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Exceptional Sets in a Product of Harmonic Spaces 

David Singman 
Department of Mathematics, University of Toronto, Toronto, Canada MSllAl 

O. Introduction 

The sets that are polar have been very important in characterizing the exceptions 
of several properties, most notably the irregular boundary points in the study of 
the Dirichlet problem. In this connection the Great Convergence Theorem of 
Cartan-Brelot, both in the classical case and in the more recent axiomatic study of 
superharmonic functions, has been extremely useful. In this paper we shall prove a 
generalization of this well-known result for a family of multiply superharmonic 
functions. More precisely we consider the set of points where v 4= V, v being the 
pointwise infimum of an arbitrary family of uniformly locally lower bounded 
multiply superharmonic functions and v its lower semicontinuous regularization. 
Contrary to the natural expectation this exceptional set does not seem to be 
multipolar viz., a set where a positive multiply superharmonic function takes the 
value 00. In [9J Gowrisankaran introduced a notion of exceptional sets in the 
product space <en. We extend this idea to consider n-negligible sets in a product of 
n spaces of Brelot. Our principal result (Theorem 4.1) is that the exceptional sets 
are n-negligible. We give as application a simple proof of a known result 
concerning the convergence of a decreasing sequence of plurisuperharmonic 
functions. We also develop some properties of multipolar sets and further 
properties of n-negligible sets. 

1. Preliminaries 

We begin by recalling some results associated with a finite product of Brelot 
spaces. For Details see [7, 8, 14]. 

Let Ql' ... , Qn be Brelot spaces each with a positive potential, a countable base 
of open sets, and satisfying axiom D. We denote the n-superharmonic (respectively 
n-harmonic) functions on an open set U of Q1 x ... x Qn by n- S(U) [respectively 
n - H( U)]. Let fIJi be a base of regular domains for Qi' i = 1, ... , n. The following 
proposition [8J will be of fundamental importance in proving the convergence 
theorem. 
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Proposition 1.1. If v is in n - S(86 1, ••• , 86n) and not identically 00, then v is n
superharmonic and for each x=(x1, •.• ,xn) 

v(X) = sup {j vd(Q~~ x ... x Q~:):XiEbiE86J. 

We remark that the above family over which we take the supremum can be 
replaced by any countable subfamily (bi.)j for which bi. j )5i,j+ l' n bi,j= {Xi}' and 

j 

sup is actually a limit of an increasing sequence. 
We now consider the "distinguished" Dirichlet problem on a product of 

relatively compact domains w 1 x w 2• For simplicity of notation we are taking n = 2 
although the analogous results clearly hold for any n. Let Pi be the irregular 
boundary points of Wi and 

P=(P 1 x P 2)U(P 1 x W2)U(W1 X P 2)' 

For f real valued continuous on the distinguished boundary aWl x aw2, define </J 
on w1 x w2 by 

</J(X 1 , x 2) = f(x!, x2) 
Jf( ., x2)df.1~11 
Jf(x 1 , • )df.1~~ 

JJfd(f.1~i x f.1~~) 

W 1 x aw2 , 

aWl x W2 ' 

W 1 X W 2 ' 

where we integrate with respect to harmonic measure. Following the procedure of 
Gowrisankaran in [7] where he proved the analogous result for regular domains 
one can show 

Proposition 1.2. </J is continuous on w 1 xw2-P, it is in 2-H(Wl xW2), and the 
mappings </J( ·,x2), </J(x 1 , .) are harmonic for each Xl EW!' X 2 EW 2· 

Consider now the following minimum principle [14]. 

Proposition 1.3. Let VE 2- S(w 1 x w2) be lower bounded. If for all X in aWl xaW2 

liminfv(z)~O, 

then v~O on W1 x w2. 

Using this one can formulate and solve the "distinguished" Dirichlet problem 
on w 1 x w2 by means of the Perron-Wiener-Brelot method. Indeed for f an 
extended real valued function on aWl x aW2 put 

ott={v:v lower bounded 2-hyperharmonic on w 1 xW2 with limit infimum 

~f at each point of aWl x aw2 }. 

Define the upper solution ~~[t x W2 to be the pointwise lower envelope of ott and the 
lower solution f)'? x W2 = - ~''!..1/ W2. By Proposition 1.3 f)"p x W2 ~~"p X W2. f is said 
to be resolutive if the upper and lower solutions are identical and 2-harmonic. 
Using standard methods one can prove 

Proposition 1.4. For any extended real valuedfunction f on aWl x awz and (Xl' xz) in 
w 1 x w 2 
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and iff is J1~11 x J1~~-integrable for one point (Xl' x 2 ) then it is integrable with respect 
to all such measures and resolutive. 

2. n-Polar Sets 

Let U be an open subset of Q I x ... X Qn· 

Definition 2.1. Pc U is said to be n-polar in U if there exists VE n- S+(U) such that 
P is contained in the set where V= 00. We shall say that any such v is associated to 
E in U. For U = QI X .•. x Qn we simply say P is n-polar. 

