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0. Introduction

The sets that are polar have been very important in characterizing the exceptions
of several properties, most notably the irregular boundary points in the study of
the Dirichlet problem. In this connection the Great Convergence Theorem of
Cartan-Brelot, both in the classical case and in the more recent axiomatic study of
superharmonic functions, has been extremely useful. In this paper we shall prove a
generalization of this well-known result for a family of multiply superharmonic
functions. More precisely we consider the set of points where v=0, v being the
pointwise infimum of an arbitrary family of uniformly locally lower bounded
multiply superharmonic functions and 9 its lower semicontinuous regularization.
Contrary to the natural expectation this exceptional set does not seem to be
multipolar viz., a set where a positive multiply superharmonic function takes the
value co. In [9] Gowrisankaran introduced a notion of exceptional sets in the
product space C". We extend this idea to consider n-negligible sets in a product of
n spaces of Brelot. Our principal result (Theorem 4.1) is that the exceptional sets
are n-negligible. We give as application a simple proof of a known result
concerning the convergence of a decreasing sequence of plurisuperharmonic
functions. We also develop some properties of multipolar sets and further
properties of n-negligible sets.

1. Preliminaries

We begin by recalling some results associated with a finite product of Brelot
spaces. For Details see [7, 8, 14].

Let Q,,...,Q, be Brelot spaces each with a positive potential, a countable base
of open sets, and satisfying axiom D. We denote the n-superharmonic (respectively
n-harmonic) functions on an open set U of 2, x ... x @, by n— S(U) [respectively
n—H(U)]. Let %, be a base of regular domains for @, i=1,...,n. The following
proposition [8] will be of fundamental importance in proving the convergence
theorem.
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Proposition 1.1. If v is in n—S(%#,,...,%,) and not identically oo, then ¥ is n-
superharmonic and for each x=(x,, ..., x,)
() =sup {Tvd(gf}l X ... x@ln):x;€8,€ R} .

We remark that the above family over which we take the supremum can be
replaced by any countable subfamily (6, ); for which 6, ;58; ;.,, ()9, ;= {x;},and
j
sup is actually a limit of an increasing sequence.
We now consider the “distinguished” Dirichlet problem on a product of
relatively compact domains w, X w,. For simplicity of notation we are taking n=2

although the analogous results clearly hold for any n. Let P, be the irregular
boundary points of w; and

P=(P;x P,)u(P; xw,)u(w, X P,).

For f real valued continuous on the distinguished boundary dw, x dw,, define ¢
on @, x®, by
O(xy,x,)=f(xy,x5) 0w, x dw,,
[fC x)dpd: w, X 0w, ,
§f(x1’ )dﬂfc’f 60)1 XW,,
512 x 132 oy x,,
where we integrate with respect to harmonic measure. Following the procedure of

Gowrisankaran in [7] where he proved the analogous result for regular domains
one can show

Proposition 1.2. ¢ is continuous on &, X @,— P, it is in 2— H(w, X w,), and the
mappings ¢(-,x,), ¢(x,, -) are harmonic for each x,€®,, X,€D,.

Consider now the following minimum principle [14].
Proposition 1.3. Let ve2— S(w, X w,) be lower bounded. If for all x in dw,x0w,

liminfu(z) 20,
then v=0 on w, X w,. o
Using this one can formulate and solve the “distinguished” Dirichlet problem
on w, Xxw, by means of the Perron-Wiener-Brelot method. Indeed for f an
extended real valued function on dw, X dw, put

U = {v:v lower bounded 2-hyperharmonic on w, X w, with limit infimum
= f at each point of dw, x dw,}.

«

Define the upper solution $?' *“2 to be the pointwise lower envelope of % and the
lower solution $¢**“2=— §! 2. By Proposition 1.3 §7* 2§72 f is said
to be resolutive if the upper and lower solutions are identical and 2-harmonic.
Using standard methods one can prove

Proposition 1.4. For any extended real valued function f on 6w, X 0w, and (x,, x,) in
W, X W,

H2 92 xy, x,) = [ fAUS: x 422
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and if f is p3! x pu2-integrable for one point (x,, x,) then it is integrable with respect
to all such measures and resolutive.

2. n-Polar Sets
Let U be an open subset of Q, x ... X Q.

Definition 2.1. PC U is said to be n-polar in U if there exists ven—S§ *(U) such that
P is contained in the set where v= 0o0. We shall say that any such v is associated to
Ein U. For U=Q, x ... xQ, we simply say P is n-polar.

