3, αv0H − Hv0

is also bounded, so h2 − (α/αv0)Hv0 − hT is bounded. Thus, there exists a constant c
such that −c < h2 − (α/αv0)Hv0 − hT < c. Therefore, we have −c < h2 − (α/αv0)Hv0 − hT �
s − (α/αv0)Hv0 − hT outside K2. By increasing c if necessary, we obtain s � (α/αv0)Hv0 +
hT − c on T . In particular, since (α/αv0)Hv0 + hT − c is harmonic outside K1, it follows
that (α/αv0)Hv0 + hT − c � h1 outside K1. Thus, h2 − c < (α/αv0)Hv0 + hT � h1 + c on the
complement of K1. On the other hand, h1 is harmonic outside K2, so h1 � h2 outside K2. Thus,
h2 − h1 � 0 outside K2 and h2 − h1 � 2c outside K1. Since K1 and K2 are finite, h1 − h2 is
bounded.

The following is an extensive list of the properties of the flux.

Theorem 2.5. (a) If h is harmonic outside a finite set, then the flux of h is the unique
constant α of Definition 2.1 such that h = αH + hT + b with hT harmonic on T and b bounded.
In particular, Ah = (−∞, α].

(b) If h is bounded harmonic outside a finite set K or harmonic everywhere, then the flux
of h is zero. If s is superharmonic everywhere, then flux(s) � 0.

(c) Let s be an admissible superharmonic function on T . If h1 and h2 are the greatest
harmonic minorants of s outside finite sets K1 and K2, respectively, then the fluxes of h1 and
h2 are equal.

(d) If s is a function superharmonic outside a finite set K that has a subharmonic minorant
on T \ K (in particular, if s is admissible), then its flux is equal to the flux of its greatest
harmonic minorant on T \ K. Consequently, admissible superharmonic functions have finite
flux.

(e) The flux of a non-admissible superharmonic function s is equal to −∞.
(f) Let s be superharmonic outside a finite set, and write s = sT + βH outside a finite

set, where sT is superharmonic on T and β is a constant, as in Theorem 2.4. Then flux(s) =
flux(sT ) + β.

(g) The set of functions that are superharmonic outside a finite set is closed under sums and
multiplication by a positive number and flux is linear on that set.

(h) If s is superharmonic outside a finite set and As �= ∅, then flux(s) ∈ As, so that As =
(−∞,flux(s)].

(j) If s is superharmonic on T and flux(s) = 0, then s is harmonic on T .
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Proof. We use Corollary 1.1, Theorem 2.4, Remark 2.2, Lemma 2.3, and the following
immediate facts.

(i) There are no non-constant positive superharmonic functions, and hence no non-
harmonic superharmonic function can be bounded below on T by a harmonic function.

(ii) If s is superharmonic outside a finite set, then for all α ∈ R and c > 0, As+αH = As + α
and Acs = cAs.

(iii) (Monotonicity of the flux) If s1 � s2, with s1, s2 superharmonic outside a finite set, then
As1 ⊂ As2 , so that flux(s1) � flux(s2).

(iv) If hT is harmonic on T and hT + γH is bounded below, then γ � 0.
Part (a) follows from (iv). Part (b) follows from (a) and Remark 2.2. Part (c) holds, since

Lemma 2.3 implies that Ah1 = Ah2 .
To prove (d), let h be the greatest harmonic minorant of s on T \ K. By (c), without loss of

generality, we may assume that K contains e. By (a), Ah �= ∅ and by (iii), Ah ⊂ As, so As �= ∅.
Let α ∈ As so that s − αH � hT , a harmonic function on T . Thus, s � αH + hT , which is
harmonic off {e}. Then, on T \ K, s � h � αH + hT , so by (iii) and (a), flux(s) � flux(h) � α.
Since this is true for all α ∈ As, it follows that flux(s) = flux(h).

To prove (e), assume that there exists α ∈ As. Then, s � αH + hT , where hT is a function
harmonic on T . Since αH + hT is harmonic outside e, s is admissible.

