


each θ0 ∈ R and h ∈ (0, 1),
σ(Sθ0) ≤ Chs,

where
Sθ0 := {reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h/2}.

Sets of the form Sθ0 are commonly referred to as Carleson squares.
In [3], Carleson proved that, for p > 1, a positive measure σ is 1-Carleson if

and only if there exists a constant C > 0 such that∫
D
|Pf(z)|p dσ(z) ≤ C‖f‖p

p for all f ∈ Lp(∂D),

where Pf is the Poisson integral of f and ‖f‖p
p =

∫
∂D |f(ζ)|pdλ(ζ), where λ is

the normalized Lebesgue measure on ∂D. In [4], Carleson obtained a similar
characterization for functions in the Hardy space Hp for 0 < p < ∞. In [8],
Duren extended the latter result as follows.

Theorem 1.1. [8] Let σ be a finite measure on D and let 0 < p ≤ q < ∞. Then
the following conditions are equivalent:

(a) There exists C > 0 such that(∫
D
|f(z)|q dσ(z)

)1/q

≤ C‖f‖p, for each f ∈ Hp. (1)

(b) σ is a q/p-Carleson measure.

Setting s = q/p, (1) can be stated as

‖f‖Lsp(σ) ≤ C‖f‖p, for each f ∈ Hp,

which is thus equivalent to σ being an s-Carleson measure.
There is an extensive literature on Carleson measures in one and several

variables. Carleson measures play a very important role in function theory
and operator theory. Such measures were introduced by Carleson to obtain a
solution to the corona problem [4]. More recently, Carleson measures have been
used to characterize the elements of some Banach spaces of analytic functions
such as the Bloch space [16], the space of analytic functions of bounded mean
oscillation BMOA and its subspace of functions of vanishing mean oscillation
VMOA [11].

Carleson measures are typically defined in terms of some geometric property
and then used (as in Theorem 1, for the case of the Hardy spaces) to characterize
the boundedness of certain operators between related function spaces. Indeed,
Carleson measures have been used to obtain analogues of (a) in Theorem 1 for
the classical Dirichlet space [14], for the Bloch space [12], for the analytic Besov
spaces [1], and for the Bergman spaces [6].

In this work, we develop a discrete notion of Carleson measure as well as
Carleson-type theorems in the setting of a homogeneous tree. While this study
has its own intrinsic interest, it is part of an ongoing trend of solving classical
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problems in a discrete setting, which, due to its combinatorial nature, often
yields some useful insights on how to tackle classical open problems, and provides
new examples for further analysis.

In [15] and [13], the authors studied the Hardy spaces of harmonic func-
tions on a tree using martingales on the boundary. Moreover, on a large class
of trees T (not necessarily homogeneous) endowed with a transient nearest-
neighbor transition probability, in [7] two notions of Hardy spaces Hp

N and Hp
A

(0 < p < ∞) were given in terms of two functions on the boundary correspond-
ing to a given harmonic function F on T , the nontangential maximal function
and the area function of F . The space Hp

N (respectively, Hp
A) was defined as

the set of harmonic functions F on T whose nontangential maximal function
(respectively, whose area function) is in Lp relative to the representing measure
of the harmonic function 1. The authors provided a Green formula and showed
that these two notions yield the same Hardy space.

The study of Carleson-type measures in a discrete setting is not novel. For
example, in [2], motivated by the work of Stegenga in [14], the authors developed
the theory of Carleson measures on a Hilbert space of functions on a dyadic tree,
which they call the dyadic Dirichlet space.

1.1. Organization of the paper
After giving some preliminary definitions and notation on trees, in Section 2,

we prove a covering lemma that will be used in Section 3 to prove the main
result of the paper (Theorem 3.2). We define the harmonic Hardy space Hp on
a homogeneous tree T of degree q + 1 as the space of harmonic functions h on
T such that the average of |h|p on the set of vertices of length n is bounded.
Furthermore, we characterize the elements of Hp in terms of the corresponding
radial limit function on the boundary ∂T of T , in terms of its radial maximal
function h∗ on ∂T , and in terms of the existence of a harmonic majorant of |h|p
(see Theorem 2.3). We also show the equivalence between the norm of a function
f in Lp(∂T ) and the norm in Hp of its Poisson integral (see Theorem 2.5). The
approach we adopt is very different from those in [15], [13], and [7].