Since an n-superharmonic function is finite on a dense subset of its domain it
follows any subset of P is n-polar in any open subset of U containing it. Observe
any set n-polar in U is contained in a G set n-polar in U since

{xeU:v(x)=00}= () {xeU:v(x)>m}.
mx1

As a consequence products of harmonic measures do not charge n-polar sets.

Clearly in Proposition 1.3, if the condition holds for all x except a set 2-polar in
Q, x Q,, then the conclusion still holds. It follows the function ¢ in Proposition 1.2
is the only one in 2— H(w, X @,) that is bounded on w, X w, and tending to fat all
points of dw, x 0w, except a subset 2-polar in Q, x Q,.

One can generate n-polar sets easily since if P is k-polar in Q, x ... x Q, then
PxQ, ., % .. xQ is n-polar in Q, x ... xQ,. We also have that a countable
union of sets n-polar in U is n-polar in U. The proof of this for n=1 extends easily.

For n=1 there is a local property for polar sets which implies the existence of a
global associated function [3]. We do not know if such a result holds for n>1 and
it is an open question whether or not a set n-polar in an open set is necessarily
n-polar.

Definition 2.2. Let E be a subset of Q, x Q,, x,€Q,, and x,€£2,. The section E(1, x)
of E through x is defined as {zeQ,:(x,,z)eE}. The section E(2,x) is
{zeQ, :(z,x,)e E}.

Definition 2.3. Let E be a subset of and (x,, x,,x;) a point of Q; xQ, x Q;. The
1-section E(1,x) [also denoted by E(1,x,)] of E through x is defined to be
{zeQ, x Q;:(x,,z)e E}. The 2-section E(1,2,x) (=E(1,2,(x,,x,)) is defined as
{zeQ,:(x,x,,z)e E}. The sections E(2,x), E(3,x), E(1,3,x), and E(2,3,x) are
defined in the obvious way.

For a polar set P in Q, it is true that for any point x of , —P there is a
function associated to P that is finite at x [3]. In the case of 2-polar sets this is false
since, as is easily seen, it is necessary for the sections P(1,x) and P(2, x) to be polar.
We prove this condition is sufficient.

Theorem 2.4. Let E be 2-polar and x =(x, x,)¢E. Then there exists v associated to E
finite at x if and only if the sections E(1, x), E(2,x) are polar.

Proof. Choose for j=1,2 a sequence {4(j, k)}, of regular domains in £; such that for
every k 8(j, k+1)Cé(j, k) and (") 6, k)= {x;}. Let u be associated to E in 2, x Q,.
k
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By means of two balayage procedures one easily constructs, for each k, a function
u,€2—S*(Q, xQ,) such that u, Su, u,=u on

(Q,—5(1,k)x (Q,—8(2,k), and we2—H*(5(1,k) % 82, K)).

Put A, =(2*u(x))"! and w=) A,u,. Then wis in 2—S*(Q, x Q,), since w(x)< oo,
and w= 00 except on
({x1} x E(1, x)) U(E(2, x) X {x,}).

Since E(1,x) and E(2,x) are polar there exist v; in $*(RQ)), i=1,2, with v, =00 on
E(2,x), v,(x,;)< o0, and v,=00 on E(1,Xx), vz(x2)<oo Let h,e H*(Q), i=1,2, be
arbitrary. Then v=w+h, ®v,+v,®h, is clearly associated to E and finite at x.
The proof is complete.

Using a similar proof one can show

Corollary 2.5. Let E be 3-polar and x=(x,,x,,x3;)¢E. Then there is an associated
function finite at x if and only if all the 1 sections of E through x are 2-polar and all
the 2 sections of E through x are polar.

3. Negligible Sets

Definition 3.1. Let U be an open subset of Q, x Q,. ECU is said to be 2-negligible
in U if there exist polar sets P; in ©,, i=1,2, such that for all x, in Q, — P, the
section E(1,x,) is polar in Q, and for all x, in Q,— P, the section E(2, x,) is polar
in ©, (see Definition 2.2).

We remark that even though these sets are small in a potential theoretic sence
there is no Fubini type theorem for 2-negligible sets. For example if

H={(z,,2,)e U*:Imz, =Re(z, +2,)=0},

where U is the unit disc in the complex plane and the harmonic functions are the
twice continuously differentiable solutions of Laplace’s equation, then for any z,
the section of H through z, is polar (a single point) whereas for every real z, in U
the section of H through z, is a line segment. Thus H is not 2-negligible and it is
therefore necessary to include both sets of sections in Definition 3.1.