Part (f) follows from (ii). To prove (g), let s1 and s2 be superharmonic outside the same finite
set K, and let h1 and h2 be their respective greatest harmonic minorants outside K. Then,
by Corollary 1.1, h1 + h2 is the greatest harmonic minorant of s1 + s2 outside K. Thus, by
(d) and (a), flux(s1 + s2) = flux(h1 + h2) = flux(h1) + flux(h2) = flux(s1) + flux(s2). Linearity
with respect to multiplication by a positive constant follows from (ii).

Part (h) follows from (d) and (a). Part (j) follows from (h) and (i).

In [6, Corollary 3.1], we proved that a superharmonic function on a transient tree is
admissible if and only if it has a global harmonic minorant. This is false on recurrent trees,
but we can prove the following result.

Proposition 2.1. A superharmonic function s on a recurrent tree T is admissible if and
only if it has a minorant which is harmonic except at the root.

Proof. The sufficiency is obvious. To prove the necessity, let s be an admissible superhar-
monic function and let α be its flux. By part (h) of Theorem 2.5, there exists a harmonic
function hT on T such that s − αH � hT . However, αH + hT is harmonic except at e, so s has
a harmonic minorant outside e.

3. H-potentials and proportionality on recurrent trees

In this section, unless otherwise specified, T is a recurrent tree.

Theorem 3.1. Let s be superharmonic on T \ {e}. Let hn be the solution to the Dirichlet
problem on Bn \ {e} = {v ∈ T : 0 < |v| � n} with boundary values s on ∂Bn ∪ {e}. Then, for
all v, D(s)(v) = limn→∞ hn(v) exists and on each connected component of T \ {e} is either
harmonic or identically −∞. If s has a subharmonic minorant off e, then its greatest harmonic
minorant on T \ {e} is D(s). Furthermore, the flux of s is 0 if and only if the greatest harmonic
minorant of s on T exists and is equal to D(s).
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Proof. Since s is superharmonic on T \ {e}, by the minimum principle, s � hn+1 on ∂Bn, so
(again by the minimum principle) hn � hn+1 on Bn. Thus, by Lemma 2.1, on each connected
component of T \ {e}, D(s) is either harmonic or identically −∞.

Now assume that s has a subharmonic minorant t off e. By the minimum principle, t � hn

on Bn. Thus, t � D(s) � s, which implies that D(s) is harmonic. Hence, D(s) is the greatest
harmonic minorant of s off e.

Next, suppose that the flux of s is zero. Then, by part (d) of Theorem 2.5, the flux of D(s) is
zero. Since D(s) is harmonic on T \ {e}, it is either harmonic, superharmonic or subharmonic
on T , depending on the value of ΔD(s) at e. Since its flux is zero, by part (j) of Theorem 2.5,
D(s) must be harmonic on T . Since D(s) is the greatest harmonic minorant of s on T \ {e},
and D(s)(e) = s(e), it follows immediately that if h is any harmonic minorant of s on T , then
h � D(s) on T . Thus, D(s) is the greatest harmonic minorant of s on T .

Conversely, if the greatest harmonic minorant of s on T exists, then the flux of s equals the
flux of its greatest harmonic minorant, hence it is 0.

Definition 3.1. Let s be admissible superharmonic on T . If α is the flux of s, then s − αH
is superharmonic off {e} with flux zero. By Theorem 3.1 applied to s − αH, the greatest
harmonic minorant of s − αH on T exists and is equal to D(s − αH). We say that s is an
H-potential on T if the greatest harmonic minorant of s − αH on T is zero. By the linearity
of D, this means that D(s) = αH.

Theorem 3.2. The function Gv defined by Gv = Hv(e) − Hv is an H-potential.

