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GENERALIZED LOCAL FATOU
THEOREMS AND AREA INTEGRALS

B. A. MAIR, STAN PHILIPP AND DAVID SINGMAN

ABSTRACT. Let X be a space of homogeneous type and W a subset of X X
(0, 00). Then, under minimal conditions on W, we obtain a relationship
between two modes of convergence at the boundary X for functions defined
on W . This result gives new local Fatou theorems of the Carleson-type for
solutions of Laplace, parabolic and Laplace-Beltrami equations as immediate
consequences of the classical results. Lusin area integral characterizations for
the existence of limits within these more general approach regions are also ob-
tained.

1. INTRODUCTION

Recently, the classical Fatou theorems for solutions of the Laplace equation
on R" xR . (cf. [12]), solutions of certain general parabolic equations on
R" xR , and solutions of the heat equation on the right half-space (cf. [11]) have
been improved to allow sequential approaches to the boundary at any prescribed
degree of tangency. Also, the well-known Koranyi approach region for Poisson-
Szegd integrals on the generalized upper half-space has been improved (cf. [14]).

In the above-mentioned papers, the approach regions were restricted by a
certain cross-sectional area condition at every height. However, it is clear that
the existence of limits at the boundary within a region Q only depends on the
structure of Q very close to the boundary.

Also, the Fatou theorems were all obtained by the method in [12], which con-
sists of two main stages. First, a certain “sup” maximal function was shown to
be weak-type (1, 1) and then the Fatou theorem was obtained from properties
of the kernel appearing in the various integral representations. The approach
adopted in this paper deviates from this method, especially in the second stage.

In this paper we consider an upper half-space of the form X xR, where X
is a group which is also a space of homogeneous type. We introduce the notion
of a locally admissible subset of X x R, which satisfies a cross-sectional area
condition close to the boundary.
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Now, from the necessary and sufficient results in [12, 14, 11], it is clear
that we cannot obtain weak-type inequalities for the “sup” maximal function
over these more general locally admissible regions. This difficulty is avoided
by considering the corresponding “lim sup” maximal functions over the locally
admissible regions. The proof of the weak-type inequality in [14] is adapted to
obtain the corresponding result for our “lim sup” maximal function.

Then in §3 we obtain a differentiation theorem by a slight variation of the
standard methods (cf. [13, 11]). This result also incorporates the analog of
widening the aperture of a cone, for these more general approach regions.

The “standard regions” defined in this paper are just abstractions of the usual
cones, parabolic, two-sided parabolic and Koranyi regions which appear as the
approach regions in the classical Fatou theorems. So, from these well-known
Fatou theorems, we know that various functions have standard limits (limits
within the standard regions).

The second stage in the method presented here consists of using the differ-
entiation theorem obtained in §3 to deduce the existence of limits within the
more general locally admissible regions from the existence of standard limits.

More specifically, in §4 we prove that if W C X xR, and E C X are such
that for each y € E, W contains a standard region with vertex at y, then
standard and locally admissible limits are equivalent almost everywhere on E ,
for any function defined on W . This result therefore yields new local Fatou
theorems (cf. [2, 3, S, 6, 7, 8, 9, 10]) without any extra effort.

In the last section we consider area integrals where the integration takes place
on locally admissible regions. There we show that finiteness of these area in-
tegrals is equivalent to existence of standard limits a.e., which is equivalent to
existence of limits within locally admissible regions almost everywhere.

2. A WEAK-TYPE INEQUALITY

For the reader’s convenience, we define what we mean by a space of homo-
geneous type (cf. [4, 14]).

