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A GENERALIZED LITTLEWOOD THEOREM FOR
WEINSTEIN POTENTIALS ON A HALFSPACE

KOHUR GOWRISANKARAN AND DAVID SINGMAN

1. Introduction and statement of results

Let 1R_ {x (Xl xn) C= ]n. Xn > 0} denote the upper halfspace in ]1n,
n > 2. We view the boundary of IR_ as IRn-1 Let k 6 JR. The Weinstein equation
with parameter k is Lk (f) 0 where

02f k 0f(f) j=l "X Xn OXn

The C2 functions which satisfy the Weinstein equation form a Brelot harmonic space
[He]. We shall refer to these solutions as Lk-harmonic functions. The L0-harmonic
functions are just the classical harmonic functions. An integral representation for all
positive Lk-harmonic functions in terms of measures on IRn- tO {oo} (when we simply
use the term measure, we mean a nonnegative, regular, Borel measure) was given in
[BCB ]. There, the uniqueness of such an integral was demonstrated using Choquet’s
theorem. The same authors have also proved that every positive Lk-harmonic function
has finite non-tangential limit at (Lebesgue) almost every point in IRn-l [BCB2].

In our paper we consider the boundary behavior of Lk-potentials. We recall that
Lk-superharmonic functions, following the axiomatic study in [He], are precisely
those lower semicontinuous, (-x, o] valued functions v that satisfy Lk(v) < 0 in
the sense of distributions. The Lk-potentials (the Weinstein potentials of the title)
are those positive Lk-superharmonic functions that majorise no positive Lk-harmonic
function. For every y e

_
we associate the function

I-k f sin-kt
Gk(x, y) an,kxn Yn [Ix y[2 + 2XnYn(l COSt)](n-k)

dt fork _< l, (1)

and

f sink-
Gk(x, y) an,2-kykn Jo [IX yl2 + 2Xnyn(1 cost)] (n+k-2)/2

where

F (k)
for k < 1.an,k 2yrn/21_ (2..___k)

dt fork > 1, (2)
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We note that this function is Lk-harmonic outside y [BCB ], and it tends to o at y.
This choice is such that (x, y) > Gk(x, y) is continuous outside the diagonal and
further we shall show in 3 that it has the normalization property that Li(Gi(., y)) is
exactly -y in the sense of distribution. We call Gi the Li-Green’s function. Now the
results of R.-M. Herv6 [He] give us a unique integral representation with a measure
corresponding to each Lk-potential

p(x) f Gi(x, y) dlzp(y)

for every x I_. We denote this potential by GklZp. We also prove in 3 that for
any measure # on _, Gi/x is an Lk-potential if and only if

Yn dlz(y) <
(1 + lYl)-in case k < and a similar condition for k > (see Proposition 2).

We shall now describe the construction of a non-isotropic Hausdorff measure
on the boundary where a and r are two positive parameters with r > 1. We define
the pseudo-distance d on lln-l x IRn-l as follows:

n--I

d (x, y) IXl Yl 12r d- j=2(xj, yj)2.

We denote by Br (x, r) the open dr-ball of radius r with center at x. The (a, r)-
Hausdorf measure Hr of a subset E C ]R"-l is then defined as

Hr (E) sup inf r" Yj, rj < , and 3xj such that E C B (xj, rj)
>0 j=l j

Of course when r 1, H is the usual a-dimensional Hausdorff measure. We also
note that when a n 2 + , the corresponding H is a multiple of the Lebesgue
measure.
We prove in 2 the following key result concerning compact sets of positive Hr-

measure. This result is in the spirit of a well known theorem ofFrostman ([HK], page
223).

THEOREM 1. Let r > and 0 < a < n 2 + -i" Let E be a compact subset

of lRn-. Then H(E) > 0 if and only if there exists a non-trivial measure cr with
support in E such thatfor every x IRn- and every r > O, tr(B (x, r)) < r’.

Now, we note that the curve 1-’ consisting of the points (t, 0 r) for all > 0
lies in the (x, x)-plane and meets the boundary with tangency r. Let Fx be the
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translate (x, 0) + 1-’ of this curve for x /ln-l; i.e.,

rxr {(t -- Xl, X2 Xn_l, tr): >_ O}

where x (xl Xn-l).