Proof. Let s = Gv − flux(Gv)H, which is superharmonic off e. By definition, Gv is harmonic
everywhere except at v, Gv(e) = 0 and ΔGv(v) = −1. So Gv is superharmonic on T , and
by Theorem 2.3 and the linearity of the flux, s = Gv + αvH = bv + Hv(e) = bv − b0. From
equation (2.3), we see that b0 < b1 < · · · < bn. Thus, the minimum value of s is 0, which is
attained on the entire set S0 defined in (2.2). By Theorem 1.1, s has a greatest harmonic
minorant h on T \ S0, with 0 � h � s. Extending h to be 0 on S0, we obtain a harmonic
function except possibly at e. Since h(e) = 0 and h is a bounded subharmonic function on
T , h must be identically 0. Now observe that the harmonic minorants of s on the connected
components of T \ {e} are completely independent of one another. Thus, the greatest harmonic
minorant outside the root of s is 0, proving that Gv is an H-potential.

For vertices v and w, denote by v ∧ w the vertex of least modulus along the geodesic path
joining v and w.

Definition 3.2. We define the H-Green function G on T × T by

G(w, v) = Gv(w) = Hv(e) − Hv(w) = −αvH(w) + bv
|v∧w| − bv

0,

where for k = 0, . . . , |v|, the numbers bv
k are the constants bk defined in (2.3). Here, the

superscript is used to emphasize the dependence on v.
If f is a function on T , then we define the function Gf by

Gf(w) =
∑
v∈T

G(w, v)f(v),

provided this series converges absolutely for all w ∈ T .

We shall study G and such functions in detail in Section 5. In particular, we shall show that
all H-potentials are of the form Gf .
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Proposition 3.1. Any two H-potentials with the same one-point harmonic support on a
recurrent tree T are proportional.

Proof. Let s1 and s2 be H-potentials with the same one-point harmonic support at v. It
suffices to show that if s1 and s2 have the same flux α (a negative number), then s1 = s2. Let
λ = Δs1(v)/Δs2(v). Since s1 and s2 are harmonic except at v, the function h = s1 − λs2 is har-
monic everywhere, so its flux is zero. Thus, 0 = flux(s1) − λ flux(s2) = (1 − λ)α, whence λ = 1
and s1 = s2 + h. Consequently, αH = D(s1) = D(s2 + h) = αH + h, so h = 0 and s1 = s2.

We now use H-potentials on recurrent trees (respectively, potentials with one-point harmonic
support on transient trees) to show that it is always possible to find a function on a tree with
arbitrarily prescribed Laplacian.

Theorem 3.3. Let T be an infinite tree, possibly transient. Given any function μ on T , the
equation Δϕ = −μ has a solution. In particular, if μ � 0, then any solution ϕ is superharmonic
on T .

Proof. If T is a recurrent tree, let Gv be the H-potential of Theorem 3.2. If T is a transient
tree, let Gv be the potential Gv(w) = G(w, v), where G is the Green function on T . In both
cases, we have ΔGv = −δv, where δv is the Dirac δ function at v. Then the function sn =∑

|v|=n μ(v)Gv is harmonic in the interior of the ball Bn. Let hn be a harmonic extension of
sn|Bn to all of T . Then (sn − hn)|Bn = 0, so the function ϕ =

∑∞
n=0(sn − hn) is a finite sum

at any vertex, and hence is defined on T . Then

Δϕ =
∞∑

n=0

Δsn =
∞∑

n=0

∑
|v|=n

μ(v)(−δv) = −
∑
v∈T

μ(v)δv = −μ.

4. Superharmonic functions and calculation of the flux on a recurrent tree

The main result of this section is Theorem 4.2 in which we relate the flux given by
Definition 2.2 to the limiting value of a more familiar and classical form.

Let [v, w] be an edge with v = w−. Then

αw =
p([e, v])p(v, w)
p(w, v)p([v, e])

= αv
p(v, w)
p(w, v)

,

that is,

αvp(v, w) = αwp(w, v). (4.1)

This is the condition that allows us to view T as a reversible Markov chain (electric network).
The quantity c([v, w]) = αwp(w, v), called the conductance of the edge [v, w], is a measure of
the amount of current flow.