In Section 3, we define the notion of s-Carleson measure on a homogeneous
tree and, in Theorem 3.2, we provide several characterizations of such a mea-
sure, including the discrete analogue of Duren’s generalization stated in the
introduction.

The methods used in our work are only valid for 1 ≤ p < ∞. In the classical
case treated in [8], the proof for the case 0 < p < 1 is based on the factorization
of functions in Hp into a Blaschke product and a nonvanishing function in Hp.
In the discrete setting, no such factorization exists and entirely new methods
will need to be developed to extend the results to 0 < p < 1.

1.2. Homogeneous trees
By a tree T we mean a locally finite, connected, and simply-connected graph,

which, as a set, we identify with the collection of its vertices. Two vertices u
and v are called neighbors if there is an edge connecting them, and we use the
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notation u ∼ v. A path is a finite or infinite sequence of vertices [v0, v1, . . . ]
such that vk ∼ vk+1, for all k. It is a geodesic path if in addition vk−1 6= vk+1,
for all k. For any pair of vertices u, v there is a unique geodesic path from u to
v, which we denote by [u, v].

Given a tree T rooted at e and a vertex u ∈ T , a vertex v is called a
descendant of u if u lies in the unique path from e to v. The vertex u is then
called an ancestor of v. Given a vertex v 6= e, we denote by v− the unique
neighbor which is an ancestor of v. For v ∈ T , The set Sv consisting of v and
all its descendants is called the sector determined by v. The sectors are the sets
of vertices that will play the role of Carleson squares in the tree setting.

Define the length of the finite path [u0, u1, . . . , un] to be n. The distance,
d(u, v), between vertices u and v is the length of the geodesic path [u, v].

The tree T is a metric space under the distance d. Fixing e as the root of
the tree, we define the length of a vertex v, by |v| = d(e, v). We shall also adopt
the notation |v − w| for the distance between vertices v and w.

A tree is termed homogeneous of degree q + 1 (with q ∈ N) if all its vertices
have q + 1 neighbors. The number of vertices of T of length n is

cn =

{
(q + 1)qn−1 if n ≥ 1,

1 if n = 0.

The boundary ∂T of T is the set of infinite geodesic paths ω of the form
[e = ω0, ω1, ω2, . . . ]. We denote by [e, ω) the set of vertices in the path ω. Then,
∂T is a compact space under the topology generated by the sets

Iv = {ω ∈ ∂T : v ∈ [e, ω)},

which yields a compactification of T . Clearly, ∂T = Ie. Furthermore, for any
n ∈ N, ∂T is the disjoint union of the sets Iv over the vertices v of length n.
Under this topology, ∂Sv = Iv for each v ∈ T .

For v ∈ T with 0 ≤ n ≤ |v|, define vn to be the vertex of length n in the
path [e, v].

Define a partial order ≤ on T ∪ ∂T as follows: For v ∈ T and x ∈ T ∪ ∂T ,
v ≤ x if v ∈ [e, x]. Since T ∪ ∂T has e as the minimum, for any x, y ∈ T ∪ ∂T
the greatest lower bound of x and y is well defined. We denote this greatest
lower bound by x ∧ y.

We assume throughout that T is a homogeneous tree of degree q +1 (q ≥ 2)
rooted at e. The case q = 1 is not considered here because on a homogeneous
tree of degree 2 there is no notion of Poisson integral, which is instrumental in
our study.

By a function on a tree we mean a real-valued function on the set of its
vertices.