Definition 1. The limit of a function f(y), f: /1_ [-o, cx], when y x
along the curve 1-’ is called a Fr limit and it is denoted by limyrx f(y). We define
Fr lim sup and ’r lim inf of f in an analogous way.

We now state our first result concerning the behavior of Lk-potentials.

THEOREM 2. Let 0 < 09 < 1. Let r be such that < r < I. Let lz be a measure
on In+ for which Gklz is an Li-potential. Let lz satisfy the growth condition that

in case k < and

dlz(y) < o (3)

Ykn-1+ d#(y) < (4)

in case k > 1,for all Borel sets F C

_
such that F is bounded in . Thenfor all

x IRn- exceptfor x in a set E such that H,_2+o(K) Ofor every compact subset
k-l Glz 0 ifk > 1.K of E, we have limr G/z 0 ifk < and limr x,,

We remark that the growth condition on/z is significant only for bounded Borel sets
F of/Rn such that the closure of F meets the boundary n-1.

The formulae given in [BCB 1] for the integral representation for positive Lk-
harmonic functions in terms of measures on -l t_J {o} show that the Lebesgue
measure on/1- corresponds to a constant function for k < 1, and a multiple of
1/xk- for k > 1. In case k 1, the Lebesgue measure does not give rise to an

k-IL-harmonic function. In the theorem, the presence of the factor xn as well as the
absence of the case k is explained if we think of the theorem as describing the
boundary behavior of the quotient of an L-potential and an L-harmonic function
generated by Lebesgue measure on/Rn-l

We observe that Theorem 2 is a generalisation of Littlewood’s theorem. For
instance, if to and r we get the F limits which are really limits along lines.
Further, the same method of proof in the case of r 1, 09 gives us the direct
generalisation of Littlewood’s theorem, namely the potentials have perpendicular
limit zero at Lebesgue almost every boundary point. Of course if k 0, this is
precisely Littlewood’s theorem.

In the last section, we show that the exceptional sets of non-isotropic Hausdorff
measure zero are the best possible as far as Theorem 2 is concerned. We shall prove
the following. For brevity, we just state it for k < 1.
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THEOREM 3. Let O < o9 <_ and <_ r <_ 1/o9. Suppose E is any subset of]Rn-1
such that YH,_E+o(E) 0. Let k < 1. Then there exists an Lk-potential p Gkt.t
where lz satisfies the growth condition (3) corresponding to o9 such thatfor all x E E,
lim suPr Gkt 0.

In the following sections, we shall use the letter c to represent a quantity that may
vary from line to line but does not depend in an important way on the parameters of
interest.

2. Non-isotropic Hausdorff measure and a Frostman theorem

We now refer to the H2 measure defined earlier. We start with a definition.

Definition 2. Let r > 0, r > and x E/R’-. Let

RY (x, r) (y Yn-) ]n-

r r I/Y }Ixj yj < -, j =2 n-l, Ix yl <

We call the set RY (x, r) the non-isotropic rectangle (or in short the r-rectangle)
centered at x and of ’length r’. We denote this length by l(RY (x, r)).

We observe that such a non-isotropic rectangle is the product of (n 2) intervals of
length r in the x2 x_ variables and an interval of length r /Y in the Xl-variable.
We now state a lemma, the proof of which is easy.

LEMMA 1. For all x ]n- andfor all r > O,

BY(x,r) C RY(x,2Yr) C BY (x, rv/1 + (n- 2)4Y-1)
The following result is proved easily using the last lemma and an elementary

argument.

LEMMA 2. Let E C In-l. Then Hr (E) > 0 if and only if there exists > 0
Rsuch that for all xj ,n- and all rj > 0 with E C j= (xj, rj), we have

ProofofTheorem 1. Suppose for a compact set E, H (E) 0. If there is a
non-trivial measure tr on E with the property that a (B (x, r)) < r for all x and r,
we use the countable subadditivity of tr to arrive at a contradiction as follows. Choose
{B (xi, ri)} to cover E such that rj < tr(E)/2. Then

a(E) _< r(BY (xj, rj)) _< y r; < r(E)/2.
j=l
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For the converse, suppose E is a compact set with Hr (E) > 0. Since H is
countably subadditive, we may assume without loss of generality that E is contained
in a Euclidean rectangle of diameter less than 1/2. First, suppose that r p/q is a
rational number, where p and q are relatively prime. We take a left closed, right open
r-rectangle Q0 of length 10, that is

Q0 xn-l". -02 <xl-yl < j=2, n-1 --2

1o}<_ x y < -for some y e n-1, such that E is enclosed in the interior of Q0. Corresponding
to each positive integer m, we shall construct a measure O"m which lives on Q0. We
shall obtain the required measure cr as a constant multiple of a weakly convergent
subsequence of am. To construct these measures, let us fix a positive integer m.

