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Abstract. Let T be a tree with nearest-neighbor transition probabilities giving rise to a transient potential

theory. Let G denote the associated Green function and ∆ the Laplace operator. For f : T → R satisfying

a suitable growth condition, Gf(u) =
∑

v∈T G(u, v)f(v) is defined and ∆(Gf) = −f . In this work, we

construct a substitute function Q : T × T → R for G such that the mapping Qf : u 7→
∑

v∈T Q(u, v)f(v) is

defined for all functions f on T and which satisfies ∆(Qf) = −f . We then give an explicit formula for Q in
the case when T is homogeneous and the transition probability on it is isotropic.

1. Introduction

In recent years, much research in classical functional analysis and potential theory has been conducted
on discrete structures. One such environment popularized by the seminal work of Pierre Cartier in [2] is the
tree setting. Some references of recent research of classical problems on trees include [1], [3], [4], [5], [6], [7],
[8], and [9].

In this paper, where we focus our attention on the tree setting, motivated by the interest in inverting
the Laplace operator ∆, defined as the averaging operator minus the identity I, we investigate how to
obtain a right inverse acting on functions on a tree endowed with a Green function G that are unrestricted.
Specifically, it is well known that if f is any function such that Gf is well defined, then ∆(Gf) = −f .
However, there are plenty of examples of functions f on the tree for which Gf is undefined. The objective
of this work is to determine a substitute operator Q, acting on the set of all functions on the tree, such that
∆Q = −I.

After giving in Section 2 the needed definitions, notation and background on trees, in Section 3 we provide
the construction of such an operator Q.

In Section 4, we give an explicit formula for the operator Q in the case when the tree is homogeneous and
the nearest-neighbor transition probability on it is isotropic.

2. Preliminaries

A tree is a connected graph with no loops, which, as a set, we identify with the collection of its vertices.
Two vertices v and w of a tree are called neighbors if there is an edge connecting them, in which case we
use the notation v ∼ w. A vertex v is called terminal if it has only one neighbor. A path is a finite or
infinite sequence of vertices [v0, v1, . . . ] such that vk ∼ vk+1 for all k. A geodesic path [v0, v1, . . . ] is a path
such that vk−1 6= vk+1 for all k. If u and v are any vertices, we denote by [u, v] the unique geodesic path
joining them.

Fixing a vertex e as the root of the tree, the predecessor u− of a vertex u, with u 6= e, is the next to the
last vertex of the path from e to u. An ancestor of u is any vertex in the path from e to u−. By convention,
we set e− = e. We call children of a vertex v the vertices u such that u− = v.

A tree T may be endowed with a metric d as follows. If u, v are vertices, d(u, v) is the number of edges
in the unique path from u to v. Fixing a root e, the length of a vertex v is defined as |v| = d(e, v). We
also adopt the notation |u − v| for the distance between vertices u and v. There is a partial ordering ≤ on
T defined as follows: given two vertices u and v, define u ≤ v, if u ∈ [e, v]. Given a vertex v, we define the
sector determined by v to be the set S(v) of vertices u such that v ≤ u.

The boundary Ω of T is the set of equivalence classes of infinite geodesic paths under the relation '
defined by the shift, [v0, v1, . . . ] ' [v1, v2, . . . ], together with the set of terminal vertices. For any vertex u,
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we denote by [u, ω) the (unique) path starting at u in the class ω. Then Ω can be identified with the set
of paths starting at u. If ω ∈ Ω and v ∈ T , define v ≤ ω, if v ∈ [e, ω), that is, there exists a geodesic path
γ = [ω0, ω1, . . . ] such that ω is the equivalence class of γ and v = ωk for some nonnegative integer k.

Observe that, Ω is a compact space under the topology generated by the sets

Iuv = {ω ∈ Ω : v ∈ [u, ω)},

which we call intervals. Clearly, Ω = Iuu for any u ∈ T .
Set Iv = Iev , for each v ∈ T . If [v0, v1, . . . ] is an infinite path starting at e, then

Ivj − Ivj+1 =
∐
u∈Aj

Iu,

where Aj is the set consisting of the children of vj unequal to vj+1. Thus, for each v ∈ T with |v| = n, we
have

Ω =

n−1⋃
j=0

(
Ivj − Ivj+1

)
∪ Iv,

a finite disjoint union of intervals.

A distribution is a finitely additive complex measure on finite unions of the sets Iuv . Let us denote by
D the space of finite-valued distributions on Ω.