The Laplacian operator ∆ is defined as the averaging operator minus the
identity operator: for a function f on T ,

∆f(v) =
1

q + 1

∑
w∼v

f(w)− f(v), v ∈ T.
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A function f on T is harmonic if ∆f is identically 0.
For v ∈ T , ω ∈ ∂T the Poisson kernel is given by Pω(v) = q2|ω∧v|−|v|. Note

that Pω(e) = 1. Every positive harmonic function on T can be written as

Pµ(v) :=
∫

∂T

Pω(v) dµ(ω)

for a unique Borel measure µ on ∂T .
We let m denote the measure on ∂T for which

m(Iv) =
1

c|v|
, for v ∈ T.

If µ is absolutely continuous with respect to m with density function f , we write
Pf instead of Pµ. In particular, m is the representing measure of the harmonic
function 1, and thus is the discrete analogue of the Lebesgue measure on the
unit circle.

Observe that if h is harmonic on T , then∑
|w|=n

h(w) = cnh(e), n ≥ 1. (2)

This is proved by induction on n as follows. For n = 1, (2) is true by definition
of harmonicity at e. Assume (2) holds for all k ∈ {1, . . . , n}, where n is a fixed
positive integer. Then

(q + 1)cnh(e) = (q + 1)
∑
|v|=n

h(v) =
∑
|v|=n

∑
w−=v

h(w) +
∑
|v|=n

h(v−)

=
∑

|w|=n+1

h(w) + q
∑

|w|=n−1

h(w) =
∑

|w|=n+1

h(w) + qcn−1h(e),

which implies∑
|w|=n+1

h(w) = (q + 1)cnh(e)− qcn−1h(e) = qcnh(e) = cn+1h(e),

as desired.
For a general reference on trees, see [5].
Throughout the paper, we shall use C to denote a constant which may differ

from one occurrence to the next, but which at most depends on q and the given
p ≥ 1.

2. The harmonic Hardy space Hp

For 1 ≤ p < ∞ we let Lp(∂T ) denote the functions f : ∂T → [−∞,∞] such
that |f |p is m-integrable.
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For p ≥ 1 and a function f on T , let Mp(f, n) be the average value of |f |p
over the vertices of length n, namely,

Mp(f, n) =

∑
|v|=n |f(v)|p

(q + 1)qn−1
.

We now define the harmonic Hardy space Hp on T for p ≥ 1.

Definition 2.1. Let 1 ≤ p < ∞ and let h be harmonic on T . Then h ∈ Hp

provided that
‖h‖p

Hp := sup
n∈N

Mp(h, n) < ∞.

Definition 2.2. Let f ∈ L1(∂T ). The Hardy-Littlewood maximal function of f
is the function Mf on ∂T defined as

Mf(ω) = sup
{v∈T : ω∈Iv}

∫
Iv
|f(τ)| dm(τ)

m(Iv)
= sup

{v∈T : ω∈Iv}
(q+1)q|v|−1

∫
Iv

|f(τ)| dm(τ).

The following result will be needed to prove Theorem 2.1 below and Theo-
rem 3.2.

Lemma 2.1. (Covering Lemma) Let A ⊆ T . Then there exists Â ⊆ A such that⋃
v∈ bA

Sv =
⋃
v∈A

Sv,
⋃
v∈ bA

Iv =
⋃
v∈A

Iv, and for each pair of distinct vertices v, w ∈ Â,

Sv ∩ Sw = ∅ and Iv ∩ Iw = ∅.

Proof. For v ∈ T , denote by vk the ancestor of v of length k, for k = 0, . . . , n =
|v|. Let Â be the set of vertices v ∈ A none of whose ancestors are in A. Since
Â is a subset of A, it is clear that⋃

v∈ bA
Sv ⊆

⋃
v∈A

Sv.

To prove the opposite inclusion, fix v ∈ A and let k be the minimum integer i
such that vi ∈ A. Then Sv ⊆ Svk

and, by definition of Â, vk ∈ Â. Therefore,⋃
v∈ bA

Sv =
⋃
v∈A

Sv.

Now let v, w ∈ Â be such that Sv ∩ Sw 6= ∅. Then either Sv ⊆ Sw or Sw ⊆ Sv.
By the defining property of Â, we deduce that v = w. Consequently,

⋃
v∈ bA Sv

is a disjoint union. The assertions concerning Iv follows from those for Sv.