Definition 2.1. (X, p, u) is a space of homogeneous type if X is a topological
space, p: X x X — [0, oo) and u is a positive Borel measure on X satisfying

(i) p(x,y)=py,x) forall x, ye X.
(i) p(x,y)=0ex=y.
(ii1) (Triangle Inequality) There exists a constant y > 0 such that

p(x,z)<ylp(x,y)+py,2)], forallx,y,zelX.
The p-ball of center x and radius r > 0, denotedby B(x,r)={y € X: p(y, x)
< r}, satisfies

(iv) {B(x, r): r> 0} is a base of open neighborhoods of each x € X .
(v) (Doubling Property) There exists a constant 4 > O such that

w(B(x,2r)) < Au(B(x,r)) forallxe X,r>0.
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This doubling property implies that for each o > 0 there exists C(a) > 0
such that

wW(B(x,ar)) < Cla)u(B(x,r)) forall xe X,r>0.
For any Q C X x R, the cross-section at height ¢ is
Qit)={xeX:(x,t) eQ}.
Definition 2.2. Let (X, p, u) be a space of homogeneous type, Q C X x R
and ye X .
(i) Q is said to be locally a-admissible at y if (¥, 0) is a limit point of
Q and there exists Q' D Q such that
(a) w(Q (1) =0(u(B(y,1) as t—0,,
b) (z,5)€Q, p(x,z)<a(t—5)=(x,)eQ.
(i1) Q is locally admissible at y if Q is locally a-admissible for some
a>0.

If w C R"xR, issuch that for some T >0, wn(R"x (0, T)) is the trunca-
tion of some admissible region (as defined in [11]), then w is locally admissible.

Now, assume X is a group with identity e¢ and (X, p, u) is a space of
homogeneous type. For any Q C X x R, having (e, 0) as a limit point and
feL'(X,u), define

* . 1
Mo/ (v) = ngcr,r:)s—l»lg,()) U(B(x, 1) Jpyx,1 1dp.
As in [13], we show that M;l is weak-type (1, 1) under certain invariance

conditions on x. In order to do this, we need the following covering lemma
(cf. [4, 14]).

Lemma 2.1. Let (X, p, u) be a space of homogeneous type and E C X . If
{B(x, r(x)): x € E} is a cover of E with sup, . r(x) < +oo, then there exists
a countable subcollection {B(x,,r,):k=1,2,...}, r, =r(x,) such that
(i) {B(x,,r,)} are pairwise disjoint, and
(ii) for each x € E there exists k € N such that r(x) < 2r, and x €
B(x, , 4yr,).

This follows from the proof of Théoreme 1.2, Chapitre III in [4]. For a
space of homogeneous type (X, p, u), if X is a group, p is left-invariant if
p(zx, zy)=p(x,y) forall x,y, z€ X and u is left-invariant if u(xF) =
u(E) for every x € X and Borel EC X .

Theorem 2.1. Let X be a group with identity e and (X, p, ) a space of
homogeneous type such that p, u are left-invariant and u(E_l) = u(E) for
every Borel E c X. If Q is locally a-admissible at e then there exists a
constant ¢ > 0 such that

ullx € X: Mf(x) > 23) < ZI/1,
forall >0, feL'(X, u).
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Proof. This is similar to the proof of Theorem 1.5 in [14]. Since Q is locally
admissible, there exist constants M, T > 0 such that

w(Q (1)) < Mu(Ble, ) foralO<t<T.

Let f = min(a, 2y) and fix R > 0 such that 8ﬂ_1yR < T. Foreach A >0,
let

1
E.=<{x€eX: su —/ du>23.
A { 0<r£Rﬂ(B(X7r)) B(x,r) fldu }

For each x € E, , let

1
r(x)—sup{r.0<r<R,m/&x,”lﬂdﬂ>i}.

Then,

p(BGx r0x) < 5 [

B(x,r(x)

)Ifl du.

{B(x,r(x)): x € E} is a cover of £ and r(x) < R for all x € E; hence
by the covering lemma we have a sequence B(x, , r,), r, = r(x,) satisfying (i)
and (ii) in Lemma 1.3.

Now, let M, f(x,) > 4. Then there exists (y, s) € Q such that

|
—_— du>2
,Ll(B(.XOy s S)) ~/B(x0y,s) |f| #

and s < R.

Hence x,y € E,. So there exists kK € N such that x,y € B(x,, 4yr,) and
r(xy) < 2r, .