Since an n-superharmonic function is finite on a dense subset of its domain it 
follows any subset of P is n-polar in any open subset of U containing it. Observe 
any set n-polar in U is contained in a Go set n-polar in U since 

{XEU:V(X)=oo}= n {XEU:v(x»m}. 
m~l 

As a consequence products of harmonic measures do not charge n-polar sets. 
Clearly in Proposition 1.3, if the condition holds for all X except a set 2-polar in 

QI x Q2' then the conclusion still holds. It follows the function if> in Proposition 1.2 
is the only one in 2 - H(WI x wz) that is bounded on WI x Wz and tending to f at all 
points of aWl x awz except a subset 2-polar in QI x Qz. 

One can generate n-polar sets easily since if Pis k-polar in QI x ... X Q k then 
P x Qk+ I X ... x Qn is n-polar in QI x ... X Qn. We also have that a countable 
union of sets n-polar in U is n-polar in U. The proof of this for n = 1 extends easily. 

For n = 1 there is a local property for polar sets which implies the existence of a 
global associated function [3]. We do not know if such a result holds for n> 1 and 
it is an open question whether or not a set n-polar in an open set is necessarily 
n-polar. 

Definition 2.2. Let E be a subset of QI x Q2' Xl E QI' and xzEQz. The section E(l, x) 
of E through X is defined as {ZEQZ:(XI,Z)EE}. The section E(2,x) is 
{ZEQI :(z,xz)EE}. 

Definition 2.3. Let E be a subset of and (x I,XZ'X 3) a point of QI x Qz X Q3. The 
i-section E(l, x) [also denoted by E(l, Xl)] of E through X is defined to be 
{ZEQzxQ3:(XI,Z)EE}. The 2-section E(1,2,x) (=E(1,2,(x l,xZ)) is defined as 
{ZEQ3:(XI,XZ,Z)EE}. The sections E(2,x), E(3,x), E(1,3,x), and E(2,3,x) are 
defined in the obvious way. 

For a polar set Pin QI it is true that for any point X of QI-P there is a 
function associated to P that is finite at x [3]. In the case of 2-polar sets this is false 
since, as is easily seen, it is necessary for the sections P(1, x) and P(2, x) to be polar. 
We prove this condition is sufficient. 

Theorem 2.4. Let E be 2-polar and x=(xl,XZ)¢;E. Then there exists v associated to E 
finite at x if and only if the sections E(l, x), E(2, x) are polar. 

Proof C~oose for j= 1,2 a sequence {<>(j, k)h of regular domains in Qj such that for 
every k <>(j, k+ l)C<>(j,k) and n <>(j, k)= {Xj}. Let u be associated to E in QI x Qz. 

k 
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By means of two balayage procedures one easily constructs, for each k, a function 
UkE2-S+(01 x(2) such that Uk~U, uk=u on 

(01 - 0(1, k)) X (02 - 0(2, k)), and UkE 2 - H+ (0(1, k) x 0(2, k)). 

Put Ak =(2kuk(X))-1 and W= L AkUk. Then W is in 2- S+(Ol x (2)' since W(x) < 00, 

and W = 00 except on 
({Xl} x E(l, x))u(E(2, X) x {x 2 }). 

Since E(1, x) and E(2, x) are polar there exist Vi in S+ (Oi)' i = 1, 2, with v1 = 00 on 
E(2, x), V1 (Xl) < 00, and V2 = 00 on E(l, x), V2(X 2 ) < 00. Let hiE H+ (Oi)' i = 1,2, be 
arbitrary. Then v=w+h1@V2 +V1@h 2 is clearly associated to E and finite at x. 
The proof is complete. 

Using a similar proof one can show 

Corollary 2.5. Let E be 3-polar and x=(X p X2,X3 )¢;E. Then there is an associated 
function finite at x if and only if all the 1 sections of E through x are 2-polar and all 
the 2 sections of E through x are polar. 

3. Negligible Sets 

Definition 3.1. Let U be an open subset of 01 x 02' E C U is said to be 2-negligible 
in U if there exist polar sets Pi in 0i' i= 1,2, such that for all Xl in 01 - P 1 the 
section E(l, Xl) is polar in 02 and for all x2 in 02 - P 2 the section E(2, x 2 ) is polar 
in 01 (see Definition 2.2). 

We remark that even though these sets are small in a potential theoretic sence 
there is no Fubini type theorem for 2-negligible sets. For example if 

H = {(Zl' Z2)E U2 :Imzl = Re(zl + Z2) =o}, 
where U is the unit disc in the complex plane and the harmonic functions are the 
twice continuously differentiable solutions of Laplace's equation, then for any Z2 

the section of H through Z2 is polar (a single point) whereas for every real Zl in U 
the section of H through z 1 is a line segment. Thus H is not 2-negligible and it is 
therefore necessary to include both sets of sections in Definition 3.1. 

