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CARLESON MEASURES FOR NON-NEGATIVE SUBHARMONIC

FUNCTIONS ON HOMOGENEOUS TREES

JOEL M. COHEN, FLAVIA COLONNA, DAVID SINGMAN, AND MASSIMO A. PICARDELLO

Abstract. In [3], we introduced several classes of Carleson-type measures with respect to a radial
reference measure σ on a homogeneous tree T , equipped with the nearest-neighbor transition op-
erator and studied their relationships under certain assumptions on σ. We defined two classes of
measures σ we called good and optimal and showed that if σ is optimal and µ is a σ-Carleson measure
on T in the sense that there is a constant C such that the µ measure of every sector is bounded by C
times the σ measure of the sector, then there exists Cµ > 0 such that

∑
f(v)µ(v) 6 Cµ

∑
f(v)σ(v)

for every non-negative subharmonic function f on T , and we conjectured that this holds if and only
if σ is good.

In this paper we develop tools for studying the above conjecture and identify conditions on a
class of non-negative subharmonic functions for which we can prove the conjecture for all functions
in such a class. We show that these conditions hold for the set of all non-negative subharmonic
functions which are generated by eigenfunctions of the Laplacian on T .

1. Introduction and preliminary results

Let T be a homogeneous tree rooted at a vertex o equipped with the isotropic nearest neighbor
transition probability 1/(q + 1) where q + 1 is the degree of T . As a set, we identify T as its
collection of vertices. Two vertices v and w are called neighbors, in which case we write v ∼ w, if
there is an edge connecting them. We denote by [v, w] the unique geodesic path joining v to w and
by |v − w| the number of edges in [v, w]. We use the notation |v| for the length of the path [o, v],
that is, the number of edges in [o, v], which we call the length of v. In this paper, all paths will be
geodesic paths. An infinite path will be called a ray. If v ∈ [o, w] \ {w}, we call v an ancestor of
w and w a descendant of v. If, in addition, v ∼ w, we call v the parent of w and w a child of v
and use the notation w− for the parent of w. For every vertex v, the sector determined by v is the
set S(v) consisting of v and all its descendants, that is, all vertices u such that u > v, in the sense
that v ∈ [o, u]. Note that S(o) = T .

Following the guidelines of Hastings, Cima & Wogen and Luecking [4, 2, 5] for Bergman spaces
on the disk, the polydisk or the ball in Cn, in [3], we studied Carleson measures with respect to a
reference measure σ on a homogeneous tree T , namely:

Definition 1.1. A reference measure is a radial positive decreasing function σ on T , such that
‖σ‖ <∞, where

‖σ‖ = ‖σ‖`1(T ) = σ0 + (q + 1)

∞∑
k=1

qk−1σk,

having denoted by σk the value of σ at each of the vertices of length k.
Given a reference measure σ, a positive measure µ on T is said to be σ-Carleson if there is a

positive constant C such that µ(S(v)) 6 Cσ(S(v)) for each v ∈ T .

Carleson measures on disks, balls or polydisks are defined analogously with respect to the
Lebesgue measure, and the problems that were considered therein correspond, in the environment
of a tree, to optimal reference measures, namely:

Definition 1.2. A reference measure σ is optimal if, up to a constant factor, σ(S(v)) is bounded
by σ(v) for every vertex v.
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We call a reference measure σ good if∑
v∈T

σ(S(v)) <∞.

In particular, every optimal measure is good.

If σ is optimal and µ is σ-Carleson, then it was proved in [3] that there exists a constant C > 0
such that ∑

v∈T
f(v)µ(v) 6 C

∑
v∈T

f(v)σ(v) for every f > 0 subharmonic,(1.1)

and our goal was to show that (1.1) holds for a more general class of reference measures σ. It was
conjectured in [3] that (1.1) holds if and only if σ is good. This conjecture was shown to be valid
for radial Carleson measures, and also for all Carleson measures when restricting our attention to
non-negative subharmonic functions supported on finitely many geodesic rays.

This paper is a follow-up research on the work done in [3]. While the conjecture remains an
open problem in the tree setting, as well as in the continuous environment, the analysis provided
in this paper highlights the technical difficulties associated with this problem and gives alternative
objectives by focusing on large classes of non-negative subharmonic functions. Before summarizing
our main results, we give all needed background.

Denote by ∂T the boundary of T , that is the set of all rays ω = [o, ω1, ω2, . . . ), where |ωk| = k
for each k ∈ N. For ω ∈ ∂T , denote by Kω(v) := K(v, ω) the Poisson kernel normalized to have
the value 1 at the root o. Recall that [1, 6, 7]

K(v, ω) = q2|v∧ω|−|v|,

where v ∧ ω denotes the vertex of maximum length on ω that belongs to the path [o, v].
For any vertex v, denote by I(v) ⊂ ∂T the set of all rays starting at o and containing v (if v = o,

let I(o) = ∂T ). The open subsets of the boundary of T are generated by {I(v) : v ∈ T}.

Definition 1.3. A function f : T → R is called subharmonic, (respectively, harmonic) if the average
value of f at the neighbors of each vertex v is at least (respectively, equal to) f(v). Equivalently,
f is subharmonic at v ∈ T if the Laplacian at v, ∆f(v), is nonnegative, where for each v ∈ T

∆f(v) :=
1

q + 1

∑
w∼v

f(w)− f(v).

We denote by F+ be the set of all non-negative functions on T , and by S+ (respectively, H+) the
set of non-negative subharmonic (respectively, harmonic) functions on T .

Definition 1.4. Let G denote any subset of the set of non-negative functions on T . A finite measure
µ on T is called a (G, σ)-Carleson measure if there exists a positive constant C = Cµ,G such that
for all f ∈ G,

(1.2)
∑
v∈T

f(v)µ(v) 6 C
∑
v∈T

f(v)σ(v).

Let M(G,σ) denote the set of (G, σ)-Carleson measures on T .

Examples of sets of (G, σ)-Carleson measures are

M(F+, σ) = {µ : µ is (F+, σ)-Carleson}
M(S+, σ) = {µ : µ is (S+, σ)-Carleson}
M(H+, σ) = {µ : µ is (H+, σ)-Carleson}

It is evident that M(F+, σ) ⊂M(S+, σ) ⊂M(H+, σ).
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Definition 1.5. Let µ be any positive measure. We associate to µ the µ-sectorial measure τµ

defined by τµ(v) = µ(Sv). In case µ is a fixed reference measure σ, we denote τσ by τ and write τn
for τ(v) where |v| is any vertex of length n. A reference measure σ is called optimal if supn

τn
σn
<∞.

We say that µ is good if τµ is a finite measure. In particular, σ is good if and only if
∑∞

n=0 q
nτn

is finite. But note that the finiteness of ‖σ‖ implies that qnτn → 0 whether or not σ is good.

Let σ be a reference measure and letMσ denote the set of σ-Carleson measures on T . In [3], we
proved the following result.