Definition 3.2. Let U be an open subset of Q, xQ,xQ,. ECU is said to be
3-negligible in U if there exist polar sets P; in Q,, i=1,2,3, such that for all x, in
Q,— P, the section E(i, x;) is 2-negligible in H Q.

It is obvious that E in Definition 3.1 is 2 negligible in U if and only if it is
2-negligible in Q, x Q,. We may thus refer to sets as being 2-negligible without
reference to U. The same remark applies to Definition 3.2.

Observe the fundamental difference between 2 and 3-negligible sets. The
difference comes from the fact that in the product of two Brelot spaces a section
lies in a single Brelot space while in a product of three Brelot spaces a 1 section still
lies in a product space. Thus the case n=3 is the model for the general case of
n-negligible sets in Q, x ... x Q, where there are defined inductively. All results in
this paper can be proved in this setting using the same proofs and induction. We
consider the particular cases in this paper only for notational simplicity.
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It is true, however, that even though there is a fundamental difference between
2 and 3-negligible sets the proofs of theorems in most cases for n=3 follow from
the n=2 case precisely as the proofs for n=2 follow from the n=1 case. Thus in
some cases we will give the proof for n=2 and merely indicate any minor changes
for n=3. Furthermore, even if at times we do not explicitly mention it, all results
dealing with 2-negligible sets which have analogues in 3-negligible sets are valid
and vice versa.

The following equivalent formulation of 3-negligible is easily demonstrated
and we omit the proof.

Proposition 3.3. E is 3-negligible if and only if the sets {xeQ, x Q,:E(2,3,x) not
polar in Q}, {xeQ, xQ,:E(1,2,x) not polar in Q,}, {xeQ, xQ;:E(1,3,x) not
polar in Q,} are 2-negligible.

It is easily shown that a subset of a 3-negligible set and a countable union of
3-negligible sets is 3-negligible. Thus, by the Lindelof property of Q, x 2, xQ,, a
set locally 3-negligible is 3-negligible. Using this fact we show any set EC U 3-polar
in U is 3-negligible. By the local property we may assume U=Q, x Q, x @,. Let
ve3—S8*(U) be oo on E and (x,,x, x;) any point where v is finite. Then
P={zeQ, :v(z,x,,x;)=00} is polar and v(z,-)e2—S*(Q2, x Q) for zeQ, —P. It
follows that for such a z E(1, z) is 2-polar, hence, by repeating the argument again,
2-negligible. By symmetry E is 3-negligible. We remark that it is an open question
whether or not 3-negligible implies 3-polar.

One can easily generate 3-negligible sets. For if E is 2-negligible in 2, x Q, then
F=ExQ; is 3-negligible. Indeed there exists P, polar in Q, such that for
x,€Q,—P, E(1,x,) is polar in Q,. Then for such an x, F(1,x,)=E(l,x,)x @, is
2-polar hence 2-negligible in 2, x ;. Similarly there exists P, polar in 2, such
that for x,eQ,— P, F(2,x,) is 2-negligible in Q, x ;. Finally for all x;eQ; the
section F(3,x;)=E is 2-negligible in Q, x Q,. Thus F is 3-negligible.

One can also show that the complement of 2 and 3-negligible sets is dense. For
polar sets this is well known [3]. Suppose E is 2-negligible and ED U x V where if
possible UCQ; and V'CQ, are nonvoid open. There exists a polar set PCQ, such
that for ze Q, — P E(1, 2) is polar. Since P cannot contain U we may choose x in
U — P. For this point E(1, x) is polar and it contains V. It follows V is void proving
the result.

Proposition 3.4. Let E be 3-negligible, UCQ, x 2, X Q5 open, x=(x,,X,,x3)eU,
and ve3—S(U). Then

v(x)=liminfuv(z). 1)
zezl;)‘xE

Proof. There exists a G; polar set PCQ, such that for z, in Q,—P E(l,z,) is
2-negligible in Q, x Q. It follows there is a G; polar set Q(z,) in 2, depending on
z, such that for any z, in Q,— Q(z,) E(1,2,(z,,z,)) is polar in Q5. For such a z, and
z, let R(z,,z,) by a G; polar set in Q, containing E(1,2,(z,, z,)). Now suppose if
possible (1) fails. Then there exists a neighbourhood W of x and ¢ >0 such that v(z)
2v(x)+¢& on Wn(U —E). For each i=1,2,3 choose a sequence {d(i, k)}, of regular
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domains in , such that for all k &(1, k) x 82, k) x 8(3, k) C W, (i, k) D 8(i, k+ 1), and
() &G, k)={x;}. By Fubini’s theorem we obtain
k