In the transient case, αvG(v, w) = αwG(w, v), where G is the ordinary Green function. In
the recurrent case, however, this reversibility does not hold for the H-Green function as can
be seen by considering Example 2.1 for r = 1/2. In this case, Hv(w) = d(v, w), αv is constant
and G(v, w) = |w| − d(v, w).

For each v ∈ T , αv =
∑

w∼v αvp(v, w) =
∑

w∼v αwp(w, v), and so v �→ αv is a positive regular
measure on T in the sense of [15]. It is the unique positive regular measure whose value at e
is 1.

Following [24, p. 14], we let E be the set of edges of the tree. Since every edge γ has the form
γ = [v−, v] for a unique vertex v �= e, we may set γ+ = v, γ− = v−. Put inner products on the
sets of functions on T and on E as follows: if f, g are functions on T and F,G are functions on
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E, then let 〈f, g〉 =
∑

v αvf(v)g(v) and 〈F,G〉 =
∑

γ(1/c(γ))F (γ)G(γ), if these series converge
absolutely. Let �2α(T ) and �21/c(E) be the corresponding Hilbert spaces. For any function f on
T , let ∇f be the function on E given by ∇f(γ) = (f(γ+) − f(γ−))c(γ). A direct calculation
shows that with respect to the above inner products the adjoint of ∇ is given by

∇∗(F )(v) =
1
αv

⎛⎝ ∑
γ+=v

F (γ) −
∑

γ−=v

F (γ)

⎞⎠ .

Definition 4.1. Fix a finite complete set of vertices K. For each w ∈ ∂K, there is a unique
neighbor w̃ of w with w̃ ∈ int K. For a function f on K set (∂f/∂n)(w) = f(w) − f(w̃), the
normal derivative of f at w.

Definition 4.2. Let K ⊂ T be complete. Define the Dirichlet sum of two functions f and g
on K as DK(f, g) =

∑
v,v−∈int K(f(v) − f(v−))(g(v) − g(v−))c([v−, v]) provided that the sum

converges absolutely. For f, g defined on T , set D(f, g) = DT (f, g) = 〈∇f,∇g〉.
The Dirichlet space is the space D of all functions f on T such that ∇f ∈ �21/c(E)

or, equivalently, D(f, f) =
∑

v �=e(f(v) − f(v−))2c([v−, v]) < ∞. Define the inner product
〈f, g〉D = D(f, g) + f(e)g(e), whose associated norm ‖ ‖D (known as the Dirichlet norm) makes
D a Hilbert space. (Of course, ∇∗ is not the adjoint of ∇ with respect to the inner product in
D.)

It is easily shown by direct calculation (see [24, Lemma 2.4]) that −∇∗∇ is exactly the
Laplace operator Δ. In particular, for any f ∈ D and g ∈ �2α(T ),

〈Δf, g〉 = −〈∇f,∇g〉 = −D(f, g). (4.2)

Notice that equation (4.2) also holds if either f or g has finite support and the other is arbitrary.
To see this, assume that K is a complete set and g is a function with support contained in the
interior of K. Then, let f̃ be the function which equals f |K on K and is zero outside. Then
〈Δf, g〉 = 〈Δf̃ , g〉 = −〈∇f̃ ,∇g〉 = −〈∇f,∇g〉.

Applying equation (4.2) to a function g times the characteristic function of intK and an
arbitrary function f , we obtain the following result.

Theorem 4.1 (Green’s theorem). Let K be a finite complete set of vertices. Let f, g be
functions on T . Then∑

v∈int K

Δf(v)g(v)αv + DK(f, g) =
∑

w∈∂K

∂f

∂n
(w)g(w̃)c([w̃, w]). (4.3)

In particular, letting K = Bn with n → ∞ and f = g harmonic on T , we get

‖f‖2
D = lim

n→∞

∑
|w|=n

∂f

∂n
(w)f(w̃)c([w,w−]) + f(e)2.

Proposition 4.1. If f ∈ �2α(T ), then ‖f‖D � 2‖f‖α + |f(e)| so f ∈ D.