Now, by the definition of r(x,y), s < r(x,y). Hence s < r(x,y) < 2r, <
4,B_lyrk , by choice of . Since B < a, Q islocally f-admissible. Hence,

p(xo_lxk ,¥) = p(xgy, X)) < 4yr,
= BL(4B ™ 'yr, +5) — s < BI8B™ ' yr, —s].
Since (y, §) € Q, it follows that
xy ' x, € Q88 yr,)

and so
-1

Xy € X, [Q' (887 ' yr)]
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Therefore
u{Maf > 23 < 3 px [Q 88 yr)1 ™)
k=1
= ST Q'8 )

k=1

(e o]
Z (e, 8ﬂ_1yrk)), since 8B_1yR< T
k=

| /\

<MC(B™'y) S u(Ble, )
k=1

) 3 u(B(x,. 7))
k=1
<M ”Z/ 11du
MC(B™y)
_MeZ Y d
7l U™ B |f1du
C —1
< MCE Dy,

3. A DIFFERENTIATION THEOREM

Throughout the remainder of this paper, X is a group with identity e and
(X, p, u) is a space of homogeneous type such that p, u are left-invariant
and ,u(E_l) = u(E) for every Borel E C X .

The following differentiation theorem can be proved by a slight variation of
the standard method (cf. [13, 11]).

Theorem 3.1. If Q C X xR, is locally admissible at e and v is a signed regular
Borel measure on X, then

: v(Byx, 1) dv
Q> (xh,ﬂe o u(B(yx,t)) du(y)’

for pu-ae yeX.

This result can be improved to take widenings of aperture into account as
follows.

Definition 3.1. For any Q C X xR, and a >0, define
Q, ={(x,1): (x,at) € Q}.
Then, if S(y; a)={(x, ): p(x,y) <at},
(S a)), =Sk; aa).
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Hence Q, is called the widening of Q by a multiple of a .

The following result is an immediate consequence of the doubling condition
and the definitions.

Proposition 3.1. If' Q is locally a-admissible at y then Q, is locally ao-
admissible at y .

Proposition 3.2. Let Q be locally a-admissible at e and Q' be as in Definition
1.2. Then there exists T C X x R, such that

(i) QccQ'.

(ii) X is locally admissible at e .

(ili) (x,1)€X, t<s=(x,s)€X.

(iv) 0<a<b=Z(a)CXZ(b) and L, C X,.

Proof. Fix B > min(a, y_la) and define
Z={(x,0:p(x,y) < B(t—s), for some (y, s) € Q}.
(i) QCX isclear.

(x,1)eX= p(x,y) < B(t—s) for some (y, s) € Q
= px,y)<a(t—s)and (y,s)€Q
=(x,eqQ.
(i) Let (y,s)€Z and p(x, y) < B(t—s). Then there exists (y,, s,) € Q
such that
PV, Vo) < B(s —sp)
Hence

p(x,¥o) <vp(x, ¥)+p(y, ¥yl
<Y[B(t—s5)+ B(s— ;)]

< at - ).

Therefore (x,t) € Q. Hence I is locally f-admissible at e. (iii) and (iv)
are clear.

Hence we can always assume that our locally admissible regions satisfy con-
ditions (ii), (iii), (iv) in Proposition 3.2.

Definition 3.2. Let QC X xR . have (e, 0) as a limit point. A function u is
said to have Q-limit 2 at y € X if u(x,?) — A as (x, t) approaches (y, 0)
inside yQ  forevery a > 0.