For each j 0, m we define a collection O(m) of left closed, right open r-

rectangles contained in Q0. Q(0m) consists of one r-rectangle Q0. Suppose Q(0m)
-1 are already defined. We obtain the collection O!m)..j by partitioning each Q
m)
-1 as follows. We take the r-rectangle Q (which is a product of intervals) and

partition it into 2p(n-2)+q sub-r-rectangles. This is done by dividing each of the
x2, ..., xn-1 intervals corresponding to Q into 2p subintervals of equal length and
the xl-interval of Q into 2q subintervals of equal length and taking their products. It
is easy to check that partitioning in this way produces r-rectangles.
Now let us consider the collection Qmm). Let Q be a r-rectangle in Qmm such

that E q Q 1. We take a multiple of Lebesgue measure on Q so that the total
measure of Q is (I(Q))’. The measure vl is defined as the sum of these measures
restricted to all those r-rectangles Q which intersect E. Assume that the measures
Vl vj-1 are constructed for j < m + 1. We now construct the measure vj. The
measure vj is defined by prescribing it for each Q e Qm+l. Let Q Qmj+l" If
Vj-l (Q) < (I(Q)), we set vj vj-1 on Q. If, however, vj-l (Q) > (I(Q)), we set

(/())avj vj-,(t2 vj-1 on Q, so that in this case, uj(Q) (I(Q))‘. Let O"m Pm+I.
We observe that for each Q o!m...... on(Q) <_ (l(Q)) for all j 0, m,

and in particular, Ilamll < (l(Qo))’. Further, for each x E, there is at least one
r-rectangle in a O!m for some j, such that trm(Q) (l(Q))’ It is clear that two

m o(m)r-rectangles Q Q’ in L.Jj= j are either disjoint or one of them is contained in
the other. Hence, containing any point x E, there is a "biggest" r-rectangle Qx
(belonging to O!m) evidently with the smallest j value) such that O"m (Qx (l (Qx))
Further, a similar argument shows that the r-rectangles in the collection {Qx are
pairwise disjoint. It now follows from Lemma 2 that there is a constant d > 0
depending on r such that Iltrmll > trm(Qx) .(l(Qx))’ > 3, where we sum
over a set of disjoint Qx which cover E.
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To complete the proof for the case of rational r we note that one can choose a
subsequence of O"m which converges weakly to a measure cr on Q0. The rest of the
proof, namely to show that cr has support in E and that it satisfies the inequality
tr(B (x, r)) < r for every x and every r, follows on the same lines as in the
(classical) case when r and as given in [HK], p. 223. We note that tr also
satisfies

< or(E) < (l(Qo))a. (5)

Before we proceed to prove the theorem for irrational r, let us make the following
observations. Suppose < rl < r2. Thend’(x, y) > d2(x, y)iflxl-Yll < 1, and
in particular, ifd’ (x, y)ordr2(x, y) < 1. Hence, ifr < 1,thenBr’(x,r) C Br2(x,r)
and R’ (x, r) C R (x, r). It follows that if we choose a d > 0 for r2 as in Lemma
2, the same constant will serve the purpose of Lemma 2 for r.
Now let r > be any irrational number. Let Hd (E) > 0. Let r < r2... < r be

an increasing sequence of rational numbers with limit r. We choose a > 0 as per the
Lemma 2 for r. Let .j, for each j, be the choice of the measure on E corresponding
to rj given by the earlier part of the proof (where it was referred to as or). This is
possible since Hd (E) > 0 implies that H (E) > 0 for all j.

By (5), we conclude that the measures ,kj on E verify

< .j(E) < (l(ao))a, (6)

hence some subsequence of/,j will converge weakly to a measure a on E. By
relabelling, if necessary, we assume that j O" weakly. It is clear from (6) that a
is non-trivial.