Proof. 〈∇f,∇f〉 �
∑

γ |f(γ+)|2c(γ) +
∑

γ |f(γ−)|2c(γ) + 2
∑

γ |f(γ+)‖f(γ−)|c(γ), and each
of these sums is at most ‖f‖2

α.
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Theorem 4.2. If s is superharmonic outside a finite set, then

flux(s) =
∑
v∈T

Δs(v)αv = lim
n→∞

∑
|v|=n

∂s

∂n
c([v, v−]). (4.4)

Thus, s has a harmonic minorant outside a finite set if and only if the above sum is finite.

Proof. Let s be a function on T which is superharmonic outside a finite set. For each
n ∈ N, let sn = s +

∑
|v|�n(−Δs(v))Hv. Then, {sn} is an increasing sequence of superhar-

monic functions for n sufficiently large, and each sn is harmonic on Bn. By part (b) of
Theorem 2.5, flux(sn) � 0. By the monotonicity and the linearity of the flux, it follows that∑

|v|�n Δs(v)αv � flux(s). Since Δs(v) � 0 for all |v| sufficiently large, it follows that if s
is admissible, then

∑
v∈T Δs(v)αv converges and flux(s) �

∑
v∈T Δs(v)αv. Of course, if s is

not admissible, then this holds trivially, since flux(s) = −∞. Since the second equality in
equation (4.4) follows from Theorem 4.1, we will be done if we prove that∑

v∈T

Δs(v)αv � flux(s). (4.5)

For any function of finite support, the first and third terms of equation (4.4) are zero. By
Theorem 4.1 with g = 1, the second term is zero as well. Since by Theorem 2.4, s = sT + βH
outside a finite set, where sT is superharmonic on T and β is a constant, it follows that we can
replace s by sT + βH in equation (4.4). However, by Theorem 4.1 for the special case of g = 1
and K = Bn, the result holds for s = H, so without loss of generality we may assume that s is
superharmonic on T .

For each n � 2, let hn be as in Theorem 3.1. As shown there, hn(v) = s(v) for v = e or |v| = n,
hn(v) � s(v) for 0 < |v| < n and D(s)(v) is the pointwise limit of the decreasing sequence
{hn(v)}∞n=1. If s is admissible, then D(s) is the greatest harmonic minorant of s on T \ {e},
and if s is not admissible, then D(s) ≡ −∞ on at least one connected component of T \ {e}.
In either case, by Theorem 4.1, we have∑
|v|<n

Δs(v)αv =
∑
|v|=n

(s(v) − s(v−))αvp(v, v−) �
∑
|v|=n

(hn(v) − hn(v−))αvp(v, v−) = Δhn(e).

Letting n → ∞, the left side converges to
∑

v∈T Δs(v)αv. If s is not admissible, since
hn(e) = s(e), it follows that limn→∞ Δhn(e) = −∞, so inequality (4.5) holds. If s is admis-
sible, limn→∞ Δhn(e) = ΔD(s)(e). Since D(s) − ΔD(s)(e)H is harmonic on T , its flux is
zero, so flux(D(s)) = ΔD(s)(e). By Theorem 2.5(d), we have

∑
v∈T Δs(v)αv � ΔD(s)(e) =

flux(D(s)) = flux(s), proving inequality (4.5) in this case. This completes the proof.

A classical theorem on Riemann surfaces states that parabolic Riemann surfaces have
the property that there are no non-constant harmonic functions in the Dirichlet space
(cf. [21, p. 162]). On recurrent trees and, more generally, in the setting of infinite networks, a
stronger result holds: there are no non-constant superharmonic functions in the Dirichlet space
(cf. [22, Theorem 3.34]).

5. H-Green function and the Riesz decomposition theorem

We now study in more detail the properties of the H-Green function G of Definition 3.2.
Notice that it takes on positive and negative values. Indeed, G(e, v) = 0, G(v, v) = Hv(e) > 0
for v �= e, and since Hv is not upper bounded, for each vertex v there exists a vertex w such
that G(w, v) < 0.
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Let �1α(T ) be the Banach space determined by the norm ‖f‖1,α =
∑

v∈T |f(v)|αv. Given a
function f on T , let f+ and f− be the the positive and negative parts of f .