Theorem 1.1. [3] (i) M(S+, σ) ⊂Mσ.

(ii) M(H+, σ) 6⊂ Mσ.
(iii) Mσ =M(F+, σ) if and only if σ is optimal.
(iv) If σ is optimal, then Mσ ⊂M(S+, σ).

(v) Mσ ⊂M(H+, σ) if and only if σ is good.

The following conjecture was stated in [3].

Conjecture: Mσ ⊂M(S+, σ) for every good measure σ.

In that work, we proved that each radial measure µ ∈ Mσ is in M(S+, σ). In this paper, rather
than focusing on all of S+, we consider sets G of non-negative subharmonic functions and seek
conditions on G for which the conjecture holds with S+ replaced by G. This involves producing
sets G of non-negative subharmonic functions for which we can proveMσ ⊂M(G,σ) for every good
measure σ. That means we wish to see when we can prove inequalities of the form (1.2) for all f
in some set G of non-negative subharmonic functions, where σ is a given reference measure, µ is a
σ-Carleson measure and C is a constant independent of f .

In Definition 5.1 we give a general condition on G and in Theorem 5.1 prove that for such a
set G, Mσ ⊂ M(G, σ) for every good measure σ. As an application of Theorem 5.1, we prove in
Theorem 7.1 that the theory works for the class of non-negative subharmonic functions generated
by powers of the Poisson kernel, which includes all of the non-negative subharmonic eigenfunctions
of the Laplacian.

The paper is structured as follows. In Section 2, we analyze the properties of good and optimal
measures and introduce two related classes of measures, the suboptimal and the mesa measures.
In Section 3, we provide recipes for constructing examples of σ-Carleson measures. In section 4,
we study non-negative subharmonic functions and the role that their (discrete) derivative plays
to construct them. As described above, in Section 5 we prove our main result, Theorem 5.1. In
section 6, motivated by the main result in section 7.1, we provide a succinct characterization of
the non-negative subharmonic eigenfunctions of the Laplacian. Finally, in Section 7, we apply
Theorem 5.1 to the classes of non-negative subharmonic eigenfunctions of the Laplacian and of the
radial non-negative subharmonic functions. We conclude the paper with two additional examples.

2. Reference measures: good, optimal, suboptimal, and mesa

In this section we discuss general properties of good and optimal reference measures, and we
introduce and study suboptimal reference measures and mesa reference measures.

2.1. General comments on good and optimal measures. We begin by giving a useful char-
acterization of good measures.

Theorem 2.1. A finite measure µ on T is good if and only if
∑

v∈T |v|µ(v) < ∞. A reference
measure σ is good if and only if

∑
m>0mσm q

m <∞.

Proof. The first part follows at once from the following chain of equalities:∑
w 6=o

τµ(w) =
∑
w 6=o

µ(S(w)) =
∑
w 6=o

∑
v>w

µ(v) =
∑
v∈T

∑
o 6=w6v

µ(v) =
∑
v∈T
|v|µ(v).(2.1)
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In particular, taking µ to be reference measure σ, σ is good if and only if

∞ >
∑
v∈T
|v|σ(v) =

∞∑
m=1

m(q + 1)qm−1σm =
q + 1

q

∞∑
m=0

mqm σm. �

Theorem 2.1 allows us to give concrete examples of reference measures of various types.

Corollary 2.2. (i) Let ε > 0. Then σ defined by σn = q−(1+ε)n or σn = (q + ε)−n is optimal.

(ii) Let ε ∈ R. Then σ defined by σn = q−nn−(1+ε) is a reference measure if ε > 0, is not good
if 0 < ε 6 1, and is good but not optimal if ε > 1.

Proof. Part (i) follows from

τn =

∞∑
k=0

σn+kq
k =

∞∑
m=n

σmq
m−n(2.2)

and summing the appropriate geometric series. For σn = q−nn−(1+ε), we see that σ is good if and
only if ε > 1 using Theorem 2.1. If ε > 1, then it follows from (2.2) and the integral test of infinite
series that τn is of the order q−nn−ε, and so τn/σn is of the order n, proving that σ is not optimal.

tu
We refer the reader to [3], Theorems 3.1 and 3.2, to see how to construct many examples of

reference measures which are optimal, or good but not optimal.
Let τ be the sectorial measure associated with σ as in Definition 1.5. A non-optimal reference

measure σ has the property that if an is defined by τn = anσn, then lim supn→∞ an = ∞. The
next result and its corollary deal with the relation between σn, an, and τn. We only consider the
particular case that an →∞.

Theorem 2.3. Let σ be a reference measure. If τn = anσn, where an →∞, then

σn =
a1σ1

qn−1an

n−1∏
j=1

(
1− 1

aj

)
,

where, as customary, the value of an empty product is 1. Consequently, for all n > 1,

∞∑
k=0

1

an+k

n+k−1∏
j=n

(
1− 1

aj

)
= 1.(2.3)

Proof. We have anσn = τn = σn + qτn+1 = σn + qan+1σn+1, from which we get σn+1 = (an−1)σn
qan+1

.

The first formula of the statement now follows by induction. Thus

a1σ1

qn−1

n−1∏
j=1

(
1− 1

aj

)
= anσn = τn =

∞∑
k=0

σn+kq
k =

∞∑
k=0

a1σ1q
k

qn+k−1an+k

n+k−1∏
j=1

(
1− 1

aj

)
.

Simplifying the right-hand side and cancelling common factors from this and the left-hand side
gives the desired formula. tu

Corollary 2.4. If
∑∞

n=1
1
an
<∞, then it is not the case that τn = anσn. In particular, there is no

reference measure σ such that τn = bnn
1+ασn, where α > 0 and {bn} is a positive sequence bounded

away from 0.

Proof. Assume that τn = anσn, where
∑∞

k=0
1
ak

< ∞. Then (2.3) holds but
∑∞

k=0
1

an+k
→ 0 as

n → ∞. A contradiction results from (2.3), since each factor 1 − 1/aj is less than 1, however, for
sufficiently large n,

∑∞
k=0

1
an+k

< 1. tu
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2.2. Suboptimal reference measures and associated power series.

Definition 2.1. A reference measure σ is said to be suboptimal if there exists an optimal reference
measure σ′ such that supn

σn
σ′n
<∞.

To any reference measure σ we can associate the power series
∑∞

n=0 σnz
n. In the theorem below,

we show that suboptimality is characterized by a condition on the radius of convergence of this
power series. To this end, we first give a result for optimal reference measures.

Theorem 2.5. Let σ be an optimal reference measure with non-negative non-increasing coefficients
σn, let C = supn

τn
σn
, where τ is the associated sectorial measure. Then the radius of convergence

of the series
∑
σn z

n is at least α := qC/(C − 1).