§ vd(¥1+9 x @821 x g¥3.h)

X3
53,k
= j dec(ll’k)(zl) ) in(zz’k)(Zz) [ -2 Za)de(33 A(z3)
z1¢P 22¢Q(z1) z3¢R(z1,22)
Z(v(x)+e) f (@l x o371 x 357

Letting k— co gives v(x) Zv(x)+¢ which is impossible. This completes the proof.

4. Principal Results

We will demonstrate the following convergence theorem. Recall that it is necessary
to assume axiom D in order that the convergence theorem is valid on each Q.

Theorem 4.1. Let UCQ, x Q, x Q, be open and (v,) C3— S(U) a uniformly locally
lower bounded and decreasing sequence with limit function v. Then 1 is in 3—S(U)
and equals v everywhere except on a 3-negligible set.

By the local property for 3-negligible sets we may assume without loss of
generality that U is Q, xQ,xQ, and v is nonnegative. This we do for the
remainder of the proof.

We begin by proving the analogous result on €, x Q,.

Theorem 4.2. Let (v,)C2— S™(Q, X Q,) be a decreasing sequence with limit function
v. Then 9 is in 2—S*(Q, x Q,) and equals v except on a 2-negligible set.

We introduce the following notation. If f is an extended real valued function on
Q,xQ,, f! and f* are defined on Q, x Q, by

fl(xl,x2)=1izn3inff(z,xz), fz(xl,x2)=1izn3inff(xl,z).

Lemma 4.3. Let (w,)C2—S*(Q, xQ,) be a decreasing sequence with w, locally
bounded. Denote the limit function by w. Suppose for every k and x, in Q,
X, WX, X,) is harmonic. Then w=W everywhere except a 2-polar set of the form
P x Q, where P is polar in Q,. In addition w=W".

Proof. Let x=(x,,x,) be any point of Q, xQ, and for i=1,2 let {w(i,)}, be a
sequence of regular domains in €; such that @(i, [+ 1)Cw(i,)) and () w(i,])={x;}.
1

Since w is nearly 2-superharmonic [8], Proposition 1.1 says

W(x) = sup [§ wdo2*-Ddo2>h . (1)

X2
Now by assumption we have for each k and [
[ g2t 0dg2® = (-, x gl

thus the Monotone Convergence Theorem implies it is also true for w. Hence by
(1) and Proposition 1.1 we get the last assertion W(x)=W(x).
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The sequence {[w(-,x,)do?"'"}, is nondecreasing. Since for every z the
mapping x,—w(z, x,) is harmonic (axiom 3) it follows that for every x, in , and
positive integer I, x,— [ w(-, x,)do?*+" is harmonic and by axiom 3 we deduce that
x,—W!(x,,x,) is a harmonic function on Q,. We show now that the set

E={xeQ, xQ,:W(x)<w(x)}
is contained in a set of the form P x Q, where P is polar in Q,. For x, in Q, define
E(x,)={yeQ, W(y, X) <w(y, X,)} .

This set is polar by the convergence theorem on Q,. Now fix any x), in Q,. We
claim ECE(x}) x Q,. For if (x, x,) is in E, since z—w(x,,z) and z—>Ww'(x,,z) are
both harmonic on Q, and W'(x,,x,) <w(x,,x,) it follows that w'(x,, z) <w(x,, z)
for all z in Q,, in particular for z=x’,. Thus x, is in E(x}) and the claim is proved.
This completes the proof.

Lemma 4.4. Let (v,) and v be as in Theorem 4.2 with v, locally bounded. Then ' is
Borel measurable.

Proof. Let a be any real number. We must show E = {x:9!(x)=a} is a Borel set. Let
{w,} be a countable base of relatively compact open subsets of 2,. Then it is easy
to see that

E=NU) {(xl,xz)eQ1 X Q,:x,€m,0(z,x,)2a— ! forall zin c?;,}.
m I m
It thus suffices to show that for any relatively compact open set w in 2, and real

number b

{(x1,x,)eQ, XQ,:x,€w,0(z,x,)=b for all z in @}

is Borel. But this set is just
w x {x,€Q,:1(z,x,)2b for all z in @}.
Thus we need consider only the latter set in this product and that is
1 L
D {xzeQZ:vk(z,x2)>b— 7 for all z in w}
By a simple compactness argument each set in this intersection is open. This

completes the proof.