Theorem 5.1. Let f be a function on T .

(i) Then Gf is defined if and only if f ∈ �1α(T ).
(ii) If f ∈ �1α(T ), then Gf+ and Gf− are admissible superharmonic functions such that

ΔGf+ = −f+ and ΔGf− = −f−, and their fluxes are −‖f+‖1,α and −‖f−‖1,α. In particular,
ΔGf = −f and flux(Gf) = −∑

v∈T αvf(v). Furthermore, if f is non-negative, then Gf is
admissible.

Proof. Observe that Gf is defined if and only if Gf+ and Gf− are and Gf = Gf+ − Gf−.
Thus, without loss of generality, we may assume that f is non-negative.

(i) Since Gv(e) = 0, it follows that Gf(e) = 0 as well. For each v, w ∈ T with w �= e,
Hv(w) = αvH(w) − bv

k(w), where k = |v ∧ w|. Let v, w ∈ T such that n = |v| > |w|. By (2.3),
for 1 � k � |v ∧ w| we have

bv
k − bv

0 =
1
rv
n

k∑
m=1

n−1∏
j=m

pv
j

rv
j

=
αv

pv
0

⎡⎣1 +
k−1∑
m=1

m∏
j=1

rv
j

pv
j

⎤⎦ =
αv

pv
0

⎡⎣1 +
k−1∑
m=1

m∏
j=1

rw
j

pw
j

⎤⎦ ,

so
αv

pv
0

� bv
k − bv

0 � αv

p0
(1 + cw), (5.1)

where p0 = min{p(e, u) : |u| = 1} and cw =
∑|w|−1

m=1

∏m
j=1(r

w
j /pw

j ).
Suppose first that f /∈ �1α(T ). Then

∑
v∈S(w) αvf(v) = ∞ for some w with |w| = 1. Since

H(w) = 1, for each v ∈ S(w), pv
0 = pw

0 , v ∧ w = w, and Gv(w) = −αvH(w) + (bv
1 − bv

0) =
−αv + αv/pw

0 = αv(1/pw
0 − 1), so

∑
v∈S(w) G(w, v)f(v) = (1/pw

0 − 1)
∑

v∈S(w) αvf(v) = ∞,
hence Gf is not defined.

Suppose now that f ∈ �1α(T ) and fix w ∈ T , w �= e. Then∑
v∈T

Gv(w)f(v) = −H(w)
∑
v∈T

αvf(v) +
∑

|v|�|w|

(
bv
|v∧w| − bv

0

)
f(v) +

∑
|v|>|w|

(
bv
|v∧w| − bv

0

)
f(v).

The first sum on the right-hand side is finite by assumption, the second consists of finitely
many terms, and hence is finite; the third is finite since, by (5.1), it is a non-negative sum
dominated by (1/p0)(1 + cw)

∑
v∈T αvf(v). We have thus shown that Gf is finite on T if and

only if
∑

v∈T αvf(v) is finite.
(ii) Since each term in the sum defining Gf is superharmonic, it follows that Gf is

superharmonic on T and ΔGf(w) = −f(w). The value of flux(Gf) and the fact that Gf is
admissible comes from Theorem 4.2.

Theorem 5.2 (Global Riesz decomposition theorem). Every admissible superharmonic
function can be written uniquely as the sum of an H-potential and a harmonic function on T .
The H-potentials are precisely the functions of the form Gf , where f is a non-negative function
in �1α(T ). The flux of an admissible superharmonic function s is equal to −‖Δs‖1,α.

Proof. We begin by showing that if f ∈ �1α(T ) and f � 0, then Gf is an H-potential.
By Theorem 5.1, Gf is admissible. Let s0 = Gf − flux(Gf)H. Since bv

k − bv
0 � 0 for all k,

s0(w) =
∑

v∈T (bv
|v∧w| − bv

0)f(v) � 0. Thus, 0 is a harmonic minorant of s0. Since flux(s0) = 0,
D(s0) is the greatest harmonic minorant of s0 on T , by Theorem 3.1. So D(s0) � 0, and thus
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must be a constant. Since 0 = s0(e) = D(s0)(e), D(s0) must be identically 0. This proves that
Gf is an H-potential.