Theorem 2.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp(∂T ). Then Mf < ∞ m-a.e. and
the following inequalities hold:

(a) If p = 1, then for every λ > 0,

m{ω ∈ ∂T : Mf(ω) > λ} ≤ 1
λ
‖f‖L1(∂T ).
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(b) If 1 < p ≤ ∞, there exists a constant C > 0 such that for each f ∈ Lp(∂T ),

‖Mf‖Lp(∂T ) ≤ C‖f‖Lp(∂T ).

Proof. Let f ∈ L1(∂T ) and λ > 0. Let U = {ω ∈ ∂T : Mf(ω) > λ}. If ω ∈ U ,
then there exists v = vω ∈ T with ω ∈ Iv and∫

Iv

|f(τ)|dm(τ) > λ m(Iv).

It follows that ω ∈ Iv ⊆ U , so U is open and U =
⋃

ω∈U Ivω . Let A = {vω : ω ∈
U}. Define Â as in Lemma 2.1. Then

m(U) =
∑
v∈ bA

m(Iv) ≤ 1
λ

∑
v∈ bA

∫
Iv

|f |dm ≤ 1
λ
‖f‖L1 ,

since {Iv : v ∈ Â} is a disjoint union. The finiteness assertion concerning Mf
follows from the inequality in (a).

Using the fact that (a) is true and the obvious fact that (b) holds in case
p = ∞, the general result in (b) follows from the Marcinkiewicz interpolation
theorem [9].

Definition 2.3. Let h be harmonic on T . The radial maximal function of h is
the function h∗ defined on ∂T by h∗(ω) = supn |h(ωn)|.

Theorem 2.2. For every f ∈ L1(∂T ) and ω ∈ ∂T ,

(Pf)∗(ω) ≤ q2

q2 − 1
Mf(ω).

Proof. Let f ∈ L1(∂T ) and ω ∈ ∂T . Let v = ωn for some n ≥ 0. Let
v0, v1, . . . , vn be the vertices of [e, v]. Then

|Pf(v)| ≤
∫

q2|v∧η|−|v||f(η)| dm(η)

≤
n∑

k=0

q2k−n

∫
Ivk

|f(η)|dm(η)

=
n∑

k=0

q
qk−n

q + 1
(q + 1)qk−1

∫
Ivk

|f(η)| dm(η)

≤ q Mf(ω)
n∑

k=0

qk−n

q + 1

≤ q2

q2 − 1
Mf(ω).

Taking the supremum over all such v yields the result.
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Our next aim is to characterize the elements of Hp. We first prove two
lemmas.

Lemma 2.2. For a fixed n ≥ 1, let h be harmonic on {v ∈ T : |v| ≤ n} and let
fn be the function defined on ∂T by

fn =
∑
|v|=n

(
qh(v)− h(v−)

q − 1

)
χIv

, (3)

where χE denotes the characteristic function of the set E. Then Pfn = h on
|v| ≤ n.

Proof. Extend h harmonically to T so that for each v with |v| = n, h is radial
on Sv. Fix v such that |v| = n. Then for w ∈ Sv we have

h(w) =
qh(v)− h(v−)

q − 1
−
(

h(v)− h(v−)
q − 1

)
q−(|w|−|v|).

Indeed, it is straightforward to verify that the above function is harmonic and
radial on Sv. It is clear that h is bounded and its representing measure is
absolutely continuous with respect to m. By the Fatou radial limit theorem, the
density of the representing measure is m-a.e. equal to the radial limit function

of h. From the above formula this is just
qh(v)− h(v−)

q − 1
on Iv for |v| = n. The

result follows at once.

Theorem 2.3. For a harmonic function h on T and 1 < p < ∞, the following
propositions are equivalent:

(a) h ∈ Hp.
(b) h = Pf for some function f ∈ Lp(∂T ).
(c) ‖h∗‖Lp(∂T ) < ∞.
(d) |h|p has a harmonic majorant.