Proof. First observe that C = α/(α− q). Moreover, Cσn > τn = σn + qτn+1. Therefore, qσn/(α−
q) = (C − 1)σn > qτn+1. Hence

σn > (α− q)τn+1.(2.4)

Now, τn+1 = σn+1 + q τn+2. Therefore, applying (2.4) with n replaced by n+ 1, we obtain

σn > (α− q)(σn+1 + q τn+2) > (α− q)((α− q)τn+2 + q τn+2) = α(α− q)τn+2 .

Arguing inductively, for m ∈ N,

σn > α
m(α− q)τn+m+1 > α

m(α− q)σn+m+1 .

In particular, for n = 0, we obtain

σm+1 6
α−mσ0

α− q
.

Hence, the sequence {σm} is bounded by a multiple of α−m, proving the result. tu

Theorem 2.6. Let σ be a reference measure with non-negative non-increasing coefficients σn, and
let τ be the associated sectorial measure. Then σ is suboptimal if and only if the series

∑
σnz

n has
radius of convergence R > q.

Proof. Suppose first that
∑
σnz

n has radius of convergence R > q and let r ∈ (q,R). Then
∑
σnr

n

converges, so for all n sufficiently large, σnr
n < 1. Thus, we can find C > 0 such that σn 6 C/rn

for all n ∈ N. Since the reference measure σ′ defined by σ′n := 1/rn is optimal, it follows that the
measure σ is suboptimal.

The converse follows immediately from Theorem 2.5 since the radius of convergence of the asso-
ciated series of a suboptimal measure σ must be no smaller than that of any optimal measure σ′

satisfying σn 6 Cσ′n for all n ∈ N. tu

Corollary 2.7. If σ is suboptimal, then σ is good.

Proof. It is evident that a measure that is less than a constant multiple of a good (respectively,
suboptimal) measure is good (respectively, suboptimal). So it follows that if a measure is subopti-
mal, it is less than a constant multiple of some optimal measure, and since optimal measures are
good, the original measure must also be good. tu

2.3. Mesa measures. Mesa measures are constructed from a given reference measure. A step
function is created out of the reference measure by sampling it a certain jump points, with a flat
“mesa” between successive jumps, and the mesa measure is determined by this step function. We
show below that it is never optimal if the lengths of successive “mesas” diverge to ∞.

Definition 2.2. Let nj be an increasing sequence of integers such that n0 = 0 and nj+1 − nj > 1,
for j > 0, and let ρ be a reference measure. A mesa measure on T generated by ρ is a radial
function σ defined by σ0 = ρ0 and σm = ρnj for all integers m with nj−1 < m 6 nj .

If ρ is optimal, then any mesa measure generated by ρ is necessarily suboptimal.



6 JOEL M. COHEN, FLAVIA COLONNA, DAVID SINGMAN, AND MASSIMO A. PICARDELLO

Theorem 2.8. The mesa measure generated by a reference measure ρ and a sequence nj such that
nj+1 − nj →∞ is not optimal.

Proof. Fix j ∈ N and integer l such that 1 6 l 6 nj+1 − nj . Let vnj+1 denote a vertex of length
nj + 1. The number of vertices v in S(vnj+l) with nj + l 6 |v| 6 nj+1 is

1 + q + q2 + · · ·+ qnj+1−(nj+l) =
qnj+1−nj−l+1 − 1

q − 1
,

which is bounded above by qnj+1−nj−l+1

q−1 and bounded below by qnj+1−nj−l+1

q , and so it is of the

order qnj+1−nj−l+1, by which we mean the ratio is bounded above and below by positive constants
depending only on q. There are qnj+1−nj−l+1 vertices in S(vnj+l) of length nj+1+1, so the number of

vertices v in S(vnj+l) with nj+1 < |v| 6 nj+2 is of the order qnj+1−nj−l+1 ·qnj+2−nj+1 = qnj+2−nj−l+1.

The number of vertices v in S(vnj+l) of length nj+2 +1 is qnj+2−nj−l+1, so the number of vertices

v in S(vnj+l) with nj+2 < |v| 6 nj+3 is of the order qnj+2−nj−l+1 · qnj+3−nj+2 = qnj+3−nj−l+1.
More generally, the number of vertices v in S(vnj+l) with nj+k < |v| 6 nj+k+1 is of the order

qnj+k+1−nj−l+1. Thus

τnj+l ≈
∞∑
k=1

ρnj+kq
nj+k−nj−l+1.(2.5)

Taking l = 1 and just the first term in the sum, we deduce that τnj+1/ρnj+1 & qnj+1−nj →∞ as j →
∞. This proves that the mesa measure is not optimal. tu

Example 2.1. By Corollary 2.2, if β > 1, then the measure σn = q−βn is an optimal measure.
More generally let {βj} be any sequence converging to β > 1. Let {nj} be an increasing sequence

of integers with n0 = 0. Let σ be the mesa measure such that σ(v) = q−βj |v| for nj−1 < |v| 6 nj .
We can choose β′ such that 1 < β′ < β and β′ < βj for all sufficiently large j. For such j,

q−β
′nj > q−βjnj , so σn < q−β

′n for sufficiently large n. Thus, since β′ > 1, σ is suboptimal. If
nj − nj−1 →∞ as j →∞, then by Theorem 2.8, σ is not optimal.

In the next theorem, we show that it is possible to obtain optimal measures of arbitrarily rapid
decay, and in the corollary we make use of mesa measures to show the same holds for good non-
optimal reference measures.

Theorem 2.9. Given any sequence of positive numbers {εn} converging to 0, there exists an optimal
reference measure σ such that σn 6 εn for all n ∈ N.

Proof. Let σ0 = ε0 and for n > 0, define σn+1 = min
{
εn+1, σn/q

2
}
. Then, {σn} is decreasing and,

arguing inductively, for each n, k > 0, σn+k 6 σn/q2k. Thus

τn =

∞∑
k=0

σn+kq
k 6 σn

∞∑
k=0

1

qk
=

σn

1− 1
q

,

proving that σ is optimal. Finally, by construction, σn 6 εn. tu

Corollary 2.10. For any function f : T → [0,∞), there exists an optimal measure σ such that∑
v∈T

τ(v)f(v) <∞,(2.6)

where τ is the sectorial measure associated with σ. There also exists a good non-optimal measure
σ satisfying (2.6).
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Proof. Let fn :=
∑
|v|=n f(v) and for m > 0, define sm := qm

∑m
n=0 fnq

−n. Let {εm} be a sequence

converging to 0 such that
∑

m εmsm < ∞. Choose an optimal measure σ as in Theorem 2.9
corresponding to {εm}. Then

∑
v∈T

τ(v)f(v) =

∞∑
n=0

τnfn =

∞∑
n=0

( ∞∑
m=n

σmq
m−n

)
fn =

∞∑
m=0

(
m∑
n=0

fnq
−n

)
qmσm =

∞∑
m=0

smσm <∞.

For the last part, apply Theorem 2.8 with reference measure σ to obtain a measure which is less
or equal to σ (and so satisfies (2.6) and by definition is suboptimal) and is not optimal. tu

The following immediate consequence of Theorems 2.8 and 2.9 shows that the property of opti-
mality of reference measures is not preserved by order.