Letr < andfixapositiveinteger,/. Then we have .j (Bl (x, r)) < ;kj (BrJ (x, r)) <
r for all j > 1. It follows that

a(Brl(x,r)) < liminf)j(Br(x,r)) < r
j-- cx

since B’ (x, r) is an open set in the Euclidean topology. In view of the continuity
of the functions involved, we get Br (x, r) J= Brk (x, r), which is an increasing
union. Hence

cr(Br (x, r)) lim tr(B rk (x, r)) < ra.
k--+o

Finally, if r > and Br (x, r) is a r-ball, then

cr(Br(x, r)) < Ilcrll < (l(Qo)) < <_ r.
3. Green’s function and potentials

In this section, we prove that the Green’s function for Lk (as defined below) is
given by (1) and (2). We also give the estimates we shall use for Gk, and prove
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the precise growth condition on a measure/z which guarantees that Gkl.t defines an
Lk-potential.

The Green’s function for Lk is defined to be the function G:
such that (i) G is continuous outside the diagonal, (ii) for each y IRn+, x + G(x, y)
is an L-potential with support at {y} (meaning it is Lk-harmonic outside of {y}), and
(iii) for each y e ]R_, Lk(G(., y)) -By in the sense of distribution. It is shown in
[He] that Lk-potentials of point support are proportional, so the Green’s function is
unique.

The Correspondence Principle [W] states that u is Lg-harmonic if and only if
k-lxn u is L2_k-harmonic. It allows us to deduce results for the L potential theory

for k >_ 1 from analogous results for k _< and vice versa. The Correspondence
Principle follows from the fact, easily established using the chain rule, that for any
C2 function, f,

k-lLl(f).L2-I (Xn f) Xn (7)

As a consequence, the adjoint operator, L satisfies

k-Z_k(Xn-kf).Lk(f) xn (8)

From (7), (8), and (iii) of the definition of the Green’s function, we deduce that

Gk(X, y) G2-k(X, y). (9)

PROPOSITION 1.
(2).

The Green’s function Gk(x, y) is given by equations (1), and

Remark. Notice that the integral defining Go is. an elementary one, and when
integrated, gives (n-E)’conl (Ix y in-2 Ix [n-2), where (.On 27rn/2/ F(n/2) is the
surface measure of the unit sphere in lin andy (Yl, Y,-, -Y,) is the reflection
of y (y y,) in the "--plane. This is the familiar Green’s function for the
Laplace equation on _, and so our results generalize classical results for potentials
with respect to the Laplacian on a halfspace.

ProofofProposition 1. Fix y (y’, y,) 6 /R_ once and for all. By (9), it
suffices to prove the proposition for k > 1. It was shown in [BCB2] that for each
fixed y Iin+, x -- Gk(x, y) majorizes no positive Lk-harmonic function. Clearly
Gk is jointly continuous outside the diagonal and tends to oo at the diagonal. It thus
remains to show that for any CO function q with compact support in I_,

-p(y) G(x, y)Lkqb(x)dx.
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For 6 > 0, let

sink-
v.(x,t) =an,2_kYkn

[Ix y[2 + 62 + 2XnYn(1 -cost)] (n+k-2)/2"

By (17) and (18) below, Gk (’, y) is locally Lebesgue integrable on

_
for each fixed

y. Together with the fact that v is smooth, this implies

f f f0Gk(x, y)Lkqb(x)dx lim v(x, t)Lkqb(x) dt dx
---0

lira Lk(V(x, t))(x) dt dx.
--0

A tedious computation shows

Lk(V) (--n k 4- 2)an,2-kY sink-1

(-kynx21 cos t)

t](n+k)/2[Ix’ y’l 2 + x2. + y2 + 62 2xnyn cos

(62 4- yn2 sin2 t)

t] (n+k+2)/2 ].+ (n + k)
[Ix’ y’l2 4- X2n 4- y2n + 62 2XnYn cos

Integration by parts gives

-kynx sink- cos
dt

[Ix’- y,12 4- Xn2 4- yn2 4- 62 2XnYn COS t] (n+k)/2
rr --yn2 sink+l

t] (n+k+2)/2
(n + k)

[Ix’ y,12 4- X2n 4- y2n + 62 2XnYn COS

and so if we integrate (10) from 0 to zr with respect to t, we are left with
r

t) dt (-n k 4- 2)(n 4- k)an,2_kYnLk(V.)(X,

zr 62 sink-
X dt

[IX’-- y,[2 4- X2n 4- y2n + 62 2XnYn COS t] (n+k+2)/2

(--n k 4- 2)(n 4- k)an,2_kykn
62 sink-

(10)

at, (ll)

X

12 2
dt.