Each ω ∈ Ω induces an orientation on the edges of T : [u, v] is positively oriented if v ∈ [u, ω). For
ω ∈ Ω, and u, v ∈ T , define the horocycle index kω(u, v) as the number of positively oriented edges minus
the number of negatively oriented edges in the path from u to v. If T is rooted at e, we use the notation
kω(v) for kω(e, v).

Let T be a tree and let p be a nearest-neighbor transition probability on its vertices. As is customary, a
function on a tree T will mean a function on its set of vertices. The Laplacian of a function f : T → C is
defined as

∆f(v) =
∑
u∼v

p(v, u)f(u)− f(v) for all v ∈ T.

A function f on T is said to be harmonic if its Laplacian is identically zero, that is, the value at any vertex
is the average of the values at its neighbors.

Let T be a tree endowed with a nearest-neighbor transition probability p. If γ = [v0, . . . , vn] is a finite
path, define

p(γ) =


n−1∏
k=1

p(vk, vk+1) if n > 0,

1 if n = 0.

Given vertices u and v, let Γu,v be the set of all finite paths from u to v and let Γ′u,v be the set of all paths
[v0, . . . , vn] such that n > 0 and vj 6= vn for each j = 1, . . . , n − 1. The functions G and F are defined on
T × T as follows:

G(u, v) =
∑

γ∈Γu,v

p(γ) and F (u, v) =
∑

γ∈Γ′
u,v

p(γ).

G is called the Green function of T . Probabilistically, G(u, v) represents the expected number of times a
random walk starting at u visits v, while F (u, v) is the probability that a random walk starting at u ever
visits v in a finite positive time. If G(u, v) <∞ for some u, v ∈ T , then G(w,w′) <∞ for any pair of vertices
w,w′. We shall assume that the random walk on T associated to the nearest-neighbor transition probability
is transient. This means that the Green function is finite-valued.

In [2] it is shown that G and F have the following properties:

Lemma 2.1. For u, v ∈ T ,

G(u, v) =

{
F (u, v)G(v, v) if u 6= v,

1
1−F (u,v) if u = v.
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In addition, if w is strictly between u and v (that is, if w is in the interior of the geodesic path from u to v),
then

F (u, v) = F (u,w)F (w, v).

Let T be a tree with root e. The Poisson kernel with respect to a boundary point ω is defined by

Pω(v) =
G(v, v ∧ ω)

G(e, v ∧ ω)
,

where v ∧ ω is the unique vertex of largest length which is less than or equal to both v and ω.
The Poisson kernel satisfies the following properties analogous to those that hold in the classical case [9]:

(i) For any fixed ω ∈ Ω, Pω is a harmonic function on T .

(ii) If µ ∈ D, then the the Poisson integral

Pµ(v) :=

∫
Ω

Pω(v) dµ(ω)

is well-defined and harmonic on T . Conversely, for every harmonic function f on T there is a unique µ ∈ D
such that f = Pµ. We call µ the representing distribution for f . It can be shown that if f is nonnegative,
then its representing distribution is a nonnegative distribution and so extends to a Borel measure on Ω,
which we call the representing measure of f .

We denote by ν the representing measure of the constant harmonic function 1.
The Green operator G is defined on functions f : T → C by

Gf(u) :=
∑
v∈T

G(u, v)f(v),

provided this sum is well defined. This is the case if and only if G|f | is defined, and this holds if and only if
|f | satisfies the growth condition

∑
v∈T G(e, v)|f(v)| <∞. For such functions f , one has that ∆(Gf) = −f .

3. Construction of the inverse of the Laplace operator

Let T be a tree with root e endowed with a transient nearest-neighbor transition probability. We are
going to construct a family of right inverses, {Qω : ω ∈ Ω}, to the Laplace operator ∆ defined for arbitrary
functions on T , parametrized by the boundary points of T . We will then use this one-parameter family to
obtain a right inverse of ∆ that does not depend on the choice of boundary point.

Fix ω ∈ Ω. For v ∈ T , let µωv be the measure on Ω defined by

µωv =

{
δω if ω ∈ Iv,
Mv if ω /∈ Iv,

(1)

having denoted by δω the Dirac delta distribution at ω and Mv the hitting distribution for random walks
starting at v and moving forward. Note that the support of µωv is Iv in case ω 6∈ Iv.

For u, v ∈ T , let

Hω(u, v) =

{
G(e, v)Pµωv (u) if v 6= e,

0 if v = e.