Corollary 2.11. If σ1 6 σ2, with σ2 optimal, then σ1 need not be optimal, but there is some
optimal measure σ1 such that 0 < σ1 6 σ2.

Our next result also makes use of mesa measures.

Theorem 2.12. Let σ be a reference measure. If σ is suboptimal, then

lim inf
n→∞

τn
σn

<∞,(2.7)

but the converse is false. Moreover, there are good reference measures σ that fail to satisfy (2.7)
(and hence are not suboptimal).

Proof. Assume first that σ is suboptimal. Thus, there exists an optimal measure σ̂ and and a
sequence {εn} in (0, 1] such that σn = εnσ̂n, for all n ∈ N. Let τ̂ be the associated sectorial

measure. Thus, τ̂n =
∑∞

k=0 σ̂n+kq
k, for n ∈ N. By the optimality of σ̂, τ̂n

σ̂n
=
∑∞

k=0
σ̂n+kqk

σ̂n
is

bounded, and

τn
σn

=

∞∑
k=0

εn+kσ̂n+kq
k

εnσ̂n
.(2.8)

Suppose there is a subsequence {εnj} converging to some ε > 0. Then εnj is bounded away from
0. Since εnj+k 6 1, the ratio εnj+k/εnj is bounded above by some C > 0, and so

τnj
σnj
6 C

∞∑
k=0

σ̂nj+kq
k

σ̂nj
,

which is bounded. Therefore, (2.7) holds in this case.
On the other hand, if there is no subsequence of {εn} converging inside (0, 1], then {εn} must

converge to 0. Thus, for each n ∈ N, there exists in ∈ N, in > n, such that εin = max
j>n

εj . Then

εin+k/εin 6 1, so from (2.8) with n replaced by in, we see that τin
σin
6
∑∞

k=0
σ̂in+kqk

σ̂in
, proving that

(2.7) holds also in this case.
We next provide an example of a non-suboptimal reference measure σ for which (2.7) holds. For

n ∈ N, let ρn = q−ne−
√
n, and let nj = j2. Let σ be the associated mesa measure. Then∑

n

nρnq
n =

∑
n

ne−
√
n <∞,

so by Theorem 2.1, ρ, and hence σ, is a good measure. For any ε > 0,∑
n

σnq
n(1 + ε)n >

∑
j

ρnjq
nj (1 + ε)nj =

∑
j

enj ln(1+ε)−√nj =∞,
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so, by Theorem 2.6, σ is not suboptimal. We have τnj = σnj + qτnj+1 = ρnj + qτnj+1, so using (2.5)

with nj = j2, we obtain

τnj
σnj

=
τnj
ρnj
≈ 1 +

∞∑
k=1

ρnj+kq
nj+k−nj

ρnj
= 1 +

∞∑
k=1

q−(j+k)2e−(j+k)q(j+k)2−j2

q−j2e−j
= 1 +

∞∑
k=1

e−k =
e

e− 1
.

which proves that (2.7) holds.
Finally, we show that there are good reference measures σ for which (2.7) fails. Let σn = q−nn−3

for n ∈ N. It follows by Corollary 2.2(ii) that σ is good. Then

τn
σn

=

∞∑
k=0

σn+kq
k

σn
=

∞∑
k=0

1(
1 + k

n

)3 > n∑
k=0

1(
1 + k

n

)3 > n∑
k=0

1

23
=
n+ 1

8
→∞.

Therefore, (2.7) fails. tu

3. Methods for generating σ-Carleson measures

Theorem 3.1. Let σ be a reference measure and τ the associated σ-sectorial measure.

(i) Fix a ray ω = [ω0 = o, ω1 . . . , ωn . . . ]. Denote by µ the function supported on ω defined by
µωn = τn. Then µ is a σ-Carleson measure.

(ii) Let ν be any finite Borel measure on the boundary of T . Then, the measure µ on T defined
by µ(v) =

(
τ|v| − τ|v|+1

)
ν(I(v)) is σ-Carleson.

Proof. (i) It was shown in Lemma 6.1 of [3] that if in the definition of µ we replace τn by τn− τn+1,
we obtain a σ-Carleson measure. The result then follows from the fact that τn and τn − τn+1 are
comparable in size. Indeed, since τn = σn + qτn+1, it follows

τn > τn − τn+1 = τn −
τn − σn

q
= τn

(
1− 1

q

)
+
σn
q
> τn

(
1− 1

q

)
.

(ii) Let v ∈ T with |v| = n. Then

τµ(v) =
∑
w>v

µ(w) =

∞∑
k=0

(τn+k − τn+k+1)
∑

w>v,|w|=n+k

ν(I(w))

=

∞∑
k=0

(τn+k − τn+k+1) ν(I(v)) = τnν(I(v)) = ν(I(v))τ(v),

proving that µ is σ-Carleson. tu

Theorem 3.2. Let σ be any good reference measure and let {an}∞n=0 be any non-negative summable
sequence. Then the radial measure µ defined by µn = anτn is a σ-Carleson measure.

Proof. We must show that τµn
τn

is a bounded sequence. We have

τµn
τn

=
1

τn

∞∑
k=0

µn+kq
k =

1

τn

∞∑
k=0

an+k τn+k q
k = an + an+1

τn+1

τn
q + an+2

τn+2

τn
q2 + an+3

τn+3

τn
q3 + . . .

For any n > 1 we have τn = σn + qτn+1 > qτn+1, so τn+1/τn < 1/q. It follows by induction that for
any k > 0, τn+k/τn < q−k. Thus, τµn /τn 6 an + an+1 + . . . 6

∑
k ak, proving that µ is σ-Carleson.

tu
In the remainder of this section, we consider reference measures σ which are mesa measures as in

Example 2.1 and show how to associate to them a measure µ whose property of being σ-Carleson
or not depends on the parameters of the underlying mesa measure σ.

Let p, β > 1, and let {βj}j be a sequence converging to β. Let {nj}j be a sequence of integers

converging to ∞ such that nj − nj−1 → ∞. Let µ be the measure µ(v) = q−p|v| and let σ be the
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reference measure associated with {βj}j as in Example 2.1. Since µ and τ are both radial, we can
refer to µ(v) by µj , σ(v) by σj , and τ(v) by τj for |v| = j.

Theorem 3.3. (i) If βj ↘ β > p, then µ is not σ-Carleson.
(ii) Suppose βj = β for all j and β < p. Then µ is σ-Carleson if nj/nj+1 → 1 and µ is not

σ-Carleson if nj/nj+1 → 0.