Definition 3.2. Let U be an opt;!n subset of 0 1 x 02 X 03' Ec U is said to be 
3-negligible in U if there exist polar sets Pi in 0i' i = 1, 2, 3, such that for all Xi in 
0i-Pi the section E(i,xi) is 2-negligible in fI OJ. 

j*i 

It is obvious that E in Definition 3.1 is 2-negligible in U if and only if it is 
2-negligible in 01 x 02' We may thus refer to sets as being 2-negligible without 
reference to U. The same remark applies to Definition 3.2. 

Observe the fundamental difference between 2 and 3-negligible sets. The 
difference comes from the fact that in the product of two Brelot spaces a section 
lies in a single Brelot space while in a product of three Brelot spaces a 1 section still 
lies in a product space. Thus the case n = 3 is the model for the general case of 
n-negligible sets in 01 x ... x On where there are defined inductively. All results in 
this paper can be proved in this setting using the same proofs and induction. We 
consider the particular cases in this paper only for notational simplicity. 
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It is true, however, that even though there is a fundamental difference between 
2 and 3-negligible sets the proofs of theorems in most cases for n = 3 follow from 
the n = 2 case precisely as the proofs for n = 2 follow from the n = 1 case. Thus in 
some cases we will give the proof for n = 2 and merely indicate any minor changes 
for n = 3. Furthermore, even if at times we do not explicitly mention it, all results 
dealing with 2-negligible sets which have analogues in 3-negligible sets are valid 
and vice versa. 

The following equivalent formulation of 3-negligible is easily demonstrated 
and we omit the proof. 

Proposition 3.3. E is 3-negligible if and only if the sets {XEQ2 x Q3 :E(2, 3,x) not 
polar in Ql}' {XEQl xQ2:E(1,2,x) not polar in Q3}, {XEQl xQ3:E(1,3,x) not 
polar in Q2} are 2-negligible. 

It is easily shown that a subset of a 3-negligible set and a countable union of 
3-negligible sets is 3-negligible. Thus, by the Lindel6f property of Ql x Q2 X Q3' a 
set locally 3-negligible is 3-negligible. Using this fact we show any set E e U 3-polar 
in U is 3-negligible. By the local property we may assume U = Ql X Q2 X Q3' Let 
vE3-S+(U) be 00 on E and (Xl'X2,X3) any point where v is finite. Then 
P={ZEQ1:V(Z,X2,X3)=00} is polar and v(z")E2-S+(Q2 xQ3) for ZEQ1-P, It 
follows that for such a Z E(1, z) is 2-polar, hence, by repeating the argument again, 
2-negligible. By symmetry E is 3-negligible. We remark that it is an open question 
whether or not 3-negligible implies 3-polar. 

One can easily generate 3-negligible sets. For if E is 2-negligible in Ql x Q2 then 
F=E x Q3 is 3-negligible. Indeed there exists Pi polar in Ql such that for 
Xl E Ql - Pi E(l, Xl) is polar in Q2' Then for such an Xl F(l, Xl)= E(1, Xl) x Q3 is 
2-polar hence 2-negligible in Q2 x Q3' Similarly there exists P 2 polar in Q2 such 
that for x zEQz-P2 F(2,x2) is 2-negligible in Ql xQ3' Finally for all X3EQ3 the 
section F(3, x 3) = E is 2-negligible in Q 1 X Q2' Thus F is 3-negligible. 

One can also show that the complement of 2 and 3-negligible sets is dense. For 
polar sets this is well known [3]. Suppose E is 2-negligible and E) U x V where if 
possible U e Q 1 and Ve Q 2 are nonvoid open. There exists a polar set P e Q 1 such 
that for ZE Ql - P E(l, z) is polar. Since P cannot contain U we may choose X in 
U - P. For this point E(l, x) is polar and it contains V. It follows Vis void proving 
the result. 

Proposition 3.4. Let E be 3-negligible, UeQ l xQ2xQ3 open, x=(Xl ,X2,X3)EU, 
and vE3-S(U). Then 

V(X) = lim inf v(z). 
z-+x 

ZEU-E 

(1) 

Proof There exists a Gb polar set peQl such that for Zl in Ql -P E(l,Zl) is 
2-negligible in Q2 x Q3' It follows there is a Gb polar set Q(Zl) in Q2 depending on 
Zl such that for any Z2 in Q2-Q(Zl) E(1,2,(Zl'ZZ)) is polar in Q3' For such a Zl and 
Z2 let R(Zl,Z2) by a Gil polar set in Q3 containing E(1,2,(Zl,Z2))' Now suppose if 
possible (1) fails. Then there exists a neighbourhood W of X and e >0 such that v(z) 
~ v(x) + e on Wn(U - E). For each i = 1,2,3 choose a sequence {J(i, k)h of regular 
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domains in Q i such that for all k <5(1, k) x <5(2, k) x <5(3, k) e W, «:5(i, k)) <5(i, k + 1), and n «:5(i, k) = {xJ By Fubini's theorem we obtain 
k 

S vd((l~~l,k) X (l~~2,k) X (l~~3,k)) 

= S d(l~~l,k)(Zl) S dQ~~2,k)(z2) S V(Zl' Z2' z3)d(l~~3,k)(z3) 
ZI¢P Z2¢Q(ZI) z3¢R(ZI,Z2) 

~(v(x) + s) S d(Q~~l,k) X (l~~2,k) X (l~~3,k)). 