[Ix y + 6 4- 2XnYn(1 COSt)] (n+k+2)/2

Thus, we must show

(y) (--n k 4- 2) (n 4- k) an,2-k Yn

f f0x lim
62 sink-It 4(X) dt dx

(l
0 [IX y[2 4- 62 4- 2XnYn(1 --COSt)](n+k+2)/2"
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We remark that in what follows, our use of the notation "lim,__,0" is justified by
the fact that the limit in (14) below exists.

Fix a small, but unspecified positive number, 3. Because ofthe 152 in the numerator,
the limit is the same if we integrate over {Ix Yl < 3} x {0 < < }, and so by the
continuity of, the limit in (12) is

(y)limflx fo 152sink-tdtdx
--0 _yl<g [iX y12 + 152 + 2XnYn(1 COSt)] (n+k+2)/2"

(13)

Make the substitution u2 2x’, y’, (1 cos t). We get (since the limit is independent
of which 8 we use)

fx fo 152 sink-
lim

t)](n+k+2)/2,--0 -yl<g [iX yl 2 + t52 "- 2XnYn(1 COS
dt dx

du dx.

Since 3 may be chosen arbitrarily small, the limit is the same if we replace the term
u1 by 1 and the x’, terms by y’,. After replacing x by polar coordinates we thus4..n

have (since the integrals are independent of 3)

lim
to’, 15 2 f fr rn- uk-

2)(n+k+2)/2
du dr,

,40 ynk 2+u2<g2 (r2 + u2 + 15

2 n/2
where to,, rn/2) is the surface measure of the unit ball in ’,. If we treat r, u as
rectangular coordinates and switch to polar coordinates, that is put r w cos 0 and
u w sin 0, we get

Wn+k-l COSn-1 0 sink- 0

(1/32 + 152) (n+k+2)/2
dw dO.

A substitution of z w/15 gives

o,nf./2f /, Zn+k-1
lim
-0 ynk dO dO (1 -+-Z2)(n+k+2)/2

COSn-1 0 sink-I 0 dz dO

tort (fo:rr/2 )(fo
00

Zn+k-I )y--}- cos",-l 0 sin-l 0 dO
(1 + z)(’,++/

dz (14)



LITTLEWOOD THEOREM FOR WEINSTEIN POTENTIALS 639

Make the change of variables x sin2 0 in the first integral and + z2 / in the
second integral. The first becomes the beta integral

(1/2) B(k/2. n/2) (1/2)
F(n/2)I’(k/2)
l"((n + k)/2)

(recall that for x, y > 0, B(x, y) fd tx-l(1 t)y-1 dt I’(x)I’(y)/l"(x + y)
[K]). The second integral becomes an elementary integral with value /(n + k). Now,
combining (12), (13), and (14) gives an expression for an,2-k. Replacing k by 2 k
and using the fact that F (x + 1) xF (x) for x > 0 gives the required expression for

an.k [--I

The estimates on Gk which we need are given by the following result.

LEMMA 3. Let k < 1. Then

and

xn-kyn
Gk(x, y) < c (15)

Ix yln-k

l-k

Gk(x, y) > c xn Yn (16)
Ix Yl"-k

where y is the reflection ofy Nn+ in the hyperplane boundary. Thefollowing upper
bounds, which are stronger in case k < 1, holdfor all k:

-k/2 k/2
Xn YnGk(x, y) <_ C
lx yln-2 for n > 3 (17)

and
/

-k/2 k/2 IG(x, y) < , ., 1 + log Ix"- Y
for n 2. (18)

Proof. If we ignore all but the Ix Y term in the denominator of (1) we get
(15). Since Ix Yl/ Ix ylz 4xnyn, we can rewrite Gk as

1-k fo’r sin -k

an,k Xn Yn
[iX yl2 COS2 t/2 + IX Yl2 sin2 t/2](n-k)

dt. (19)

Now (16) follows from the fact that Ix Y < Ix Yl.
Suppose k < 1. We have

Gk (x y) l-k f0r sin l-k

an’kXn Y"
[IX yl2 + 2x, y.(1 --COSt)](n-k)

r l-k

<- CXn-Y
[Ix yl + XnYnt2](n-k)

tit.

dt
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After a substitution of s xT2-f2,y,t/Ix y and a simplification we get

-k/2 k/2

for X4T2-,y,/Ix_y[Xn YnGk(x, y) < c
IX y"]’n"-2

1-kS

(1 "--.S2)(n-k)
ds.