Theorem 3.2. Let Q be locally admissible at e and v be a signed regular Borel
measure on X . Then
v(B(x, 1)

) has it @2 ) for i
2B 1) has Q-limit dﬂ(y)for,u ae yeX.
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Proof. By Propositions 3.1 and 3.2 we can apply Theorem 3.1 to each widening
Xy, N=1,2,3,..., where X is as in Proposition 3.2. This gives a set E,,
such that u(E,)=0 and forall y ¢ E,,

v(B(x,t) dv
1 — = S (),
yZNa(xl,ItI)lﬁ(y,O) WB(x, 1) du @)

By (iv) of Proposition 2.4, we obtain, for every a >0,

v(B(x,t) dv
1 Sl AL PVl
yZNB(xl,Itr)l—»(y,O) w(B(x,t) du ),

if y ¢ U?vozlEN‘

4. STANDARD AND Q-LIMITS

In this section we obtain our main result which shows that limits within a
locally admissible region are equivalent u-almost everywhere to limits within
the standard regions S(y; ), for any function. This enables us to deduce the
improved Fatou theorems in [12, 14, 11] from their classical counterparts and
to obtain new local Fatou theorems without any extra effort.

The main lemma is a generalization of a technique of Calderén (cf. [2])
and the main theorem is motivated by a result of Brelot and Doob (cf. [1])
concerning fine and nontangential limits.

We continue to assume that X is a group with identity e, (X, p, u) is a
space of homogeneous type where p, u are left-invariant and u(F Y= wE)
for every Borel E C X.

Definition 4.1. (1) For each y € X and a >0, let
Sy;a)={(x,) e X xR, :p(x,y) <at},

called the standard region with vertex y and aperture «.

(2) A function u is said to have standard limit 4 at y € X if u(x,?) — 4
as (x,t) approaches (v, 0) inside S(y, a) for every a > 0.

(3) Foreach r >0 and ye X,let U(y;r)=B(y;r)x(0,r).

(4) For any Q C X x R, which has (y, 0) as a limit point, QN U(y; r) is
called a truncation of Q.

Lemma 4.1. Let E C X and W C X x R, be such that W contains some
truncation of some standard region with vertex y, for each y € E. Let Q be
locally admissible at e. Then for u-almost every y € E, W contains some
truncation of any widening of yQ.

Proof. Let {a,} and {r,} be sequences of real number such that {«,} in-
creases to oo and {r,} decreases to zero. Put

E,  ={y€E:S(y,a)nUy,r)cC W}

If we can prove the lemma for E replaced by Ek,/ , since E = Uk,, Ek,j , We
will have it for E . Thus we assume that there exists «, r > 0, independent of
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¥, such that
Sy;a)nUy;r)c W,
for all y € E. Choose integer N > 1 such that # <r. Foreach m > N and
a>0,let
E (a)={yeE:(yQ)NU(y; L) cw}.

Let D denote the set of points y € E for which

MENB(x, 1))

yQ,3(x,0—(,00 u(B(e,t))

Then, from Theorem 3.2, u(E\D) = 0. It clearly suffices to prove that D C
Uy E(a), for each a > 0. To do this, let y ¢ U, _\ E, (a) for some

m=N “m
a > 0. Then there is a sequence of points {(x,, , ?,): m > N} such that

(Xps L) EVQINU (¥5 %), (X,,1,) ¢ W.

=1, foralla>0.

Hence,
i) 0 'x,,,at,)€Q,
(i) P(X,, ¥) < s Ly <
(1) (x,,,t,) € W.
From (i), (v"'x,,, at,) € Q, -1, ; hence from (i)
(x,,,at,)—(y,0) within yQ _ .
So, to see that y ¢ D, it suffices to show that
wWENB(x,,,at,))=0 form>N.

To do this, let z € E. Then S(z; )N U(y; &) c W forall m > N. From
(ii1) and (ii) above, (x,,,?,) ¢ S(z;a). Hence p(x,,z) > af,. So EN
B(x, ,at,)=9.

Theorem 4.1. Let E C X and W be a subset of X x R, which contains some
truncation of a standard region with vertex y for each y € E. Let Q be locally
admissible at e and u a function on W which has standard limit w(y) at every
y€E. Then u has Q-limit w(y) at p-almost every y € E .

Proof. For brevity, put
S(y;a,0)=8y;a)N(B(y, ad) x (0, d))

for ye X, a >0, §d >0. As in Lemma 4.1, we can assume that the stan-
dard regions contained in W with vertices on E have uniform aperture and
truncations. That is, there exist «, d > 0, independent of y, such that

S(y;a,d)c W, foreachyeE.