We define the kernel function Qω by

Qω(u, v) = G(u, v)−Hω(u, v), (u, v ∈ T ).

Now, for a function f on T and u ∈ T , define

Qωf(u) =
∑
v∈T

Qω(u, v)f(v) =
∑

v∈[e,u]

Qω(u, v)f(v).

In this definition, the second equality is an immediate consequence of Lemma 3.1 below. Thus the sum
defining Qωf can be viewed as extending over only finitely many nonzero terms, and so is defined on T for
any function f .

Lemma 3.1. Given v 6= e, let µ be a probability measure with support in Iv. Then for any vertex u such
that v /∈ [e, u], G(u, v) = G(e, v)Pµ(u).
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Proof. If vertices u and v satisfy v 6∈ [e, u], then for any λ ∈ Iv we have u ∧ λ = u ∧ v, so

Pµ(u) =

∫
Iv

Pλ(u) dµ(λ) =

∫
Iv

G(u, u ∧ v)

G(e, u ∧ v)
dµ(λ) =

G(u, u ∧ v)

G(e, u ∧ v)
=
G(u, v)

G(e, v)
,

where the last equality follows from Lemma 2.1. �

Theorem 3.1. For each ω ∈ Ω and each function f on T , ∆Qωf = −f .

Proof. Let f be a function on T , fix u ∈ T and let N be a positive integer larger than |u|. Let fN be the
function on T defined by

fN (v) =

{
f(v) if |v| ≤ N,
0 if |v| > N.

It follows that

Qωf(u) =
∑

0≤|v|≤N

[G(u, v)f(v)−Hω(u, v)f(v)] = GfN (u)−
∑

0≤|v|≤N

Hω(u, v)f(v).

But each function u 7→ Hω(u, v) is harmonic and ∆GfN = −fN . So

∆Qωf(u) = −fN (u) = −f(u).

Hence ∆Qωf = −f . �

Definition 3.1. We define the kernel Q on T × T , by

Q(u, v) =

∫
Ω

Qω(u, v) dν(ω),

where we recall that ν denotes the representing measure of the harmonic function which is identically 1. For
any function f on T , define

Qf(u) =
∑
v∈T

Q(u, v)f(v) =
∑

v∈[e,u]

Q(u, v)f(v) =

∫
Ω

Qωf(u) dν(ω).(2)

The second equality follows since Qω(u, v) = 0 independently of ω if v 6∈ [e, u].

From Theorem 3.1, we deduce the following result.

Corollary 3.1. For each function f on T , ∆Qf = −f .

Proof. Let f be a function on T and fix u ∈ T . From (2) and the linearity of integration, we get

∆Qf(u) = ∆

(∫
Ω

Qωf(u) dν(ω)

)
=

∫
Ω

∆Qωf(u) dν(ω) = −f(u)‖ν‖ = −f(u),

as desired. �

4. Explicit formulas in the homogeneous case

By a homogeneous tree of degree q + 1 (with q ≥ 1) we mean a tree T all of whose vertices have
exactly q+ 1 neighbors. Let T be homogeneous of degree q+ 1 whose associated nearest-neighbor transition
probability is isotropic, i.e. p(v, u) = 1

q+1 if v and u are neighbors. Choose a vertex e as the root. Then [2]

the Poisson kernel with respect to ω ∈ Ω is given by

Pω(v) = qkω(v) = q2|v∧ω|−|v|.(3)

For q ≥ 2, the Green function is given by

G(u, v) =
q

q − 1
q−|u−v|, for u, v ∈ T.(4)

When q = 1, the tree does not have a Green function. Thus, from now on we shall assume q ≥ 2.
The representing measure ν of the constant harmonic function 1 satisfies

ν(S(v)) =
1

(q + 1)q|v|−1
,

for each v 6= e.
We shall make use of the following result from [5] in the calculation below of Pµωv .
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Lemma 4.1. [Lemma 4.1 of [5]] Let v ∈ T with v 6= o. Let g : {v−} ∪ S(v) → R be a radial function
(meaning that its value at each w ∈ S(v) depends only on d(w, v)) which in addition is harmonic on S(v).
Let A = g(v−), B = g(v). Then for any u ∈ {v−} ∪ S(v) and j = d(u, v),

g(u) =
Bq −A
q − 1

+
A−B
q − 1

q−j .(5)

Conversely, for any real numbers A and B, the formula in (5) defines a function on {v−} ∪ S(v) which is
radial and harmonic at each vertex of S(v).