Proof. If in (i) we replace all the βj with β, then the resulting mesa measure σ′ is bigger than
σ, so if we could show that µ is not σ′-Carleson, it would follow that µ is not σ-Carleson.
Thus we may assume without loss of generality that βj = β for all j. To prove (i), we must
show that lim supj→∞ τ

µ
j /τj = ∞. But by Corollary 2.2 µ is optimal, so it is enough to show

lim supj→∞ µj/τj =∞. Applying (2.5) with l = 1, we have

µnj+1

τnj+1
≈ q−p(nj+1)∑

k>1

q−βnj+kqnj+k−nj
≈ q−(p−1)nj∑

k>1

q−(β−1)nj+k
>

q−(p−1)nj∑
m>nj+1

q−(β−1)m
&

q−(p−1)nj

q−(β−1)nj+1
> q(p−1)(nj+1−nj)

which diverges as j →∞.

To prove (ii), suppose first that nj/nj+1 → 0. Arguing as above, we have

µnj+1

τnj+1
&

q−(p−1)nj

q−(β−1)nj+1
= q

nj+1

[
(β−1)−(p−1)

nj
nj+1

]
→∞ as j →∞

since for large j, the bracketed part of the exponent is negative and nj+1 →∞.
Finally, suppose that nj/nj+1 → 1. Using (2.5) with general l and a similar argument as above,

we get

µnj+l

τnj+l
≈ q−p(nj+l)∑

k>1

q−βnj+kqnj+k−nj−l+1
6

q−p(nj+l)

q−βnj+1qnj+1−nj−l+1
.

q−(p−1)nj

q−(β−1)nj+1
= q

nj+1

[
(β−1)−(p−1)

nj
nj+1

]
→ 0

as j →∞ since β < p. Thus µ is σ-Carleson. tu
Applying (ii) of Theorem 3.3 we get the following result.

Corollary 3.4. Let 1 < β < p. Let µ(v) = q−p|v| and let ρ(v) = q−β|v|. With respect to a specific
choice of nj, let σ be the mesa measure associated with ρ. If nj = j2, then µ is σ-Carleson, and if

nj = 22j , then µ is not σ-Carleson.

4. Some results on non-negative subharmonic functions

4.1. Subharmonic functions supported on rays or unions of rays. Define α to be the larger
root of the equation x2− (q+ 1)x+ 1. The other root is α−1. Since q2− (q+ 1)q+ 1 = −q+ 1 < 0,
it follows that q lies between the two roots α−1 and α. Thus q < α < q + 1.

Theorem 4.1. Let ω = [ω0, ω1, . . . ] be a ray and let A,B ∈ R. Then there is a unique function
h = hA,B defined on the union of ω and the vertices a distance 1 from {ωn : n > 1} with the
following properties:

(i) h(ω0) = A, h(ω1) = B,

(ii) h(v) = 0 at each vertex v outside ω at a distance 1 from each ωn, n > 1,
(iii) h harmonic at each ωn, n > 1.
It is given by

h(ωn) =

(
B − A

α

α− 1
α

)
αn +

(
Aα−B
α− 1

α

)
α−n.

Proof. For each non-negative integer n, let hn denote h(ωn). The harmonicity condition for h at
ωn is (q + 1)hn = hn+1 + hn−1, whose characteristic equation is x2 − (q + 1)x+ 1 = 0. Thus,

hn = c1α
n + c2α

−n,(4.1)
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for some constants c1 and c2, with α as above. From the initial conditions h0 = A and h1 = B we
obtain c1 + c2 = A and c1α+ c2α

−1 = B. Solving for c1 and c2 and plugging into (4.1), we obtain
the desired formula. tu

Theorem 4.2. Let ω = [ω0, ω1, . . . ] be a ray. Let f be a function on T with the following properties:

(i) f(v) = 0 at each vertex v at distance 1 from ω except for the neighbors of ω0.
(ii) f is subharmonic at each ωn, n > 1,

(iii) 0 6 f(ω0) 6 f(ω1).

Then f(ωn) increases with n and f(ωn) > hA,B(ωn) for each n > 0, where A = f(ω0) and B =
f(ω1). If αf(ω1) > f(ω0), then f(ωn)→∞ at least as fast as a multiple of αn as n→∞.

Proof. Let fn denote f(ωn). The proof that fn is increasing is by induction on n, n > 0. By
assumption it holds for n = 0. If n > 0 and 0 6 fn 6 fn+1, then from the subharmonicity
condition of f at ωn+1, we have

(q + 1)fn+1 6 fn + fn+2 6 fn+1 + fn+2,

and so fn+2 > qfn+1 > fn+1 (with equality in the last inequality if and only if fn+1 = 0). This
completes the proof that fn increases with n.

To prove f(ωn) > hA,B(ωn), let g := f − hA,B. Then g satisfies the conditions of the first part
of the theorem, and g(ω0) = g(ω1) = 0. Thus g(ωn) increases with n, so in particular it is non-
negative. For the last assertion, if αB = αf(ω1) > f(ω0) = A, then hA,B is greater than some
positive multiple of αn. This completes the proof. tu

We next look at a few examples of non-negative subharmonic functions, at times making use of
the above theorems. In the above two theorems we made use of the function αn supported on a
ray ω (i.e. taken to be 0 outside that ray), where n is the distance along the ray from ω0. It is
harmonic at each ωn for n > 1, and it is clearly subharmonic at each vertex outside of ω, but it is
superharmonic at ω0 since the Laplacian there is α/(q + 1) − 1 < 0. However, if we replace α by
the right constant, we do get a non-negative subharmonic function on T .

Theorem 4.3. Let ω = [ω0, ω1, . . . ] be a ray. For β > 0, the function f supported on the vertices
in ω whose value at ωn is βn is subharmonic on T if and only if β > q + 1.

Proof. Since f > 0, f is subharmonic at each vertex where it vanishes. The subharmonicity
condition of f at ω0 is β > q + 1, so the condition β > q + 1 is necessary for subharmonicity,
while for all n > 1 the subharmonicity condition of f at ωn is βn+1 + βn−1 > (q + 1)βn, which is
equivalent to β2 − (q + 1)β + 1 > 0. This holds provided β lies outside the interval determined by
the roots α and 1/α, and so in particular if β > q + 1, since q + 1 > α. Therefore, the condition
β > q + 1 is also sufficient for f to be subharmonic. tu

Theorem 4.4. Let R denote the union of m rays (1 6 m 6 q) all starting at the same vertex ω0.
If f is a non-negative subharmonic function on T supported on R whose values at any given vertex
of R depend only on its distance from ω0, then for n > 0

f(ωn) >
f(ω0)

α− 1
α

[(
q + 1

m
− 1

α

)
αn +

(
α− q + 1

m

)
α−n

]
,(4.2)

where ωn is a vertex in anyone of the m rays at distance n from ω0. If f(ω0) > 0, then f → ∞
along the rays of R at least as fast as a positive multiple of αn.