Lemma 4.5. Let w,, w, be relatively compact domains in Q,,Q, respectively and v a
nonnegative locally bounded 2-superharmonic function defined on a neighbourhood of
W, X @,. Then the mapping

wi(xy, Xx,) = [f vdulrdpl?
is the greatest 2-harmonic minorant of v on @, X @,.

Proof. Since v is 2-superharmonic on a neighborhood of w, x w, it follows from
Proposition 1.4 that w is in 2— H*(w, X ®,) and it is a minorant of v on w, X @,.
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Now let u be a 2-harmonic minorant of v on w, X w,. By axiom D, for any x, in 0,
the greatest harmonic minorant of x, —v(x,,x,) on w, is x, = [v(-, x,)du?*. Thus

u(xy, %) Sfo(-,x)dul on o, xw,.

If {6,} is a relatively compact exhaustion of w, then for all (x, x,) in , x w, and

all large k
g ulxy, %) = f ulx,, )dpl

<[ vdplrduls . (1)

Let k—oo. Since for each x, in w, the mapping g:z—»jv(-,z)d,u;“ll is locally
bounded and in S*(w,) the last expression in (1) converges to the greatest
harmonic minorant of g on w, evaluated at x,. Axiom D implies this is just

X, [ gaps? =[fvd(ug! x u?).
Thus (1) gives

ulx g, x,) < ffod(pt x pg2)=wix,, x,)
and we are done.

Corollary 4.6. Let ,,w, be relatively compact domains in Q,,Q, respectively and
(v, v as in Theorem 4.2 with v, locally bounded. Then for all (x,,x,) in v, X w,

J§ vy dpiz = Sdpe dpe: (1)
and hence for i=1,2
(fvdps; dugs =[] 'dug dps;

Proof. For each k and x=(x,, x,) in ®; X @, we have [ v,du'du?> <v,(x). Letting
k— oo gives the same result for v. Furthermore, since

g:(xy %)~ [f vdp? dp;

isin 2— H¥(w, X w,), it is in particular continuous, hence it minorizes o. Now o is
locally bounded and 2-superharmonic. Thus g minorizes the greatest 2-harmonic
minorant of ¥ on w,; X ®,. The lemma gives us then

§fodpdps; < ([ ddpg; dus?

The reverse inequality being obvious, we have (1). Finally (2) holds since 6 <8 Sv.

Proof of Theorem 4.2. We suppose first v, is locally bounded. Let J be a regular
domain in Q,. Define

F={(x,,x,)eQ, x&:[d'(xy, )dol, < [v(xy,)del.}.
We show F is 2-polar. Define, for each positive integer k and (x,,x,) in Q, x 6,
wilxy, X5)=[v,(xy, Mel, and  wixy,x;)=vlx,, )de},.

Then we may apply Lemma 4.3 to {w,} and w and deduce w=w except on a
2-polar subset of 2, x . In order to show F is 2-polar it therefore suffices to prove

th ; b
at W(xy, x,)=[ 9 (xy, -)dol, . (1)
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Let (x,,x,) be any point in Q, x d and let {w,} be a sequence of regular domains
with @, ,; Cow, and () w,={x,}. Again by Lemma 4.3
l

Wy, X,)=Ww(x,x,)

=sup [ (-, x,)de3;

=sup [{ vde; dof

=sup [ d'd? do?* (Corollary 4.6)
1

=[0*(x,, - )ddd,.

[This last equality holds by applying Proposition 1.1 to y— [ $'(y, -)de%,.] We have
therefore (1) and shown F is 2-negligible.

Now for i=1,2 let &, be a countable base of open sets of Q; consisting of
regular domains. Define the sets G,, G, by

G,= | {(xpx)ewxQ,: [8%(-,x)de?, < fu(-,x,)del )},

weBy

G,= gg {(x1,x,)€Q, X @: [ (xy, )2, < [v(x,, - )doL,} .
We have shown each G, is 2-polar. Define K={xeQ, xQ,:9'(x)<v(x) and
9%(x)<v(x)}. K is 2-negligible by the convergence theorem on @, and Q,. Thus
E=KuG,uG, is 2-negligible and we will be done if we can show that for
x=(xy,X,) in Q, X Q,— E, #(x)=v(x). Without loss of generality we may assume

tt(x)=v(x). )

There are sequences {w(i,l)}, in %, i=1,2, such that @(,/+1)Cw(i,]) and
() @i, )= {x;}. Now for every k the doubly indexed sequence | v,d(0? """ x 021*™)
1

increases in one index if the other index is fixed. The Monotone Convergence

Theorem then gives the same result for v. Therefore

80x) =sup fvd(g?}"" x 02,*™)

=sup [ do2 ™Y sup [vdeP>™
m

X2

=sup [ #°(-, x,)do3 ™"

2 sup ol x,)degy""
[since w(1,)e B, and x¢G,]
=b'(x)

=v(x) [Eq.(2)].