Letting k-+ 00 gives v(x) ~ v(x) + s which is impossible. This completes the proof. 

4. Principal Results 

We will demonstrate the following convergence theorem. Recall that it is necessary 
to assume axiom D in order that the convergence theorem is valid on each Qi' 

Theorem 4.1. Let UeQ l xQ2 xQ3 be open and (vk)e3-S(U) a uniformly locally 
lower bounded and decreasing sequence with limit function v. Then v is in 3 - S(U) 
and equals v everywhere except on a 3-negligible set. 

By the local property for 3-negligible sets we may assume without loss of 
generality that U is Q1 X Q2 X Q3 and v is nonnegative. This we do for the 
remainder of the proof. 

We begin by proving the analogous result on Q1 x Q2' 

Theorem 4.2. Let (vk)e2- S+(Q 1 x (2) be a decreasing sequence with limit function 
v. Then v is in 2- S+(Q 1 x (2) and equals v except on a 2-negligible set. 

We introduce the following notation. If f is an extended real valued function on 
Q1 x Q2' 11 and 12 are defined on Q1 x Q2 by 

11(xl' x 2) = lim inff(z, x 2), 12(xl' x 2) = lim inff(x1, z). 
Z-Xl Z-X2 

Lemma 4.3. Let (wk)e2-S+(QI x (2) be a decreasing sequence with WI locally 
bounded. Denote the limit function by w. Suppose for every k and Xl in Q1 

X 2-+Wk(Xl'X2) is harmonic. Then w=w everywhere except a 2-polar set of the form 
pxQ2 where P is polar in Ql' In addition w=w1• 

Proof. Let x=(x 1,x2) be any point of Q1 xQ2 and for i=1,2 let {w(i,l)h be a 
sequence of regular domains in Qi such that w(i, 1+ 1)ew(i, /) and n w(i, I) = {xJ 

Since w is nearly 2-superharmonic [8J, Proposition 1.1 says 

w(x)=s~p H wd(l~:I,l)d(l~;2,1). 

Now by assumption we have for each k and I 

SS w dnw(1,l)dnW(2,1)=Sw (. x )dnW(l,I) 
k ,,"XI ,,"X2 k , 2 ,,"Xl 

I 

(1) 

thus the Monotone Convergence Theorem implies it is also true for w. Hence by 
(1) and Proposition 1.1 we get the last assertion w(x)=w1(x). 
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The sequence {Jw("x2)dQ;~l,l)h is nondecreasing. Since for every z the 
mapping X2~W(Z,X2) is harmonic (axiom 3) it follows that for every Xl in Q l and 
positive integer I, X 2 ~ J w( ., x2)d{!;~l,l) is harmonic and by axiom 3 we deduce that 
X2 ~Wl(Xl' x 2 ) is a harmonic function on Q2' We show now that the set 

E= {XEQI x Q 2 :wl(x)<w(x)} 

is contained in a set of the form P x Q 2 where P is polar in Ql' For x 2 in Q 2 define 

E(x2) = rYE Ql :wl(y, X2) < w(y, x 2)}. 

This set is polar by the convergence theorem on Ql' Now fix any x~ in Q2' We 
claim E CE(x~) x Q2' For if (Xl' x 2) is in E, since Z~W(Xl' z) and Z~Wl(Xl' z) are 
both harmonic on Q 2 and Wl(Xl,X2)<W(Xl,X2) it follows that Wl(Xl,Z)<W(xl,z) 

for all Z in Q2' in particular for z=x~. Thus Xl is in E(x~) and the claim is proved. 
This completes the proof. 

Lemma 4.4. Let (vk) and v be as in Theorem 4.2 with VI locally bounded. Then 1)1 i:s 
Borel measurable. 

Proof Let a be any real number. We must show E = {x : vl(x);;:; a} is a Borel set. Let 
{WI} be a countable base of relatively compact open subsets of Q l' Then it is easy 
to see that 

E= n u {(X l ,X2)EQl x Q 2 :x l EWI , v(z,x 2 );;:;a-! for all Z in WI}' 
m I m 

It thus suffices to show that for any relatively compact open set W in Q i and real 
number b 

is Borel. But this set is just 

wx {x2EQ2:v(z,x2);;:;b for all Z in w}. 

Thus we need consider only the latter set in this product and that is 

n {X2EQ2 :viz,x2»b- ~ for all Z in w}. 
k,l 

By a simple compactness argument each set in this intersection is open. This 
completes the proof. 