Proof. Let ω = [ω0, ω1, . . . ] be one of the rays of R. Let A = f(ω0) and B = q+1
m f(ω0). Consider

the function g := f −hA,B, where hA,B is as in Theorem 4.1. Then g(ω0) = 0. The subharmonicity
condition on f at ω0 says that mf(ω1) > (q + 1)f(ω0). This implies that g(ω1) > 0. Thus by
Theorem 4.2, g > 0. This says

f(ωn) >

(
B − A

α

α− 1
α

)
αn +

(
Aα−B
α− 1

α

)
α−n =

f(ω0)

α− 1
α

[(
q + 1

m
− 1

α

)
αn +

(
α− q + 1

m

)
α−n

]
.
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Since m 6 q < (q + 1)α, the coefficient of αn in hA,B is positive, and so it follows from (4.2) that
f(ωn)→∞ like a positive multiple of αn. tu

The following result follows from Theorem 4.4 for m = 1 and Theorem 4.3.

Theorem 4.5. Let {nj} be a sequence of positive integers such that nj+1 − nj > 2 for each j.

Fix a ray ω = [ω0, ω1, . . . ]. For each j, choose a ray ρ(j) = [ρ
(j)
0 = ωnj , ρ

(j)
1 , ρ

(j)
2 , . . . ], where

ρ(j) ∩ ω = {ωnj}. Define a function f supported on the union of the rays ρ(j) in the following way.

For each j, choose bj > 0 and for all k > 0, let f(ρ
(j)
k ) = bj(q+ 1)k and let f be 0 elsewhere. Then

f is non-negative subharmonic on T .

Theorem 4.6. Let σ be a reference measure and f a non-negative subharmonic function supported
only on a single ray ω, with f(ω0) > 0. If

∑
v∈T f(v)σ(v) is finite, then σ is suboptimal.

Proof. By Theorem 4.4 with m = 1, f(ωn) > c αn for some positive constant c. We have∑
v∈T

f(v)σ(v) =
∑

f(ωn)σn >
∑

c αnσn,

so if this is finite then the radius of convergence of
∑
σnz

n is greater than or equal to α. Recalling
that α > q, by Theorem 2.6, we see that σ is suboptimal. tu

4.2. The discrete derivative. In this subsection we study the discrete derivative of a function on
T and use it in Theorem 4.11 to show how to generate a wide variety of non-negative subharmonic
functions.

Definition 4.1. For f : T → R, define f ′ : T → R by

f ′(v) =

{
0 if v = o

f(v)− f(v−) if v 6= o

Theorem 4.7. Let f : T → R and let µ be a good measure. Suppose that either f ′ is upper or
lower bounded, or satisfies ∑

w∈T
|f ′(w)|τµ(w) <∞.(4.3)

Then ∑
v∈T

f(v)µ(v) =
∑
v∈T

f ′(v)τµ(v) + f(0)‖µ‖.(4.4)

Proof. Observe that for any v ∈ T ,

f(v)− f(o) =
∑

w∈[o,v]

f ′(w).(4.5)

Assume first that f ′ is lower bounded. Choose M ∈ R such that f ′ +M > 0 on T . Then for each
v ∈ T , f(v) − f(o) + M(|v| + 1) =

∑
w∈[o,v](f

′(w) + M). Using Fubini’s theorem and (2.1), we

obtain∑
v∈T

(f(v)− f(o) +M(|v|+ 1))µ(v) =
∑
v∈T

∑
w∈[o,v]

(f ′(w) +M)µ(v) =
∑
w∈T

∑
v>w

(f ′(w) +M)µ(v)

=
∑
w∈T

(f ′(w) +M)τµ(w) =
∑
w∈T

f ′(w)τµ(w) +M
∑
v∈T

(1 + |v|)µ(v).

By Theorem 2.1, the quantity
∑

v∈T (1 + |v|)µ(v) is finite, so subtracting it from the first and last
terms gives the result. The case of f upper bounded is done by applying the above result to −f .
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Lastly, suppose
∑

w∈T |f ′(w)|τµ(w) < ∞. Since
∑

w∈T |f ′(w)|τµ(w) =
∑

w∈T
∑

v>w |f ′(w)|µ(v),

by Fubini’s theorem,
∑

w∈T
∑

v>w f
′(w)µ(v) =

∑
v∈T

∑
w6v f

′(w)µ(v) and both sides are finite.
Thus, ∑

w∈T
f ′(w)τµ(w) =

∑
w∈T

∑
v>w

f ′(w)µ(v) =
∑
v∈T

∑
w6v

f ′(w)µ(v) =
∑
v∈T

(f(v)− f(o))µ(v),

completing the proof. tu

Remark 4.1. When we formulated Theorem 4.7 we initially wanted to replace condition (4.3) with∑
v∈T |f(v)|µ(v) < ∞. Theorem 4.7 shows that this condition is a consequence of condition (4.3).

We now show that these two conditions are not equivalent by giving an example of a good measure
µ and a function f for which

∑
v∈T |f(v)|µ(v) <∞ but

∑
w∈T |f ′(w)|τµ(w)| =∞.

Let µ be the radial measure for which

µn =

{
0 if n = 0 or n is odd,

1

(n2 )
3
cn

if n even and n > 2,

where cn = (q+ 1)qn−1 is the number of vertices of length n. Since µ is dominated by the reference
measure σ with σn = q−nn−3, it follows by Corollary 2.2 that µ is good. Let f be the radial
function on T for which

fn =

{
0 if n is even,(
n+1

2

)2
if n is odd.

Then f ′ is also radial and

f ′n =

{(
n+1

2

)2
if n is odd

−
(
n
2

)2
if n is even.

We have
∑

v∈T |f(v)|µ(v) = 0, but∑
v∈T
|f ′(v)|τµ(v) >

∑
v∈T
|f ′(v)|µ(v) =

∞∑
n=1

1

n
=∞.

Theorem 4.8. Let g : T → R with g(o) = 0. Let b > 0. Then g is the derivative of a non-negative
function f : T → [0,∞) with f(o) = b if and only if for all v ∈ T ,∑

w∈[o,v]

g(w) > −b.(4.6)

Proof. If such a function f exists, then by (4.5),∑
w∈[o,v]

g(w) =
∑

w∈[o,v]

f ′(w) = f(v)− f(o) = f(v)− b > −b.

Conversely, if (4.6) holds, define f(v) =
∑

w∈[o,v]

g(w) + b. Then f(o) = b, f > 0, and g = f ′. tu

4.3. Use of the derivative to construct non-negative subharmonic functions.

Definition 4.2. Let g : T → R. We say g is wealth increasing if for all v ∈ T ,∑
w−=v

g(w) > g(v).

Theorem 4.9. Let f : T → R. Then f is subharmonic if and only if f ′ is wealth increasing.
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Proof. At the root, f is subharmonic if and only if
∑
|w|=1 f(w) > (q+ 1)f(o). Transposing all the

terms to the left and collecting, we see this happens if and only if
∑
|w|=1 f

′(w) > 0 = f ′(o), and

so if and only if f ′ is wealth increasing at the root.
At v 6= o, f is subharmonic at v if and only if

∑
w−=v f(w) + f(v−) > (q + 1)f(v). Transposing

q of the f(v−) terms to the left and the f(v−) term to the right, we see this is equivalent to∑
w−=v f

′(w) > f ′(v), and this just says that f ′ is wealth increasing at v. tu

Corollary 4.10. Let f be subharmonic on T . Then for all n > 0,
∑
|v|=n f

′(v) > 0. Consequently

if σ is a reference measure for which
∑

v∈T |f ′(v)|τ(v) <∞, then
∑

v∈T f
′(v)τ(v) > 0.