We now state and prove our main result.

Theorem 4.1. For each ω ∈ Ω, and u, v ∈ T ,

Qω(u, v) =


0 if v 6= e, u 6∈ S(v),
q
q−1q

−|u−v| if v = e,

− q
q−1q

−|u−v|
(
q2(|u∧ω|−|v|) − 1

)
if v 6= e, u ∈ S(v), ω ∈ Iv,

−
(
q+1
q−1

)(
1− q−|u−v|

)
if v 6= e, u ∈ S(v), ω 6∈ Iv,

(6)

Q(u, v) =


q
q−1q

−|u| if v = e,

−
(
q+1
q−1

) (
1− q−|u−v|

)
if v 6= e and u ∈ S(v),

0 otherwise.

(7)

Proof. Fix ω ∈ Ω and let u, v ∈ T . Recall that

Qω(u, v) =

{
G(u, v) if v = e,

G(u, v)−G(e, v)Pµωv (u) if v 6= e,

where µωv is defined in (1). We first prove that for v 6= e and u ∈ S(v),

Pµωv (u) =

{
q2|u∧ω|−|u| if ω ∈ Iv,
q|v|−1(q + 1− q−|u−v|) if ω /∈ Iv.

(8)

For ω ∈ Iv, µωv = δω, so by (3), we have

Pµωv (u) =

∫
Ω

Pλ(u) dδω(λ) = Pω(u) = q2|u∧ω|−|u|.

In the case where ω /∈ Iv, µωv = Mv, so for each vertex u′ ∈ (T\S(v)) ∪ {v},

Pµωv (u′) =

∫
Ω

Pλ(u′) dMv(λ) =

∫
Iv

q2|u′∧λ|−|u′| dMv(λ) = q|u
′|‖Mv‖ = q|u

′|.

In particular, Pµωv (v) = q|v| and Pµωv (v−) = q|v|−1. Since Pµωv is harmonic and radial on S(v), from
Lemma 4.1 with A = q|v|−1 and B = q|v|, it follows that

Pµωv (u) =
q|v|+1 − q|v|−1

q − 1
− q|v| − q|v|−1

q − 1
q−|u−v| = q|v|−1(q + 1− q−|u−v|),

completing the proof of (8).
We now turn to the proof of the formulas for Qω(u, v). The first formula in display (6) is a consequence of

Lemma 3.1, and the second formula follows from (4). For the third formula, note that since |u−v| = |u|−|v|,

Qω(u, v) = G(u, v)−G(e, v)q2|u∧ω|−|u|

=
q

q − 1

(
q−|u−v| − q−|v|q2|u∧ω|−|u|

)
=

q

q − 1

(
q−|u−v| − q−2|v|−|u−v|+2|u∧ω|

)
=

q

q − 1
q−|u−v|

(
1− q−2|v|+2|u∧ω|

)
.
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For the fourth formula, by (4), we have

Qω(u, v) = G(u, v)−G(e, v)Pµωv (u)

=
q

q − 1

(
q−|u−v| − q−|v|q|v|

(q + 1

q
− q−|u−v|

q

))
=

q

q − 1

((
1 +

1

q

)
q−|u−v| −

(q + 1

q

))
= −

(q + 1

q − 1

)(
1− q−|u−v|

)
.

Finally, we give the proof of the formulas for Q(u, v). The only nontrivial case to check is the one with
v 6= e and u ∈ S(v). Let {uk : |v| ≤ k ≤ |u|} denote the vertices of [v, u]. Then noting that

ν (Iuk
) =

1

(q + 1)qk−1
and ν

(
Iuk
− Iuk+1

)
=

(
q − 1

q + 1

)
q−k,

and using (6), we obtain

Q(u, v) =

∫
Ω

Qω(u, v) dν(ω)

= −
(

q

q − 1

)
q−|u|+|v|

|u|−1∑
k=|v|

(
q2k−2|v| − 1

)(q − 1

q + 1

)
q−k + q2(|u|−|v|) 1

(q + 1)q|u|−1


−
(
q + 1

q − 1

)(
1− q−|u|+|v|

)(
1− 1

(q + 1)q|v|−1

)
= −

(
q + 1

q − 1

)(
1− q−|u−v|

)
,

where the last equality was obtained using Mathematica [10]. One can confirm independently that Q as
given in (7) has the property that ∆Qf = −f for any function f on T . �
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