Lemma 4.5. Let Wi' w 2 be relatively compact domains in Qi' Q 2 respectively and v a 
nonnegative locally bounded 2-superharmonicfunction defined on a neighbourhood of 
Wi x w2 • Then the mapping 

W:(X X )~JJ vd"w'd"W2 
l' 2 t"'Xt rX2 

is the greatest 2-harmonic minorant of v on Wi x w2. 

Proof Since v is 2-superharmonic on a neighborhood of Wi x w2 it follows from 
Proposition 1.4 that W is in 2-H+(wi X( 2 ) and it is a minorant ofv on Wi XW 2. 
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Now let u be a 2-harmonic minorant of von W 1 x w 2• By axiom D, for any x 2 in w 2 

the greatest harmonic minorant of X1 -+V(X 1,X2) on w 1 is x 1 -+ S v( "x2)df1~11. Thus 

U(X 1,X2);:;;;S v(-,x2)df1~i on w 1 x w2. 

If {(\} is a relatively compact exhaustion of W 2 then for all (xl'x 2) in w 1 x w2 and 
all large k 

(1) 

Let k-+oo. Since for each Xl in w 1 the mapping g:z-+S v(-,Z)df1~ll is locally 
bounded and in S+(w2 ) the last expression in (1) converges to the greatest 
harmonic minorant of g on w 2 evaluated at x 2 • Axiom D implies this is just 

x 2 -+ S gdf1~~ = Sf Vd(f1~ll X f1~;). 

Thus (1) gives 

and we are done. 

Corollary 4.6. Let w 1' W 2 be relatively compact domains in Q1' Q2 respectively and 
(vk), v as in Theorem 4.2 with v1 locally bounded. Then for all (Xl' X2) in w 1 x W z 

(1) 

and hence for i = 1,2 

Sf Vdf1~idf1~~ = Sf f/df1~idf1~~. 
Proof For each k and x=(x 1,x2) in w 1 x w 2 we have Sf vkdf1~idf1~~;:;;;Vk(X), Letting 
k-+ 00 gives the same result for v. Furthermore, since 

g:(Xl'X 2 )-+ Sf Vdf1~lldf1~~ 
is in 2- H+(w 1 x w2), it is in particular continuous, hence it minorizes V. Now v is 
locally bounded and 2-superharmonic. Thus g minorizes the greatest 2-harmonic 
minorant of v on w 1 x w 2 • The lemma gives us then 

The reverse inequality being obvious, we have (1). Finally (2) holds since v;:;;; Vi ;:;;;v. 

Proof of Theorem 4.2. We suppose first v1 is locally bounded. Let b be a regular 
domain in Q2' Define 

F = {(Xl' X2)E Q 1 X b: S V1(X 1, • )dQ~2 < S v(X 1, • )dQ~2}' 

We show F is 2-polar.Define, for each positive integer k and (xl'x2 ) in Q 1 x b, 

Wk(X 1, x 2)= S Vk(X 1, • )dQ~2 and W(Xl' x 2) = J v(Xl' . )dQ~2' 

Then we may apply Lemma 4.3 to {wd and wand deduce w = w except on a 
2-polar subset of Q1 x b. In order to show F is 2-polar it therefore suffices to prove 

that '( ) S'l( )d {j (1) wXl'x2 = v Xl" QX2' 
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Let (X 1,X2) be any point in Q 1 x ~ and let {WI} be a sequence of regular domains 
with Wl+ 1 ew, and n w,= {Xl}' Again by Lemma 4.3 , 

\1.{X1, X2) = W1(X1, X2) 

= sup S w( ., x 2)de':: , 
= sup S S vde~2de';: , 
= sup IS il1de~2de';: (Corollary 4.6) , 
= S il1(X1, . )de~2' 

[This last equality holds by applying Proposition 1.1 to y~ S il1(y, . )de~2.J We have 
therefore (1) and shown F is 2-negligible. 

Now for i = 1, 2 let !?41 be a countable base of open sets of Q i consisting of 
regular domains. Define the sets G l' G 2 by 

G1= U {(X1,X2)EwxQ2:Sil2("X2)de,;,<SV(-,X2)de';,}, 
wefMl 

GZ = U {(Xl' XZ)E Q 1 X w: S il1(X1, . )de';2 < S V(X 1' • )de';,}. 
OJE9D2 

We have shown each Gi is 2-polar. Define K={XEQ1xQ2:il1(X)<V(x) and 
ilZ(x) < v(x)}. K is 2-negligible by the convergence theorem on Q 1 and Q2' Thus 
E = K u G 1 U G 2 is 2-negligible and we will be done if we can show that for 
X =(x1, x2) in Q 1 x Q2 - E, il(x) =v(x). Without loss of generality we may assume 

ill(x)=v(x). (2) 

There are sequences {w(i,l)}, in !?4i' i=1,2, such that w(i,l+l)ew(i,l) and n w(i, 1) = {xJ Now for every k the doubly indexed sequence S vkd(e';~I,') x e,;!2.m») , 
increases in one index if the other index is fixed. The Monotone Convergence 
Theorem then gives the same result for v. Therefore 

il(x) = s,~f S vd(e';~I,,) x e,;!2,m») 

= s~p S de';~l,,) s~p S vde,;!2,m) 

=sup S il2( ·,x2)de';~l,,) , 
~sup S v( ·,xz)de';~l,') , 

[since w(l, 1)E!?41 and x¢G IJ 
=ill(x) 

= vex) [Eq. (2)]. 