This completes the proof of Theorem 4.2 in case v, is locally bounded. The general
case is deduced precisely as the general case for the analogous theorem on @, is
deduced [3, Theorem 27]. The proof is complete.
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Proof of Theorem 4.1. We merely sketch the proof, it being similar to the above.
Using Theorem 4.2 we can prove versions of Lemma 4.3 and Corollary 4.6 on
Q, xQ, x Q, where the analogue of the 2-polar set in Lemma 4.3 is a 3-negligible
set. Consider now the following notation. For f an extended real valued function
on Q, xQ, xQ, define f* and f' on Q, xQ2, x 2, by

f"l(x,,x2,x3)=liminff(z,x2,x3), j‘(xl,xz,xs)= liminf f(xl,z).

f2 f3, J2. [ are also defined in the obvious ways. The functions f*, f2 13 are
shown to be Borel measurable precisely as in Lemma 4.4. Now for i=1,2,3 let %,
be a countable base of open sets of Q, consisting of regular domains. The set G, is
defined by

G,= U {(x 1, X0 x3)E@ X Qy X Q32 [ #(+, x5, x3)d0?, < [v(+, x5, X5)do? }

weBy

and the sets G,,G, defined in the obvious ways as a union over %, 4%,
respectively. Put

K= (3\ {xeQ, x Q, x Q;: D (x)<v(x)}.

i=1
Using Theorem 4.2 and the techniques involved in its proof each of the sets G, and
3
K are 3-negligible and one can show that outside of KU () G,, d=v. The proof is
i=1

complete.
Now by using the topological lemma of Choquet [3] we deduce easily the
general form of the convergence theorem.

Theorem 4.7. Let (v;)C3—S(U) be a uniformly locally lower bounded family with
pointwise infimum v. Then ¥ is in 3— S(U) and equals v except on a 3-negligible set.

We now prove the following extension theorem.

Theorem 4.8. Let N be a closed 3-negligible subset of an open U and ve3— S(U— N)
locally lower bounded near N. Then there exists a unique element of 3— S(U) which
equals v on U—N.

A theorem of this type was investigated in a product of Euclidean spaces
RPx RP?, p,q=3, by Avanissian [0] where he extended 2-harmonic functions
across sets of the form {(x, y)e R? x R?:x=0}. Our methods are quite different.

As in the case of the convergence theorem we begin by proving a similar result
on Q, xQ,.

Theorem4.9. Let N be a closed 2-negligible subset of an open set U and
ve2—S(U—N) locally lower bounded near N. Then there is a unique element of
2—S(U) which equals v on U— N.

Remark. We first remark that the analogous result on a single Brelot space is easily
proved [3].

Observe that by the local property for 2-superharmonic functions we may
assume U=Q, xQ, and this we do for the remainder of the proof.
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Define h on U to be v on U— N and liminfu(z) for x in N. Note h is Borel
zeU—-N

measurable. Proposition 3.4 implies that if the existence part of the theorem holds

then the extension must be h. This gives the uniqueness assertion. However, we

cannot show directly that h is in 2 — S(U). The idea of the proof is to extend v(x, -)

hyperharmonically for “most” x, using the fact that the theorem holds on €,. This

extended function is of course just limit infimum in the last variable. Notice this

gives a function which majorizes h(x,, -).

Proof of Theorem 4.9. Since N is 2-negligible there is a G, polar set P such that if z;
isin Q, — P N(1,z,) is polar in Q,. Thus, for each such z,, the mapping z,—v(z,, z,)
can be extended to one that is hyperharmonic on Q,. Thus, by a slight abuse of
notation, we will assume v is defined everywhere on U except

M=Nn{(z,,z,)eU:z,e P}

and, for each z, in Q, — P, the mapping z,—v(z,, z,) is hyperharmonic on Q,. As
we observed in the remark this mapping majorizes h(z,, -) for such z,.