Proof. (a) =⇒ (b): Suppose first that h ∈ Hp. For n ∈ N, let fn be as in
Lemma 2.2. Since ∑

|v|=n

|h(v−)|p = q
∑

|v|=n−1

|h(v)|p,

then ∫
|fn(ω)|pdm(ω) =

∑
|v|=n

∫
Iv

∣∣∣∣qh(v)− h(v−)
q − 1

∣∣∣∣p dm(ω)

≤
∑
|v|=n

C
[|h(v)|p + |h(v−)|p]

(q + 1)qn−1
≤ C ‖h‖p

Hp . (4)

Thus the sequence {fn} is bounded in the Lp(∂T ) norm, so viewing Lp(∂T ) as
the dual of Lq(∂T ) where 1

p+ 1
q = 1, it follows from the Banach-Alaoglu Theorem
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that there is a subsequence {fnj} that converges in the weak-∗ topology to some
function f ∈ Lp(∂T ).

Let v ∈ T . Since the mapping ω 7→ Pω(v) is bounded, it is in Lp(∂T ), so it
follows Pfnj (v) → Pf(v) as j →∞. But by Lemma 2.2, Pfnj (v) = h(v) for all
nj ≥ |v|. Therefore, h = Pf .

(b) =⇒ (c): Assume h = Pf for some f ∈ Lp(∂T ). Then by Theorem 2.2
and by part (b) of Theorem 2.1, it follows that

‖h∗‖Lp(∂T ) ≤ C‖Mf‖Lp(∂T ) ≤ C‖f‖Lp(∂T ).

(c) =⇒ (d): Assume h∗ ∈ Lp(∂T ). Then for n ∈ N,

‖h∗‖p
Lp(∂T ) =

∫
∂T

|h∗(ω)|p dm(ω) =
∑
|v|=n

∫
Iv

|h∗(ω)|p dm(ω)

≥ q

q + 1

∑
|v|=n

|h(v)|pq−|v| = Mp(h, n).

Taking the supremum over all such n, we obtain that ‖h‖Hp is finite.
For each n ∈ N, let gn be the solution to the Dirichlet problem on {|v| ≤ n}

with boundary values |h|p on {|v| = n}. Since |h|p is subharmonic, it follows
from the Minimum Principle that |h|p ≤ gn on {|v| ≤ n} and gn increases with
n. On the other hand, gn(e) is the average value of |h|p on {|v| = n}, so it is
bounded above by ‖h‖p

Hp . By Harnack’s Theorem, lim
n→∞

gn is harmonic, and it

is a majorant of |h|p.
(d) =⇒ (a): Let g be a harmonic majorant of |h|p. Then, by (2), for n ∈ N,

Mp(h, n) =

∑
|v|=n |h(v)|p

(q + 1)qn−1
≤
∑

|v|=n g(v)

(q + 1)qn−1
= g(e).

The result follows by taking the supremum over all n ∈ N.

The case of p = 1 is contained in the following

Theorem 2.4. Let h be harmonic. Then h ∈ H1 if and only if h = P (µ) for
some signed measure µ on ∂T .

Proof. The proof is similar to the proof of the equivalence of (a) and (b) in the
previous theorem. The only modification is to replace the use of the Banach-
Alaoglu Theorem with the fact that a sequence of signed measures bounded in
total variation has a weakly convergent subsequence.

Theorem 2.5. There exists C > 0 such that for all f ∈ Lp(∂T ),

C‖f‖Lp(∂T ) ≤ ‖Pf‖Hp ≤ ‖f‖Lp(∂T ).
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Proof. First observe that for n ∈ N, and f ∈ Lp(∂T ), by Jensen’s Inequality
and (2), ∑

|v|=n

|Pf(v)|p =
∑
|v|=n

∣∣∣∣∫ Pω(v)f(ω)dm(ω)
∣∣∣∣p

≤
∑
|v|=n

∫
Pω(v)|f(ω)|pdm(ω)

=
∫ ∑

|v|=n

Pω(v)

 |f(ω)|pdm(ω)

= (q + 1)qn−1

∫
|f(ω)|pdm(ω).