This completes the proof of Theorem 4.2 in case VI is locally bounded. The general 
case is deduced precisely as the general case for the analogous theorem on Q1 is 
deduced [3, Theorem 27]. The proof is complete. 
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Proof of Theorem 4.1. We merely sketch the proof, it being similar to the above. 
Using Theorem 4.2 we can prove versions of Lemma 4.3 and Corollary 4.6 on 
Q 1 x Q 2 X Q 3 where the analogue of the 2-polar set in Lemma 4.3 is a 3-negligible 
set. Consider now the following notation. For f an extended real valued function 
on Q 1 x Q 2 X Q 3 define J1 and? on Q 1 x Q 2 X Q 3 by 

J1(x1,x2,x3)=liminff(z,x2,x3)' f(X 1,X2,X3)= liminf f(x 1,z). 
Z~Xl - Z-(X2.X3) 

J2, J3, J2, P are also defined in the obvious ways. The functions J1, jZ, J3 are 
shown to be Borel measurable precisely as in Lemma 4.4. Now for i-= 1), flet fJ6; 

be a countable base of open sets of Q; consisting of regular domains. The set G 1 is 
defined by 

G1 = U {(Xl' X2, X3)EW X Q2 X Q 3: S !l(., X2' x3)dQ~1 < S vC, X2' X3)dQ~.} 
WEas1 

and the sets G2,G3 defined in the obvious ways as a union over fJ6 2 ,fJ63 

respectively. Put 

3 

K = n {XEQ1 x Q 2 X Q 3 :v;(X) < v(X)} . 
;= 1 

Using Theorem 4.2 and the techniques involved in its proof each of the sets G; and 
3 

K are 3-negligible and one can show that outside of K u U G;, v = v. The proof is 
;= 1 

complete. 
Now by using the topological lemma of Choquet [3] we deduce easily the 

general form of the convergence theorem. 

Theorem 4.7. Let (v;)C 3 - S(U) be a uniformly locally lower bounded family with 
pointwise irifimum v. Then v is in 3 - S(U) and equals v except on a 3-negligible set. 

We now prove the following extension theorem. 

Theorem 4.8. Let N be a closed 3-negligible subset of an open U and VE 3 - S(U - N) 
locally lower bounded near N. Then there exists a unique element of 3 - S( U) which 
equals v on U - N. 

A theorem of this type was investigated in a product of Euclidean spaces 
9lP x 9lP, p, q ~ 3, by Avanissian [0] where he extended 2-harmonic functions 
across sets of the form {(X, y)E 9lP x 9lQ:x=0}. Our methods are quite different. 

As in the case of the convergence theorem we begin by proving a similar result 
on Q1 x Q2. 

Theorem 4.9. Let N be a closed 2-negligible subset of an open set U and 
VE 2 - S( U - N) locally lower bounded near N. Then there is a unique element of 
2 - S( U) which equals v on U - N. 

Remark. We first remark that the analogous result on a single Brelot space is easily 
proved [3]. 

Observe that by the local property for 2-superharmonic functions we may 
assume U = Q 1 X Q 2 and this we do for the remainder of the proof. 
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Define h on U to be v on U - N and lim inf v(z) for x in N. Note h is Borel 
z-+x 

ZEU-N 

measurable. Proposition 3.4 implies that if the existence part of the theorem holds 
then the extension must be h. This gives the uniqueness assertion. However, we 
cannot show directly that h is in 2- S(U). The idea of the proof is to extend v(x1' .) 
hyperharmonically for "most" Xl using the fact that the theorem holds on Q2. This 
extended function is of course just limit infimum in the last variable. Notice this 
gives a function which majorizes h(x 1 , .). 

Proof of Theorem 4.9. Since N is 2-negligible there is a Gii polar set l? such that if Zl 
is in Q1 - P N(l, Zl) is polar in Q2. Thus, for each such Zl' the mapping Z2 --+V(Zl' Z2) 
can be extended to one that is hyperharmonic on Q2. Thus, by a slight abuse of 
notation, we will assume v is defined everywhere on U except 

M =N n{(zl' Z2)E U :Zl E P} 

and, for each Zl in Ql-P, the mapping Z2--+V(Zl,Z2) is hyperharmonic on Q2. As 
we observed in the remark this mapping majorizes h(Zl'·) for such Zl· 