Since M is contained in P x Q, it is 2-polar in £, x Q,. Therefore there exists
ue2—S*(U) such that u= o0 on M. Define, for each positive integer k, u, on U by

u(2)=v(2)+k 'uz) U-M
0 M.

We claim v, is nearly 2-superharmonic on U. Clearly it is locally lower bounded.
Let 8,,9, be regular domains and x=(x,,x,)€d, x J,. We must show that

Tud(@® x 0%2) Suy(x). 1)

N is a Borel set and so it follows easily by Fubini’s theorem that it has product
measure zero. Since u, equals the locally lower bounded Borel function h+k™'u
on U — N (here they are both just v+~ 'u) we deduce from Fubini’s theorem that

Tud(@? x 0%2)={ (h+ k™ *w)d( x 0%2)
= [ doli(z,)[(h+k ‘u)de?
z1¢P

< T doli(z,) [ ude?
z1¢P

< T wlzy, xz)dg';“(zl)
z1¢P
since for z,€Q, — P the mapping z—u,(z,,z) is hyperharmonic. Thus (1) will be
proved if we can show

T+, x,)del Su (). )

Suppose first x is in U— N. Since N is 2-negligible there exists a polar set QCQ,
such that if z, is in Q,—Q N(2,z,) is polar in Q,. If x, is in Q, — Q then (2) holds.
Indeed there exists a hyperharmonic function on €, which equals z—u,(z,x,)
except on N(2, x,), a Borel (closed) set of ch‘l measure zero. Now use the fact that x,
is not in N(2,x,). If x, is in Q, since u, is 2-hyperharmonic on U— N, N is closed,
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and Q is polar, it follows that there is a sequence {y,} in £, converging to x, such
that for every I y,¢0Q, (x,, y)¢N, and

u(x)= li{n infu,(x,,y).

Thus from the previous case we have for each /

w(x, )2 | wlz y)dod . @)

z¢P

Letting [— o0 gives

u(x)= li}l;l Zonf u (x4, ) (5)
2 lim inf T w(z y)del(2) (6)

A7) 4
2 [ ulzx,)dol(2) (7

z¢P

by Fatou’s lemma and the fact that for z¢P the mapping u(z,-) is lower
semicontinuous. Thus (2) holds if x is in U— N. If x is in M it is trivial that (2)
holds. Finally suppose x is in N— M. Then x, is not in P and therefore N(1,x,) is
polar. Since u,(x,, ) is hyperharmonic there is a sequence {y,} in €, such that
y#N(1,x,), {y,} converges to x,, and u,((x)=liln_1> infu,(x,,y,). Since (x,,y)¢N we

may apply a previous case and proceed exactly as in inequalities (4)~(7) to deduce
(2) holds. Thus u, is nearly 2-superharmonic.
Define w on U by w(x)=liminfu,(x). Then w is easily seen to be nearly
k— w0

2-superharmonic and hence W is 2-superharmonic and w=v on U — N. Indeed
Ww=v on the subset of U— N where u is finite, that is everywhere on U — N except a
2-polar set, hence a 2-negligible set. Thus by Proposition 3.4 W is the required
extension and we are done.

With this result Theorem 4.8 can now by proved by first extending v(x,, -)
2-hyperharmonically for x, outside a polar set and then proceeding exactly as in
the proof of Theorem 4.9.

Corollary 4.10. Let h be 3-harmonic on U— N and locally bounded near N. Then h
has a unique 3-harmonic extension to U.

5. Some Applications

We consider now the special case of open subsets of C". Although there is no
positive potential in € we still have the notion of a polar set as a set on which a
superharmonic function (no longer positive) takes the value co. With this
definition of polar we can define the 2 and 3-negligible sets exactly as before. One
shows easily that a countable union of 3-negligible sets is 3-negligible. With this
fact we can extend all properties of 3-negligible sets that are of a local character to
this setting. In particular Theorems 4.1 and 4.8 are valid.
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Let ¢ denote the interior logarithmic capacity on €. For ECC" the quantity
y(E) is defined inductively as follows:

y.(E)=c(E), 7y (E)=c{zeC:y,_,{ZeC" ':(z,Z)eE}>0}.
Ronkin’s I'-capacity I,(E) is defined to be
sup{y,(¢E): « a complex unitary transformation of C"}.
Cegrell [5] has proved the following result.
Proposition 5.1. If E is universally capacitable then
y(E)=cap, {zeC:y,_,{ZeC" ' :(z,2)e E} >0},
where Tap, is the outer logarithmic capacity on C.