We shall actually obtain the same conclusion under the seemingly weaker as-
sumption that u has limit w(y) with S(y; «) forevery y € E.
Then for each y € E and m € N, there exists a positive rational J,, (y) such

that

lu(x, 1) —y)| < L forall (x,1)eSy;a,d,H).
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By dividing E into a countable number of subsets, we can assume that J,,(y) =
6, forall ye E.
Now, let
0,0 =J{S(z;e,d,): z€E,S(z; 2, 6,)NS(y; a,d,) # D}
Claim 1.
0, > UiS(z:a,8,) 1 2€ ENB(, ad,)}.
To see this, let z € B(y, ad,,). Then
p(z,y) <ar, <ad,.
Putting ¢ = r,, we obtain
p(z,y) <at, p(z,y)<ad,, t1<d,,.
That is,
(z,)eSW;a,9,)

Hence
Sy;a,0,)NS(z;a,d,)#2.

Now, let v,, <min(,,, (27)”'3,,). Then

Claim 2.
Q,(y) > W, N(B(y, av,) x(0,v,))
where
w,=JSz;a,d,)
z€EE
Let

(x,t)e W, N(B(y, av,,) x (0, V)
Then there exists z € E such that (x, t) € S(z; «, J,,) . Hence

p(z,y) <vlp(z, x)+ p(x, Y] <ylat +av, ]
=ya(t+v,,) <2yav, <ad,,.
Therefore z € B(y, ad,,) N E. Hence (x,?) € @, (y) by Claim 1. Now, by
Lemma 4.1, for each m there exists D, C E such that u(D,) =0 and for

each z€ E\D, and a> 0 there exists 7, =7,(z, a) >0 such that 7, <v,,
and

z2Q,N(B(z,at,)x(0,7,))C W,

Put D=J5_, D, . Then u(D)=0.
Now, let y € E\D and

(x,1)eyQ,N(B(z,at,,)x (0, 1,)).

Then
(x,)eW, n(By,av,)x(0,v,)).
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Hence (x, t) € Q,, (y). So there exists z € E such that

&, 5)€S(z;a,8,)NSW; a,d,),

and
(x,t)€S8(z;a,d,).
Hence
lux, ) —w(2)| <1/m,  |u(c,s)-w(z)| <1/m
and
[u(€, s) -yl <1/m.
Therefore

u(x, 1) =y ()| < 3/m.

5. APPLICATIONS

In our first application, we consider X = R" with the additive group struc-
ture, p the Euclidean metric, and u Lebesgue measure on R”. Then by using
the classical result in [3] and Theorem 4.1, we obtain

Theorem 5.1. Let E C R" and W be a subset of R" x R . Which contains a
truncated cone w, with vertex y for each y € E. Let Q be locally admissible
at the origin. If u is a solution of the Laplace equation on W which is upper or
lower bounded on W, for each y € E, then u has finite Q-limits at Lebesgue
almost every point of E .

This generalizes the results in [12, 11].

For the second application, consider X = R” with the additive group struc-
ture, p(x,») = |lx — y||*, where ||-| is Euclidean norm, and u be Lebesgue
measure. Let L be a second-order linear parabolic operator in divergence form
on R" x (0, 7). Then, under certain general conditions on the coefficients of
L (cf. [9]) we obtain the following result by combining the local Fatou theorem
in [9] and Theorem 4.1.

Theorem 5.2. Let E C R" and W be a subset of R" x (0, T) which contains
a truncated parabolic region W, with vertex y for each y € E. Let Q be
locally admissible at the origin. If Lu=0 on W and u is either upper or lower
bounded on W, for each y € E, then u has finite Q-limits at Lebesgue almost
every point of E .

A similar result can be obtained for solutions of the heat equation on the
right half-space, thus generalizing results in [10, 11].