Since M is contained in P x Q 2 it is 2-polar in Q 1 x Q2. Therefore there exists 
UE 2 - S+ (U) such that U = 00 on M. Define, for each positive integer k, Uk on U by 

uk(z)=v(z)+k- 1u(z) U-M 

00 M. 

We claim Uk is nearly 2-superharmonic on U. Clearly it is locally lower bounded. 
Let 01,02 be regular domains and x=(X1,X2)E01 x O2. We must show that 

r ukd(Q:~ x Q:~)~Uk(X). (1) 

N is a Borel set and so it follows easily by Fubini's theorem that it has product 
measure zero. Since Uk equals the locally lower bounded Borel function h + k- 1u 
on U - N (here they are both just v + k-1u) we deduce from Fubini's theorem that 

r ukd(Q:~ x Q:~) = J(h + k-1U)d(Q:~ x Q:~) 
= S dQ:~(Zl)S(h+k-1U)dQ:~ 

Zl¢P 

::; -S dniil (z ) S U dnii2 
- ~Xl 1 k ~X2 

Zl¢P 

~ J Uk(Zl,X2)dQ:~(Zl) 
Zl¢P 

since for ZlEQ1-P the mapping Z--+Uk(Zl'Z) is hyperharmonic. Thus (1) will be 
proved if we can show 

(2) 

Suppose first x is in U - N. Since N is 2-negligible there exists a polar set Q C Q 2 
such that if Z2 is in Q2 - Q N(2, Z2) is polar in Q1. Ifx2 is in Q2 - Q then (2) holds. 
Indeed there exists a hyperharmonic function on Q 1 which equals z--+uk(z, x2) 
except on N(2, x 2), a Borel (closed) set of Q:~ measure zero. Now use the fact that Xl 

is not in N(2, x 2). If x2 is in Q, since Uk is 2-hyperharmonic on U - N, N is closed, 
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and Q is polar, it follows that there is a sequence {Yl} in Q2 converging to x 2 such 
that for every 1 wtQ, (Xl'Yl)¢N, and 

uk(x) = lim inf Uk(X l , Yl). 
l~oo 

Thus from the previous case we have for each 1 

Uk(X l , Yl);S I uk(z, Yl)de~: . 
z¢P 

Letting 1--+ 00 gives 

Uk(X) = lim inf Uk(X l , Yl) 
l~oo 

sliminf I UiZ'Yl)de~:(z) 
l~ 00 z¢P 

~ I Uk(z,x2)de~:(z) 
z¢P 

(4) 

(5) 

(6) 

(7) 

by Fatou's lemma and the fact that for z¢P the mapping uk(z,·) is lower 
semicontinuous. Thus (2) holds if x is in U - N. If x is in M it is trivial that (2) 
holds. Finally suppose x is in N - M. Then Xl is not in P and therefore N(l, Xl) is 
polar. Since uk(x p .) is hyperharmonic there is a sequence {Yl} in Q 2 such that 
Yl¢N(1,x l ), {yz} converges to X2' and uk(x)=liminfuk(xl'Yl)' Since (Xl'Yl)¢N we 

l~oo 

may apply a previous case and proceed exactly as in inequalities (4H7) to deduce 
(2) holds. Thus Uk is nearly 2-superharmonic. 

Define w on U by w(x) = lim inf uk(x). Then w is easily seen to be nearly 
k~oo 

2-superharmonic and hence w is 2-superharmonic and w = v on U - N. Indeed 
w = v on the subset of U - N where U is finite, that is everywhere on U - N except a 
2-polar set, hence a 2-negligible set. Thus by Proposition 3.4 w is the required 
extension and we are done. 

With this result Theorem 4.8 can now by proved by first extending v(x p ') 

2-hyperharmonically for Xl outside a polar set and then proceeding exactly as in 
the proof of Theorem 4.9. 

Corollary 4.10. Let h be 3-harmonic on U - N and locally bounded near N. Then h 
has a unique 3-harmonic extension to U. 

5. Some Applications 

We consider now the special case of open subsets of <cn• Although there is no 
positive potential in <C we still have the notion of a polar set as a set on which a 
superharmonic function (no longer positive) takes the value 00. With this 
definition of polar we can define the 2 and 3-negligible sets exactly as before. One 
shows easily that a countable union of 3-negligible sets is 3-negligible. With this 
fact we can extend all properties of 3-negligible sets that are of a local character to 
this setting. In particular Theorems 4.1 and 4.8 are valid. 
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Let c denote the interior logarithmic capacity on ([. For E C ([" the quantity 
I' n(E) is defined inductively as follows: 

Y1(E)=c(E), Yn(E)=C{ZE([:Yn-1 {Z'E([n-1 :(z,z')EE} >O}. 

Ronkin's r-capacity F,,(E) is defined to be 

sup {Yn(exE): ex a complex unitary transformation of (["} . 

Cegrell [5J has proved the following result. 

Proposition 5.1. If E is universally capacitable then 

rn(E) = caP2 {ZE ([ :Yn- 1 {Z' E([n- 1 :(Z, Z')E E} > O}, 

where cap2 is the outer logarithmic capacity on ([. 

We consider now the relationship between the 3-negligible sets and sets of 
vanishing Ronkin r-capacity. 