If n > 3, the integrand is integrable over [0, cx), and the result follows. The case
n 2 also follows easily. That the inequalities hold for k > follows from an
application of (9).

PROPOSITION 2. Let Iz be a regular Borel measure on lln+. Ifk < then GklZ is
a potential ifand only if

Yn
(1 + lyl)"-k

dlz(y) < oct. (20)

Ifk > 1, Gklz is a potential ifand only if

f (1 -k-lyl)n+k-2
dlz(y) < c. (21)

Proof. By (9), it is enough for us to show the proof for k < 1. Suppose first that
Gklz(z) < cx for some z IR_. Using (16),

Suppose conversely that (20) is satisfied. Fix z IR_, and write/z as/Zl -//,2, where
#l is the restriction of/z to the complement ofthe Euclidean ball B(z, Zn/4). Suppose
x B(z, Zn/8), and y is in the complement of B(z, zn/4). We leave it to the reader
to show that there is a c depending only on Izl and Zn such that Ix Yl > c (1 + lYl).
Thus, by (15),

Xn Yn l-k YnGklZl(X) < c
IX- yln-k

dlzl(y) < c x,
(1 + lyl)n-k

dlz(y) < oo. (22)

Now consider Gklz2. For x B(z, z./8) and y B(z, z,/4) we have x. >_ (7/8)Zn,
and (3/4)z. < yn <_ (5/4)z. and so by (17) and (18), Gk(x, y) < clx yl2-n in
case n >_ 3, and Gk(x, y) < c(1 -I- [logz,/lx YlI) in case n 2. We also have
B(z, z./8) C B(y, yn/2). For n >_ 3, an integration with respect to polar coordinates
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shows

/4) fB(z,zn/8)
/4) fB(y,yn/2)

Gk(x, y) dx d/z2(y)

Ix- yl2-n dx d/z2(y) < 0,

SO GklZ2(X) < (X for Lebesgue a.e. x B(z, z,/8). A similar argument shows the
n 2 case. By (22), Gklz(x) < cx at any such x.

4. Generalised Littlewood Theorem

We start the section with some auxiliary results. The first is proved using an
elementary method.

LEMMA 4. Let c > O. Then there exists a constant Cc such thatfor all a, b > 0,

Cl(ac + bc) < (a + b)c < Cc(a + bc)

From the above lemma we easily deduce"

LEMMA 5. Let r > 1. Then d satisfies a pseudo-triangle inequality. That is,
there is a constant cr such that,for all x, y, z n-l,

d (x, z) < cr [dr (x, y) + dr (y, z)].

Remark. Let a, b > 0. By using standard calculus techniques, we can show that,
if c> 1, then(a+b)C<2c-l(ac+bC) andifO<c< 1, then(a+b)c<ac+b.
Repeated applications of Lemma 5 allows us to deduce

LEMMA 6. There is a constant c depending only on n and r which enables the
following cover by homothetics: whenever r > s and the r-balls Br (x, r) and
Br (y, s) intersect, then B (y, s) C Br (x, cr).

We easily deduce:

LEMMA 7. There is a constant d depending only upon n and.rfor which we have
thefollowing property: given anyfinite number oft-balls, there is a pairwise disjoint
subcollection ofthese r-balls which when expanded by afactor ofd (that is, the radii
are multiplied by thefactor d) cover all the original r-balls.
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Indeed just arrange the balls in order of decreasing radii, take the first one, then the
next which does not meet the first, then the next which does not meet the first two,
etc. The resulting collection is easily shown to have the required property.
We now introduce the r-projection map pr. 1R_ --+ ]1n-1 which is a key device

in our proof of Theorem 2 and whose properties motivated the consideration of the
non-isotropic pseudo-distance.and the associated Hausdorff measure.

Definition 3. Let r > 1. Let x 6 IR_, x (Xl Xn). Then

1/rer (x) (xl xn x2 Xn-l).

Observe that l-’,(x passes through the point x. We also note that for all positive
values of t, all the points (xl + t, x2 xn- 1, r) will have Pr_projection equal to
(xl, x2 xn-1). We now have the following result concerning the projection.