Let us now assume that s is an admissible superharmonic function on T . Then, the function
f = −Δs is non-negative and by Theorem 4.2,

∑
v∈T −Δs(v)αv is finite, so f ∈ �1α(T ) and Gf

is admissible. By the previous part, Gf is an H-potential. Also h = s − Gf is harmonic on
T . Thus, s = Gf + h, where f is given uniquely as −Δs. Hence, s can be written uniquely as
the sum of a harmonic function and a function of the form Gf with f non-negative in �1α(T ).
Moreover, flux(s) = flux(Gf) = −∑

v∈T f(v)αv = −‖f‖1,α.
Finally, if s is an H-potential, then it is an admissible superharmonic function, so it

can be written as Gf + h, where h is harmonic on T . Since D(s − flux(s)H) = D(Gf −
flux(Gf)H + h) = h and s is an H-potential, h must be 0, and so s = Gf . Thus, the H-
potentials are precisely the admissible superharmonic functions of the form Gf , with f
non-negative in �1α(T ).

Definition 5.1. Let g be an arbitrary function on T . We say that g has finite flux at
∞ (or simply, that g has finite flux) if

∑
v∈T αvΔg(v) converges absolutely, in which case we

define flux(g) =
∑

v∈T αvΔg(v) = ‖(Δg)+‖1,α − ‖(Δg)−‖1,α.

Theorem 5.3. A function has finite flux if and only if it can be written uniquely as the sum
of a global harmonic function and the difference of two H-potentials with disjoint harmonic
supports. Furthermore, the flux of a non-negative function with finite flux is non-negative.

Proof. Assume that g has finite flux. The functions f1(v) = (Δg)+ and f2 = (Δg)− = f1 −
Δg are in �1α(T ), have disjoint supports and are non-negative. By Theorem 5.2, Gf1 and Gf2

are H-potentials with disjoint harmonic supports. By Theorem 5.1, we have Δ(Gf1 − Gf2) =
−f1 + f2 = −Δg, so the function g + Gf1 − Gf2 is harmonic on T , proving the existence of
the stated decomposition. The converse follows from Theorem 5.2, and the linearity of finite
flux and the uniqueness follows by applying the Laplacian and using Theorem 5.1.

Now let g be a non-negative function with finite flux. By the first part, g = p1 − p2 + h,
where p1 and p2 are H-potentials and h is harmonic on T . Since p1 + h and p2 are admissible
superharmonic functions and p1 + h � p2, by the monotonicity of the flux, flux(p1 + h) �
flux(p2) so by linearity flux(g) = flux(p1 + h) − flux(p2) � 0.

6. Relation to the Markov chain literature

Various authors have studied the theory of recurrent Markov chains (see [11–17,19,23]).
In these works, the notion of potential and potential kernel appear and so it is appropriate to
ask why we have constructed yet another such notion. We shall look at some of these other
treatments to see their relation to our work.

In [12–15], the authors use the term potential on a recurrent Markov chain (P, T ) in various
ways. A function f on T is a column vector (with entries parametrized by the states) and a
measure μ on T is a row vector. The function identically 1 is denoted by 1. Given a positive
regular measure α on T (that is, a positive measure such that αP = P ), a function f is called
a (right) charge if g =

∑∞
n=0 Pnf is finite on T , and a measure μ is called a (left) charge if

ν =
∑∞

n=0 μPn is finite. The function g and the measure ν are called the potentials of the
respective charges and the quantities αf(=

∑
v f(v)αv) and μ1 are called the total charges of

f and μ, respectively. Observe that the total charge of f is −flux(g) as in Definition 5.1. Since
in the recurrent case

∑
Pn is identically ∞, there are no non-negative non-zero charges. In

fact, f and μ are charges if and only if αf = 0 and μ1 = 0, respectively.
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The authors define the potential kernels