Proposition 5.2. Let E be Borel with r3(E) = O. Then for every complex unitary 
transformation ex of ([3 ex(E) is 3-negligible. 

Proof Observe first that if FC([2 is Borel with Y2(F)=0 and 

1'2 {(Z l' Zz)E ([2 :(Zz, Z l)E F} =0 

then F is 2-negligible. Suppose ex is complex unitary. Let (J be one of the two 
permutations of {2,3}. The mapping P(Zl,ZZ,Z3)=(Zl,Z"Z,Z,,3) is complex unitary 
hence Y3(P- 1exE)=0. Therefore there exists P" polar such that if Zl is in ([-P" 

1'2 {(z,,- 1Z' Z,,- 13)E ([z :(Z l' Zz, Z3)E exE} =0. 

Put Q1 = UP". By the observation at the beginning of the proof we have that if Zl 
" is in ([ - Q1 {(zz, Z3)E([2 :(Z l' Zz, Z3)E exE} is 2-negligible. Now consider P 1 (Z l' Zz, Z3) 

=(ZZ,Zl,Z3)' Since P1ex is unitary, from what we have just seen there exists a polar 
set Qz such that if Z 1 is in ([ - Qz {(zz, Z3)E ([Z :(Z l' Zz, Z3)E P1 exE} is 2-negligible. By 
relabelling we see that for Zz in ([ - Qz {(Z l' Z3)E ([Z :(Zl' Zz, Z3)E exE} is 2-negligible. 
Finally, by taking PZ(Zl,ZZ,Z3)=(Z1'Z3'ZZ)' as above we see there exists Q3 polar 
such that if Z3 is in ([-Q3 {(Zl,Zz)E([2:(Zl,ZZ,Z3)EexE} is 2-negligible. This 
completes the proof. 

The converse is trivial to prove. Note that it does not require E to be Borel. 

Proposition 5.3. Let E be a subset of ([3. If E is 3-negligible then Y3(E) =0. 
Consequently, if for every complex unitary transformation ex ex(E) is 3-negligible, 
r3(E) =0. 

Denote the plurisuperharmonic functions on U C([3 by P Sup(U). Clearly they 
are contained in 3 - S(U). We shall prove a convergence theorem for decreasing 
sequences of such functions. The first such result was proved by Lelong [12J with 
the additional requirement that the regularized limit function be pluriharmonic. In 
this case the exceptional set is pi uri polar. The result we shall show was proved by 
Ronkin [13J without additional assumption. Following the work of Favorov [6J 
Cegrell also proved this result using a general theory of product capacity. For a 
stronger version of this theorem see Bedford and Taylor [1]. 
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Theorem 5.4. Let V C([:3 be open and (vk) C P Sup(V) a decreasing sequence that is 
uniformly locally lower bounded. Then the limit function v differs from v at most on a 
set of vanishing Ronkin r-capacity. 

Proof Let E = {ZE V: v(z) < v(z)} and a any complex unitary transformation of ([:3. 

Then by Theorem 4.1 a-IE={ZEa-IV:va(z)<va(z)} = {zEa- 1V:1ia(z)<va(z)} is 
3-negligible. Thus by Proposition 5.3 r3(E) = 0 and we are done. 

Finally we prove an extension theorem In this setting. It was originally proved 
by Cegrell [4]. 

Theorem 5.5. Let VC([:3 be open, EcV closed, and vEPSup(V-E) locally lower 
bounded near E. Then there exists a unique w in P Sup( V) such that w = v on V-E. 

Proof The uniqueness follows immediately from Proposition 3.4. 
We know from Theorem 4.8 that there is at least an extension win 3 - S(V). We 

will show for every complex unitary transformation a of ([:3 that wa is in 
3 - S(a- I V). Since wa is lower semicontinuous it is enough to show, for every 
x=(X I,X 2,X3) in a-IV and 15 1,15 2,153 regular neighbourhoods of X 1,X2,X3 re
spectively with j1 x j2 X j3 ca- 1 V, that 

SSS wad(]~~d(]~~d(]~~ ~ wa(x). 

Suppose first x is in a- 1 V - a- 1 E. By Theorem 4.8 there exists v1 E 3 - S(a- I V) 
which equals va on a-I V - a- 1 E. It follows 

SSS wadnOldn02dn03 =SSSv dnOldn02dn03 
~Xl ~X2 ~X3 1 ~Xl ~X2 ~X3 

~VI(X) 

= (va)(x) 

=(wa)(x). 

In general there is a sequence {i} = {(y1.\ y2.\ y3.k)} in V converging to a(x) such 

that yk is in V - E and w(a(x))=liminfw(yk). Put xk=a- 1(i). By the previous case 
k-+ 00 

HI Wad(]~k.ld(]~bd(]~t3 ~ wa(xk) 

and letting k-'> 00 gives the same result for x. Thus wa is in 3 - S(a- 1 V). It follows 
w is plurisuperharmonic. The proof is complete. 
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