LEMMA 8. Let B(x, r) be the open Euclidean ball, centered atx lRn+ and radius
O < r < 1. Then,

pr [B(x, r)] C Br (Pr (x), 2r-1/2r)
Proof Let y 6 B(x, r). Then

d (pr (y), pr (x)) (Yl Yn (Xl Xn
2r n-I

+ (xj y)2
=2

< lYl--Xll+lYn --.*.n

n-I

+ (xj y)2
j=2

--< 22r-1 [[Yl X112r -I-lyl,,/
n-1

l/r 12--an ]+-(xj--y,)2.
j=2

1/r l/r 1/rNoting that lYl xll 2r < lYl Xll 2 and ly Xn < lYn xl we deduce

dr (pr(y), pr(x)) < 2r-1/2 (xj yj)2 < 2r-1/2r.
j=l

Before we proceed to the proof of the theorem, we define the following generali-
sation of the Hardy-Littlewood maximal function [S].
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Definition 4.

for all x 6 ]1n-I

Let r > and ot > 0. Let 3 be a measure on .n-l. We define

(MrZ) (x) sup { ,(Br_(x, r)) r>O]

ProofofTheorem 2. By (9), it is enough to prove the theorem for k < 1. Since
the union of a countable number of sets of vanishing H-measure has vanishing H-
measure, we may assume that x is in the intersection of I_ and an open Euclidean
ball B in ]1n of radius r. If we take the restriction of/z to the complement of a
closed ball containing the closure of B in its interior, it follows easily from (15)
that we can dominate the integrand of the resulting Lk-potential by a multiple of
xn-kyn(1 -t-lYl) -n-k), and so (20) implies that the unrestricted limit is 0 at every
point in "- in the closure of B. Thus we may assume that/z has support in B.

Let dv y d/z, so that v is a finite measure. For e > 0, write v v, -I- v,,
where v is the restriction of v to the strip {y 6 _" Yn < e }. Let 3 be the Pr-image
of v; that is, for each E C II"-l, 3(E) v((Pr)-(E)). Since IIZ, IIvll, we
have I1. --> 0 as --> 0.

Notice that

lir f G,(x, y)yOO dv (y) O, for all z ]1n-I

since, by (15) and our assumption that x and y lie in a bounded set,

l-k 1-o9Xn Yn CXln-kGk (x, y)yO < c
ix y n-k

<

for x smaller than e/2.
Write Gklz(x) as

Gk/x(x)

where

)Gk(x, y)yOO dr(y) f (x) + f2(x),

Xn n’lx I<I= y Nn+: ix yl >_ and/l= yeN+ -y --We need to show that lim suPr_+ j (x) 0, j 1,2, for H-a.e. z pn-l. By the
above, we get the same lim sup if we replace v by v, for any e > 0. Let e be chosen,
unspecified for the moment. Fix z N,,-i and let x

_
with PC (x) z and

Ix-zl < 1/2.
We first estimate fl(x). If2mxn <_ Ix- Yl < 2m+xn form >_--1, then

Gk(x, y)yOO < c
-k 1-o9Xn Yn
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and

Yn <_ lYn xnl + xn < lY xl + Xn < (1 + 2m+l)xn <_ 2m+2xn,

so

l-k l-to

fl(X) <_ C
Xn Yn

m mxn<lx_yl<2rn+lx Ix y[n-k
dv,(y)

-k (2m+2x -o’

< C’ xn
m (2mXn)n-k

V, (B(x, 2m+lXn )),

where B(x, 2m+lxn) denotes a Euclidean ball in I and is contained in Ii_ by the
choice. By our assumption concerning the support of/z, we may sum over those m
for which 2m+lxn < 1. By Lemma 8,

pr (B(x, 2m+lxn)) C Br (z, 2r+m+lxn),

and so

v,(B(x, 2m+lxn) <_ .(Br (z, 2r+m+lxn)).