Thus, Mp(Pf, n) ≤ ‖f‖p
Lp(∂T ). The upper estimate follows by taking the supre-

mum over all n ∈ N.
Next, note that for n ∈ N and ω ∈ ∂T , formula (3) with h = Pf , can be

written as

fn(ω) =
q Pf(ωn)− Pf(ωn−1)

q − 1
.

Since Pf has radial limits almost everywhere equal to f , it follows that fn

converges pointwise a.e. to f . By (4) and Fatou’s lemma, we obtain

‖f‖p
Lp(∂T ) =

∫
lim inf
n→∞

|fn(ω)|p dm(ω) ≤ lim inf
n→∞

∫
|fn(ω)|p dm(ω) ≤ C‖Pf‖p

Hp ,

which yields the lower estimate.

3. Discrete version of Duren’s extension of Carleson’s theorem

We begin the section by giving the notion of Carleson-type measures on the
tree.

Definition 3.1. For s ≥ 1, a measure σ on T is said to be an s-Carleson
measure if there exists C > 0 such that for all v ∈ T ,

σ(Sv) ≤ C(m(Iv))s.

The following lemma is the main tool in the proof of Theorem 3.1, which
will be essential for the proof of our main result.

Lemma 3.1. Given m ∈ N, 0 = α0 < α1 < · · · < αm, µ1, . . . , µm > 0, and
s > 0,

m∑
k=1

(αk − αk−1)(µk + · · ·+ µm)s ≤

(
m∑

k=1

α
1/s
k µk

)s

, (5)

with equality occurring only if m = 1.
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Proof. The proof is based on the use of the multinomial formula

(x1 + · · ·+ xm)s =
∑(

s
i1, i2, . . . , im

)
xi1

1 xi2
2 · · ·xim

m ,

where the sum is taken over all i1, . . . , im−1 non-negative integers, im = s −
(i1 + · · ·+ im−1), and(

s
i1, i2, . . . , im

)
:=

s(s− 1) . . . (im + 1)
i1!i2! . . . im−1!

.

Both sides of (5) will be infinite (formal) sums of coefficients in α1, . . . , αm

times
(

s
i1, i2, . . . , im

)
µi1

1 µi2
2 · · ·µim

m . Since the sums under consideration have

only nonnegative terms, it will be sufficient to show that the coefficients in
α1, . . . , αm satisfy the same inequality to be shown for the respective sums. Let
i1, . . . , im be fixed and let t = min{j : ij > 0}. Thus, we are looking at the
coefficient of (

s
it, it+1, . . . , im

)
µit

t · · ·µim
m .

On the left-hand side the coefficient is
t∑

k=1

(αk − αk−1) = αt. On the right-hand

side the coefficient is α
it/s

t α
i(t+1)/s

t+1 . . . α
im/s
m . Since αt+j ≥ αt for j ≥ 0 and

it + · · ·+ im = s, this product is no smaller than

α
it/s

t α
i(t+1)/s

t . . . α
im/s

t = α
(it+···+im)/s
t = αt.

(In fact, it is greater than αt unless it = s.) Thus, (5) is established and the
inequality is an equality only if m = 1.

As a consequence, we deduce the following result.

Proposition 3.1. Let p > 1, s ≥ 1, m ∈ N, 0 = a0 < a1 < · · · < am, and
µ1, . . . , µm > 0. Then

m∑
k=1

(asp
k − asp

k−1)(µk + · · ·+ µm)s ≤

(
m∑

k=1

ap
kµk

)s

.

Proof. Set αk = asp
k , for k = 1, . . . ,m. Then ap

k = (asp
k )1/s = α

1/s
k . The result

follows at once from Lemma 3.1.