Proof. The proof is by induction on n. Since f ′(0) = 0, the result holds for n = 0. Let n > 1
and suppose the result holds for n. Fix v such that |v| = n. Since f ′ is wealth increasing,∑

w−=v f
′(w) > f ′(v). Summing on all such v, we obtain

∑
|w|=n+1 f

′(w) >
∑
|v|=n f

′(v) > 0,

completing the proof of the induction.
If σ is a reference measure such that

∑
v∈T |f ′(v)|τ(v) <∞, then since τ is radial,∑

v∈T
f ′(v)τ(v) =

∞∑
n=1

τn
∑
|v|=n

f ′(v) > 0,

completing the proof. tu
From Theorems 4.8 and 4.9 we deduce

Theorem 4.11. Let g : T → R with g(o) = 0 and let b > 0. Then g is the derivative of
a non-negative subharmonic function f with f(o) = b if and only if g is wealth increasing and∑

w∈[o,v] g(w) > −b for all v ∈ T .

4.4. Construction of radial subharmonic functions and increasing sequences. In the next
theorem, we apply the results of the previous subsection to the construction of radial positive
subharmonic functions.

If f is any radial function on T , we let fn denote f(v) for any v with |v| = n. If f is radial
and subharmonic, we refer to {fn} as a subharmonic sequence. The function f ′ is also radial, so
it has a corresponding sequence which we write as {f ′n} and refer to it as the derivative of {fn}.
Conversely, any sequence of numbers {fn} represents a unique radial function f as above.

Theorem 4.12. (i) Let f be a non-negative radial subharmonic function. Then {fn} is increasing,
and 0 6 f ′n 6 q f

′
n+1. Conversely, if {gn} is a sequence such that g0 = 0 and 0 6 gn 6 q gn+1 for all

n, then {gn} is the derivative of a non-negative subharmonic sequence {fn}, unique if we prescribe
f0 = 0.

(ii) Let {gn} be the derivative of a subharmonic sequence {fn} such that f0 = 0. Define γn :=
qn gn. Then {γn} is an increasing sequence. Conversely, if {γn} is any increasing sequence with
γ0 = 0, then the sequence {gn} defined by g0 = 0, gn = q−nγn is the derivative of a unique non-
negative subharmonic sequence {fn} with f0 = 0.

Proof. Note that for any radial function g on T with g(o) = 0, the condition that g be wealth
increasing is precisely that gn 6 q gn+1.

(i) Let f be non-negative radial subharmonic on T , and let g = f ′. Then by Theorem 4.11, f ′

is wealth increasing, so f ′n 6 q f ′n+1. Since f ′0 = 0, it follows by induction that f ′n > 0, and this
just says that {fn} is increasing. Conversely, the conditions g(o) = 0 and gn 6 q gn+1 say that g is
wealth increasing, so the result follows by Theorem 4.11.

(ii) Let {fn}, {gn} and {γn} be as in the first part of the statement of (ii). Since {gn} is
wealth increasing, we have γn+1 = qn+1gn+1 = qnq gn+1 > qn gn = γn, proving {γn} is increasing.
Conversely, let {γn} be an increasing sequence with γ0 = 0. Define gn := q−n γn. Then qn+1 gn+1 =
γn+1 > γn = qn gn, so gn 6 q gn+1. The result then follows from part (i). tu

From Theorem 4.12(ii) we immediately obtain
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Corollary 4.13. Non-negative radial subharmonic functions can have arbitrarily prescribed slow
growth.

Example 4.1. The function f(v) = |v|α is a non-negative radial subharmonic function provided
α > 1. To see this, consider the corresponding derivative sequence {gn}, namely g0 = 0 and
gn = nα − (n− 1)α. The derivative of the function h(x) = xα − (x− 1)α satisfies h′(x) = αxα−1 −
α(x − 1)α−1 > 0 for x > 1, since α > 1. Thus {gn} is increasing, and so gn 6 gn+1 6 q gn+1. It
follows from Theorem 4.12(i) that f is subharmonic.

Example 4.2. The function fp(v) = qp|v| is non-negative radial subharmonic provided p > 0. To

see this, consider the sequence {γn} where γ0 = 0 and γn = qn
(
qpn − qp(n−1)

)
. Note that γn =

qnqpn (1− q−p). Since p > 0, this clearly increases with n, so by Theorem 4.12, f is subharmonic.

5. A Reformulation of the Original Problem

As stated in the introduction, the main object of the paper is to study when we can prove
inequalities of the form ∑

v∈T
f(v)µ(v) 6 C

∑
v∈T

f(v)σ(v)(5.1)

for all f in some set of non-negative subharmonic functions G, where σ is a given reference measure,
µ is a σ-Carleson measure, and C is a constant independent of f .

If it were the case that f ′ > 0 for all f ∈ G, then we could easily prove (5.1) by using formula
(4.4) of Theorem 4.7. In fact, this is what we do in Theorem 7.3 in the next section.

Theorem 5.1 below allows us to deal with the more typical case where f ′ can be positive or
negative. It gives us a useful reformulation of how to prove inequalities of the form (5.1).

Definition 5.1. For f : T → R define the sets

If = {v ∈ T : f ′(v) < 0} and IIf = {v ∈ T : f ′(v) > 0}.

For 0 < ε < 1 and a reference measure σ, let Gε,σ be the set of non-negative subharmonic functions
f on T satisfying the following conditions:

(i)
∑
v∈T
|f ′(v)|τ(v) <∞;

(ii) −
∑
v∈If

f ′(v)τ(v) 6 (1− ε)
∑
v∈IIf

f ′(v)τ(v) + f(0)‖σ‖.

Remark 5.1. Given a non-negative subharmonic function f on T satisfying (i), f ∈ Gε,σ, for any ε

satisfying 0 < ε < min
{

1,
∑
v∈T f

′(v)τ(v)∑
v∈IIf

f ′(v)τ(v) + f(o)‖σ‖
}

.

Theorem 5.1. Let σ be a good reference measure, 0 < ε < 1, and Gε,σ the set in Definition 5.1.

Then Mσ ⊂M(Gε,σ,σ). Specifically, if µ is σ-Carleson and Cε = Cµ
ε + ‖µ‖

‖σ‖ , then∑
v∈T

f(v)µ(v) 6 Cε
∑
v∈T

f(v)σ(v) for all f ∈ Gε,σ.