Thus

fl (x) < c 2-m(l-k) " (Br (z, 2r+m+lxn))
m (2r+m+lxn)n-2+

<_ Mc n_2+o,(.) (Z) (23)

Now consider f2(x). If Ix Yl < Xn/2, then x/2 < y, < (3/2)Xn. By (17), if
n>3,

(24)

since to > 0. Using (18) we get a similar result for n 2.
Let > 0. By (23) and (24), we deduce

{ZEI"-"limsupGklz(X)>3lC{ZE’*-"xr M2-2+a’(X)(Z)>CtS}’ (25)



LITTLEWOOD THEOREM FOR WEINSTEIN POTENTIALS 645

where c depends only on n, k, r. Notice that the left side of this inclusion is indepen-
dent of e. Let K be a compact subset of the set on the left side of (25). We must show
that Hn_2+o(K) 0. Suppose not. By Theorem 1, there exists a non-trivial measure
tr with support in K such that for every r-ball BY (x, r), tr (B (x, r)) < rn-2+t. There
exists a finite number of r-balls whose union contains K such that for each one, the
,k measure is greater than cd multiplied by the r-radius raised to the n 2 + 09 power.
By Lemma 7, we can pass to a disjoint subcollection Br (xj, rj) of these balls such
that K C j BY (xj, drj). Then

dn-2+)%(Br (xj, rj)) <

By letting e 0, we see tr(K) 0 and we arrive at a contradiction.

5. Characterisation of exceptional sets

The following result is the key element in the construction of the potential with
the required bad behavior.

LEMMA 9. Let R (x, r) be a r-rectangle in n- ofradius r < 1/4. Let

r r
h=

2r-l(31/r 21/r) 2-(2/r 1)r

Let pt. (Xl +h /r, X2 Xn-1, h), and pR (x +/Tti/r, X2 Xn-l, [). Define
G GL t_J GR, where

( r r) ( r r) [ 3)aL {Xl -- h ’/r} x2 -, x2 + - x... Xn-I 7’ Xn-I + " h, -h
and

aR r

Then the r-projection of G contains R (x, r). We have the lower bound on the Lk-
Green’s function Gk that for each y G and z Gto, Gk(y, p) > cr2-n and
Gk (z, pR) > cr2-n, where c depends only on n, k, r.

Proof Let y 6 R (x, r). If y _< x let yr. (x + h /r, Y2 Yn-, (xl
y + hl/r)r). If y > xl, let y (x + l/, Y2 Yn-l, ftl/r (Yl Xl))r)
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Now suppose Yl < x. Notice that Pr (yL) y and

O <_ (x y + hl/)r h < + h 1/r h

hi( (r/h)l/r2 +l)r ]-1
h
2

Thus yL GL. A similar argument shows that yR GR in case y > Xl. Let
y GL. Then Yn > h, Pn h, and lY pLI is bounded above by a multiple of r.
Since h is a multiple of r, the required lower bound on Gk(y, pL) follows from (16).
A similar argument for G(z, pR) completes the proof.

ProofofTheorem 3. Let E C n-, be contained in a r-ball of radius less than
1/4. We first prove the result in this case. For each positive integer, m, we can cover
E by r-rectangles R (Xmj, rmj)" j Z+ such that -j ,,-2+o 2-m,rmj < (SO rmj 0

L Ras m -- cx uniformly in j). Associate the numbers hmj, hmj, the points Pmj’ Pmj’
and the sets Gmj as in the lemma. Let IZmj be the measure concentrated on the two

Rpoint set {pmj, Pmj with mass m. rmn]2 at each of the two points. Let/z m,j IZmj.
Then # has bounded support and

y dlz < c rmj rmj m < m < o.
m,j m

For any m e Z+, if we take x R (Xmj rmj), by the lemma we can find y Gmj
2-n n-2such that Pr (y) x and Gtx(y) > Crnj mrmj cm -- o as m cx. Thus

lim supr GklZ cx for all x e E. This completes the proof in case E is contained
in a r-ball of radius less than 1/4.
Now suppose we have a set E C Nn-1 of H-measure zero. Since r-balls are

open in the Euclidean topology, we may cover E by a countable number of r-balls
B[ of radius smaller than 1/4 for each 1, 2, For each set El nl 0 E by the
above argument we can find an L-potential Vl on Rn-1 which has the property that

lim sup 1) o)

rx

for all x El. Now, it is easily seen that a suitable sum of the forml cvt will
satisfy the requirements of the theorem. El

Added in proof. In a recently published article (A note on capacity and Hausdorff
measure in homogeneous spaces, Potential Analysis 6 (1997), pp. 87-97), T. Sjtidin
has proved a general version of our result (Theorem 1) concerning Hr-measure.
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