Theorem 3.1. Let (Ω, µ) be a finite measure space, p > 1, s ≥ 1, and g a
nonnegative measurable function on Ω. Then∫ ∞

0

spλsp−1µ{ω ∈ Ω : g(ω) > λ}s dλ ≤
(∫

Ω

gp dµ

)s

.
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Proof. We first show the result for g a simple function. Suppose g =
∑m

k=1 akχEk
,

where 0 = a0 < a1 < · · · < am and E1, . . . , Em are pairwise disjoint measurable
sets. Set µk = µ(Ek), for k = 1, . . . m. Then, using Proposition 3.1, we obtain

∫ ∞

0

spλsp−1µ{ω : g(ω) > λ}s dλ =
m∑

k=1

∫ ak

ak−1

spλsp−1

 m∑
j=k

µ(Ej)

s

dλ

=
m∑

k=1

(asp
k − asp

k−1)(µk + · · ·+ µm)s

≤

(
m∑

k=1

ap
kµk

)s

=
(∫

Ω

gp dµ

)s

,

proving the result in this case. The general case is proved by choosing a sequence
{gn} of simple functions increasing pointwise to g and applying the Monotone
Convergence Theorem.

We are now ready to prove the main result of this paper.

Theorem 3.2. Let 1 < p < ∞, 1 ≤ s < ∞, and σ a finite measure on T . Then
the following statements are equivalent.

(a) σ is an s-Carleson measure.
(b) There exists C > 0 such that for all harmonic functions h and λ > 0,

σ{v ∈ T : |h(v)| > λ} ≤ C (m{ω : h∗(ω) > λ})s.

(c) For all f ∈ Lp(∂T ), Pf ∈ Lsp(σ).
(d) There exists C > 0 such that for all f ∈ Lp(∂T ),

‖Pf‖Lsp(σ) ≤ C‖f‖Lp(∂T ).

(e) There exists C > 0 such that for all f ∈ L1(∂T ) and λ > 0,

σ({v ∈ T : |Pf(v)| > λ}) ≤ C

λs
‖f‖s

L1(∂T ).

(f) sup
v∈T

∑
w∈T

qs(|w|−|v−w|)σ({w}) < ∞.

Proof. We first prove (a) and (b) are equivalent. Suppose first that σ is an s -
Carleson measure and let h be harmonic. For λ > 0, define A = {v : |h(v)| > λ}
and let Â be as in Lemma 2.1. Then, noting that for ω ∈ Iv with v ∈ A,
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h∗(ω) ≥ |h(v)| > λ, we obtain

σ{v : |h(v)| > λ} ≤ σ

⋃
v∈ bA

Sv

 =
∑
v∈ bA

σ(Sv) ≤ C
∑
v∈ bA

(m(Iv))s

≤ C

∑
v∈ bA

m(Iv)

s

= C

m

⋃
v∈ bA

Iv

s

= C

(
m

(⋃
v∈A

Iv

))s

≤ C (m{ω : h∗(ω) > λ})s,

proving (b).
Conversely, suppose that σ is a measure on T satisfying (b). Fix v ∈ T and

let n = |v|, f = χIv , and h = Pf . If u ∈ Sv, then

h(u) =
∫

Iv

q2|ω∧u|−|u| dm(ω) ≥
∫

Iu

q2|ω∧u|−|u| dm(ω) = q|u|m(Iu) =
q

q + 1
;

if u /∈ Sv, then |u ∧ v| = k for some k < n, and

h(u) =
∫

Iv

q2|ω∧u|−|u| dm(ω) = q2k−|u|m(Iv) ≤ q2k−km(Iv) =
qk+1−n

q + 1
≤ 1

q + 1
.

Defining λ = 1/(q + 1), we have shown that Sv = {u ∈ T : h(u) > λ} and {ω :
h∗(ω) > λ} = Iv. Thus by the condition in (b), we obtain σ(Sv) ≤ C (m(Iv))s,
proving that σ is an s - Carleson measure. This completes the proof of the
equivalence of (a) and (b).