C(u, v) =
∞∑

n=0

[Pn(v, v) − Pn(u, v)] , G(u, v) =
∞∑

n=0

[
Pn(u, u)

αv

αu
− Pn(u, v)

]
,

K(u, v) =
∞∑

n=0

[Pn(e, e)αv − Pn(u, v)]

and eN(u, v) which is the expected number of visits to v before hitting e beginning at u. The
latter is always finite and is zero if u or v is e. All the above series clearly converge in the
transient case since

∑∞
n=0 Pn(u, v) is finite for all u, v ∈ T . In the recurrent case, the chains

for which C and G exist (equivalently, for which K exists) are the normal chains.
All potentials are described by means of the kernel eN as g = eNf + g(e)1 and Δg = −f .

Since f is never non-negative, potentials are never superharmonic. In particular, potentials are
never H-potentials. The potentials g (or ν) whose charges f (or μ, respectively) have finite
support are of the form Gf (or μC).

The reverse chain (P̂ , T ) is defined by P̂ (u, v) = (αv/αu)P (v, u). A chain is called reversible
if P = P̂ . As observed in Section 4, trees are always reversible. Matrices defined with respect
to (P̂ , T ) are written with a circumflex (for example, Ĝ, Ĉ). The dual of a square matrix E,
a function f and a measure μ are defined by (dualE)u,v = (αv/αu)Ev,u, (dual f)u = αufu,
(dual μ)u = (1/αu)μu. The dual of a right charge is a left charge, dual C = Ĝ and dualG = Ĉ.
Thus, theorems about right charges yield corresponding theorems about left charges using
duality. In order to unify the theory, the authors introduce K which has the property that
dualK = K̂. The potential of a right charge f (or left charge μ) is Kf (or μK, respectively)
provided that the charges are finitely supported. In addition to charges, Kf is defined for any
function f of finite support (in particular, for f non-negative).

A pure potential is a function of the form −Kf for some non-negative function f of finite
support. Pure potentials are used to develop various potential principles, for example, balayage
and capacity. Pure potentials are superharmonic but their harmonic supports are always finite.
By contrast, the harmonic support of H-potentials may be infinite. In fact, by the global Riesz
decomposition theorem, given any subset of T , there exists an H-potential having that set as
harmonic support.

Of the above integral kernels, only the kernel eN is used in a Riesz-type representation
theorem (see [14; 15, Theorems 11–17]) to characterize the non-negative functions h (or
more generally, those with a global harmonic minorant) such that Δh ∈ �1α(T ). This compares
with Theorem 5.3 above in which we characterize all functions h such that Δh ∈ �1α(T ).
In particular, since there are no non-constant non-negative superharmonic functions, their
result does not cover any admissible superharmonic function (except a constant), whereas
Theorem 5.2 characterizes it uniquely as the sum of an H-potential and a global harmonic
function.

In the case when T is a group and P is group invariant, that is, p(gu, gv) = p(u, v) for all
g ∈ T , the kernel C is the potential kernel A studied in [16,17,23].

In a different direction, Orey [19] develops a theory of potential kernels, as opposed to a
theory of potentials based on a specific kernel as in the Kemeny–Snell work and the present
paper. He develops the concepts of balayage and capacity for such kernels. Again, as in [12–15],
potentials must have finite harmonic support.

In the simple case of the integers viewed as a homogeneous tree of degree 2 with p(v, w) = 1/2
if and only if w = v ± 1, the three kernels C, G and K are all the same. They correspond to the
kernel (u, v) �→ Hv(u) (which turns out to be |u − v|). The pure potentials and the H-potentials
of finite harmonic support differ by a constant. We suspect that these functions agree in this
case only because Ge is constant on siblings and its value at each vertex v depends only on the
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values of p on the ball of radius |v|, while the function v �→ C(e, v) depends on the probability
distribution on the whole tree.

In conclusion, the H-potentials introduced in this paper are different from previous
definitions of potentials and serve completely different purposes.
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