We consider now the relationship between the 3-negligible sets and sets of
vanishing Ronkin I'-capacity.

Proposition 5.2. Let E be Borel with I(E)=0. Then for every complex unitary
transformation o of € «(E) is 3-negligible.
Proof. Observe first that if FCC? is Borel with y,(F)=0 and

y,{(z4, zz)E(l:2 (z,,2,)eF}=0

then F is 2-negligible. Suppose a is complex unitary. Let ¢ be one of the two
permutations of {2,3}. The mapping B(z,, z,, z3) =(2,, 245, 2,3) is complex unitary
hence y,(8 'aE)=0. Therefore there exists P, polar such that if z, is in C—P,

V24(z5-12,2,-13)€C? (2}, 25, 2;)€E} =0.
Put Q, =|J P,. By the observation at the beginning of the proof we have that if z,

isin C—Q, {(z,,25)€C?:(z,, 2,, ;)€ 2E} is 2-negligible. Now consider f,(z,, z,, z5)
=(z,,2,,2,). Since B, is unitary, from what we have just seen there exists a polar
set Q, such that if z, is in €—Q, {(z,, z;)e €*:(z,, z,, z;)€ B, E} is 2-negligible. By
relabelling we see that for z, in C—Q, {(z;,z;)e €*:(z,, z,,z;)€aE} is 2-negligible.
Finally, by taking f,(z,,z,,z;)=(z,, 23, 2,), as above we see there exists Q; polar
such that if z; is in €C—Q, {(z,,2,)€C*:(z,, 2, z;)€aE} is 2-negligible. This
completes the proof.

The converse is trivial to prove. Note that it does not require E to be Borel.

Proposition 5.3. Let E be a subset of €. If E is 3-negligible then y,(E)=0.
Consequently, if for every complex unitary transformation o o(E) is 3-negligible,
I(E)=0.

Denote the plurisuperharmonic functions on U CC2 by P Sup(U). Clearly they
are contained in 3— S(U). We shall prove a convergence theorem for decreasing
sequences of such functions. The first such result was proved by Lelong [12] with
the additional requirement that the regularized limit function be pluriharmonic. In
this case the exceptional set is pluripolar. The result we shall show was proved by
Ronkin [13] without additional assumption. Following the work of Favorov [6]
Cegrell also proved this result using a general theory of product capacity. For a
stronger version of this theorem see Bedford and Taylor [1].
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Theorem 5.4. Let U CC? be open and (v,) C P Sup(U) a decreasing sequence that is
uniformly locally lower bounded. Then the limit function v differs from © at most on a
set of vanishing Ronkin I'-capacity.

Proof. Let E={ze U:i(z)<v(z)} and « any complex unitary transformation of C3.
Then by Theorem 4.1 ™ *E={zea U :d(z) <volz)} ={zea ' U :va(z) <va(z)} is
3-negligible. Thus by Proposition 5.3 I3(E)=0 and we are done.

Finally we prove an extension theorem in this setting. It was originally proved
by Cegrell [4].

Theorem 5.5. Let UCT? be open, ECU closed, and ve P Sup(U — E) locally lower
bounded near E. Then there exists a unique w in P Sup(U) such that w=v on U —E.

Proof. The uniqueness follows immediately from Proposition 3.4.

We know from Theorem 4.8 that there is at least an extension w in 3— S(U). We
will show for every complex unitary transformation « of €* that wa is in
3—8(a"'U). Since wa is lower semicontinuous it is enough to show, for every
x=(x;,X,,X;) in a”'U and 6,,d,,0, regular neighbourhoods of x,,x,,x; re-
spectively with §, x §, x §;Ca~ U, that

§§f wado?:do%2de3s S wa(x).

Suppose first x is in &~ !U—a~*E. By Theorem 4.8 there exists v,€3—S(a™'U)
which equals va on o™ U —a™ *E. It follows

§f§ wade? do%do%: = [f v\ de3da%ide?
=< v1(x)
=(var) (x)
= (war) (x).
In general there is a sequence {y*} = {(y"'* y** y>*)} in U converging to a(x) such

that y* is in U— E and w(oc(x))=1i:n inf w(y*). Put x*=a " !(y*). By the previous case

[ wodoZi do%s. sd@li.s < wox)

and letting k— oo gives the same result for x. Thus wa is in 3— S(a™ ' U). It follows
w is plurisuperharmonic. The proof is complete.
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