It is obvious that (d) implies (c). To show that (c) implies (d), we make
use of the Closed Graph Theorem. By assumption P is a linear operator from
Lp(∂T ) to Lsp(σ). Let fn be a sequence converging in Lp(∂T ) to a function f ,
and let Pfn converge in Lsp(σ) to a function g. We will be done if we show that
g = Pf σ-a.e. Fix v ∈ T . Then, by Hölder’s inequality, we have

|Pfn(v)− Pf(v)| ≤
∫

q2|ω∧v|−|v||fn(ω)− f(ω)|dm(ω)

≤ q|v|‖fn − f‖L1(∂T )

≤ q|v|‖fn − f‖Lp(∂T ).

Letting n go to ∞, we see that Pfn converges pointwise to Pf . On the other
hand, Pfn converges in Lsp(σ) to g, so some subsequence converges pointwise
σ-a.e. to g. Therefore g = Pf σ-a.e.

To show that (b) implies (d), we use the fact that for any finite Borel measure
µ, 1 ≤ p < ∞ and g a µ-measurable function,

‖g‖p
Lp(µ) =

∫ ∞

0

pλp−1µ{x : |g(x)| > λ} dλ,

13



which follows from Fubini’s theorem. Thus, if f ∈ Lp(∂T ) and h = Pf , then by
the hypothesis, the appropriate change of variables and Theorems 2.2, 3.1 with
µ = m, and 2.1, we obtain

‖h‖sp
Lsp(σ) =

∫ ∞

0

pλp−1σ{v : |h(v)|s > λ} dλ

=
∫ ∞

0

pλp−1σ{v : |h(v)| > λ1/s} dλ

≤ C

∫ ∞

0

pλp−1(m{ω : h∗(ω) > λ1/s})s dλ

= C

∫ ∞

0

spλsp−1(m{ω : h∗(ω) > λ})s dλ

≤ C

∫ ∞

0

spλsp−1(m{ω : Mf(ω) > λ})s dλ

≤ C‖Mf‖sp
Lp(∂T )

≤ C‖f‖sp
Lp(∂T ),

proving (d).
To prove that (d) implies (a), fix v ∈ T and take f = χIv

and h = Pf . As
we showed in the proof of (b) implies (a), Sv = {u ∈ T : h(u) > 1/(q + 1)} and
Iv = {ω : h∗(ω) > 1/(q + 1)}, so(

1
q + 1

)sp

σ(Sv) ≤
∫

Sv

|Pf |sp dσ ≤
∫

T

|Pf |sp dσ

≤ C‖f‖sp
Lp(∂T ) = C (m(Iv))s,

proving σ is an s - Carleson measure.
Next, (b) implies (e) follows by applying Theorem 2.2 and part (a) of The-

orem 2.1. The proof of (e) implies (a) is done by applying the inequality in (e)
to f = χIv .

Finally, we prove that (a) and (f) are equivalent. Assume (a) holds. Let
C > 0 be such that σ(Sv) ≤ Cq−s|v| for each v ∈ T . Fix v ∈ T and let n = |v|.
Let v0 = e, v1, . . . , vn = v be the sequence of vertices of the path [o, v] with
|vk| = k for k = 0, . . . , n. Then we may decompose T into the disjoint union of
the sets Wk = Svk

\Svk+1 (0 ≤ k ≤ n− 1) and Sv. Thus,

∑
w∈T

qs(|w|−|v−w|)σ({w}) =
n−1∑
k=0

qs(2k−n)σ(Wk) + qsnσ(Sv)

≤ q−sn
n−1∑
k=0

q2skσ(Svk
) + C

≤ Cq−sn
n−1∑
k=0

qsk + C

≤ C.
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Condition (f) follows by taking the supremum over all v ∈ T .
Conversely, suppose (f) holds and let B be the supremum in (f). Let v ∈ T .

Then, noting that for w ∈ Sv, |w| − |v − w| = |v|, we obtain

B ≥
∑

w∈Sv

qs(|w|−|v−w|)σ({w}) =
∑

w∈Sv

qs|v|σ({w}) = qs|v|σ(Sv),

completing the proof.

4. Acknowledgment

We wish to thank the referee for putting in perspective the importance of
considering analytic results in a discrete setting and for clarifying some issues
regarding the literature.

References

[1] J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J.
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