In our final application we consider X to the Heisenberg group C” x R with
the group operation

(z,t)-(w,s)=(z+w, t+s+2Im(z, w)),
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where
14
(z,w)= Z Z, Wy
k=1

Let p((z,1), (w,s)) = (||z—w||4+|t—s|2)1/4 and u be Lebesgue measure (cf.
[5, 7, 14]).

The results in [8, 7, 5] concerning the boundary behavior for “harmonic”
functions on X x R_ (identified with the generalized upper half-plane) give
immediate improvements by applying Theorem 4.1 (cf. [14]).

4. AREA INTEGRALS

The classical Lusin area integral characterizations of standard limits (cf. [5,
6, 13]) can be extended to the case where the integration is performed over
locally admissible regions.

Tlo be specific we only consider the case of Laplace harmonic functions on
R

n+l :
+ having

, define the area integral

Definition 6.1. For any truncated locally admissible region Q C R

(0, 0) as a limit point and harmonic u on R'fr“

Squ(y) = (/y+9/|w(x, OP " dxdt)

It is well known (cf. [13]) that if Q is a truncated cone,
L 0,0)={(x,0:|x|<at, t<d},

1/2

for y eR".

we have

n+1
S
(i) u has a finite nontangential limit at each

Theorem 6.1. Let u be harmonic on R

yeECR'= forae. yeE,Sr(O,a)u(y)<oo

for every >0, 6 >0.
(ii) Conversely, if for each y € E C R", there exists o >0, & >0 such that

Sr(‘(o;a)“(y) < 00
then u has finite nontangential limits a.e. on E .
To extend this result, we define the following.

Definition 6.2. Let u be defined on R7*'.

(i) Let Q be locally admissible at (0, 0) containing a truncation of some
standard region with vertex at (0, 0). We say that u has finite Q-uniform area
integral on E C R" if forany a >0 and r >0,

Soru(y) <oo, forallyek,
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where Q) =Q_NU(0, r) (the truncation of a widening of Q).

(i) Let Q be locally admissible at (0, 0) containing a truncation of some
standard region with vertex at (0, 0). We say u has finite (-area integral on
E c R” if for each y € E there exists a > 0 and r > 0 such that

Soru(y) < oo.

(iii) u has finite locally admissible area integral on a set £ c R" if for
each y € E there exists a truncated locally admissible region Q containing a
truncation of some standard region with vertex at (0, 0), having (0, 0) as a
limit point, such that

Squ(y) < oo.

Remark 6.1. (1) If locally admissible regions were completely determined by
aperture (as is the case for cones) then (ii) and (iii) above coincide.

(2) Clearly, if Q is locally admissible at (0, 0), containing a truncation of
some standard region with vertex at (0, 0), then u# has finite Q-uniform area
integral on E for some Q = u has finite Q-area integral on E for some Q = u
has finite locally admissible area integral on E = u has finite nontangential
limits a.e. on E (by Theorem 6.1).

Now, suppose a harmonic u has a finite nontangential limit at each y € E C
R", where E is compact. Then, in proving the classical theorem 6.1(i), it is
actually shown that

/ /|Vu(x, t)|2tdxdt < oo, whereR= U L (y;9)
R yEE
(cf. [13]).
By applying Lemma 4.1 and the cross-sectional area condition on a locally
admissible Q, to the proof in [13], we can show that,

/s;‘;,u(y)dy < C//Wu(x, 0[Pt dx dt.
E a R

Hence, by applying Theorem 4.1 we obtain

Theorem 6.2. Let u be harmonic in RT' and E c R". Then the following are
equivalent.

(i) u has finite Q-uniform area integral a.e. on E for some Q.
(ii) u has finite Q-area integral a.e. on E for some Q.
(iii) u has finite locally admissible area integral a.e. on E .
(iv) u has finite nontangential limits a.e. on E .
(V) u has finite Q-limits a.e. on E for any Q which is locally admissible
at (0,0).

Analogous results hold for the heat equation on the upper half-space and
the right half-space (cf. [6]), and for the Laplace-Beltrami equation on the
generalized upper half-space (cf. [5]).
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