Proof. First observe that from condition (ii), for f ∈ Gε,σ,∑
v∈IIf

f ′(v)τ(v) 6
1

ε

(∑
v∈T

f ′(v)τ(v) + f(o)‖σ‖
)
.(5.2)
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Since τµ 6 Cµτ , by condition (i) we can apply Theorem 4.7 to both µ and σ, so using (5.2), we get∑
v∈T

f(v)µ(v) =
∑
v∈T

f ′(v)τµ(v) + f(o)‖µ‖ 6
∑
v∈IIf

f ′(v)τµ(v) + f(o)‖µ‖ 6 Cµ
∑
v∈IIf

f ′(v)τ(v) + f(o)‖µ‖

6
Cµ
ε

(∑
v∈T

f ′(v)τ(v) + f(o)‖σ‖
)

+ f(o)‖µ‖ =
Cµ
ε

∑
v∈T

f ′(v)τ(v) + Cεf(o)‖σ‖

6 Cε

(∑
v∈T

f ′(v)τ(v) + f(o)‖σ‖
)

= Cε
∑
v∈T

f(v)σ(v).

where we used Corollary 4.10 to deduce Cµ
ε

∑
v∈T f

′(v)τ(v) 6 Cε
∑

v∈T f
′(v)τ(v) from the obvious

inequality Cµ/ε 6 Cε. tu

6. The set of non-negative subharmonic functions which are eigenfunctions of ∆

Much interesting harmonic analysis, and in particular the study of eigenfunctions of ∆, has been
done on free groups. See for example [6], [7], and [8]. It is shown that on a free group with r

generators, the real eigenvalues of ∆ are precisely the numbers of the form (2r−1)p+(2r−1)1−p

2r − 1
for p ∈ R, and Theorem A of [8] says that a function is an associated eigenfunction if and only if
it is the Poisson transform of a martingale. In our terminology, since q + 1 = 2r, this says that
if the homogeneity q + 1 is even, then for any p ∈ R, f is an eigenfunction of the Laplacian with

eigenvalue qp+q1−p

q+1 − 1 if and only if there exists a finitely additive set function µ defined on finite

unions of intervals I(v) (i.e. a distribution) such that

f(·) =

∫
∂T
Kp
ω′(·) dµ(ω′).

That qp+q1−p

q+1 −1 is an eigenvalue of ∆ follows from the fact that for any fixed ω′, Kp
ω′ is an associated

eigenfunction. To see this, note that a typical value of Kp
ω′ is qjp with one neighbor of value q(j+1)p

and the remaining q neighbors of value q(j−1)p.

Fix ω ∈ ∂T and p ∈ R. The quantity qp+q1−p

q+1 − 1 = (1−q−p)q(qp−1−1)
q+1 is 0 for p = 0 or 1, is strictly

positive for p > 1 or p < 0, and is strictly negative for 0 < p < 1. Thus Kp
ω is positive subharmonic

if and only if p > 1 or p 6 0. Note also that the eigenfunctions corresponding to p and 1− p share
the same eigenvalue. Thus for p > 1 or p 6 0 and any non-trivial non-negative finite regular Borel
measure µ on ∂T , the function

∫
Kp
ω′(v)dµ(ω′) is a subharmonic eigenfunction of ∆.

Our interest in this section is in showing the following theorem. We will make use of it in
section 7.1.

Theorem 6.1. The non-negative subharmonic functions which are eigenfunctions of the Laplacian
are precisely the functions of the form f(v) =

∫
∂T K

p
ω′(v)dµ(ω′), where p ∈ [1,∞) and µ is a non-

negative finite regular Borel measure on ∂T . The associated eigenvalue is λ = qp+q1−p

1+q − 1. In

particular the negative powers K1−p
ω (v) do not contribute any additional eigenfunctions.

Theorem 6.1 in case q+ 1 is even can be proved using Theorem A of [8]. But instead we include
the following complete proof based on the potential theory given in [1], which is more elementary.

Proof. If f is a non-negative subharmonic function which is an eigenfunction of ∆ corresponding
to the eigenvalue λ, then 0 6 ∆f = λf , so λ > 0.

Let us consider two different potential theories as described in general in Chapter 2 of Cartier [1].
Each of these potential theories is determined by the selection of a positive number ρ(v, w) for each
pair of neighboring vertices v and w. The isotropic potential theory which we have been using thus
far comes from assigning 1/(q + 1) to each such pair. For the other potential theory, fix λ > 0 and
for each pair of neighboring vertices v and w, define ρ(v, w) = 1

(q+1)(λ+1) . We call λ−harmonic the
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functions f annihilated by the associated Laplacian ∆λf(v) :=
∑

w∼v
1

(q+1)(λ+1)f(w)− f(v). Then

the λ-harmonic functions are precisely the eigenfunctions of ∆ with eigenvalue λ. The associated
Green function Gλ(v, w) is defined in Section 2.3 of [1] as follows: if we let Γv,w denote the set of

all paths from v to w and for each γ ∈ Γv,w we define ρ(γ) :=
(

1
(q+1)(λ+1)

)n
where n is the number

of edges in γ, then Gλ(v, w) =
∑

γ∈Γv,w
ρ(γ). If we replace ρ(v, w) by 1/(q + 1) in the definition of

Gλ, we get the Green function G for the isotropic potential theory. In Section 4.5 of [1] it is shown

that G(v, w) = q
q−1q

−|v−w|. Since ρ 6 1/(q + 1), it follows that Gλ 6 G.

It follows from the general theory that for each w, v 7→ Gλ(v, w) is λ−harmonic outside of {w}
and by symmetry it is radial with respect to w. This leads to the difference equation qxk+1+xk−1 =
(q + 1)(λ + 1)xk. Both roots of the resulting characteristic equation are positive, so if we write
one of the roots as q−p for some p ∈ R, then since the product of the roots must be 1/q, the other

root is qp−1. Since the sum of the roots is (q+1)(λ+1)
q , we obtain λ = qp+q1−p

q+1 − 1. The right side

is positive for p > 1 or p < 0 and negative for 0 < p < 1, and it is the same if we interchange
p with 1 − p. Thus, since λ > 0, we may assume that p > 1. Since Gλ(v, w) 6 G(v, w) → 0 as
|v| → ∞, it follows that Gλ(v, w)→ 0 as |v| → ∞, and so it is the smaller root q−p which is needed
in representing Gλ. Thus we obtain Gλ(v, w) = c G(v, w)p, for some constant c. It follows from
the representation of the λ-Poisson kernel as a ratio of values of the λ−Green function as given in
Section 2.5 of [1] that the λ-Poisson kernel is given by Kp

ω(v). The proof is completed by applying
Theorem 2.1 on page 232 in [1] which says that all positive λ-harmonic functions can be written in
the form

∫
∂T K

p
ω(v)dµ(ω) for some finite non-negative regular Borel measure µ on ∂T . tu

7. Applications of Theorem 5.1

In the first two theorems of this section, we introduce two large classes of positive subharmonic
functions for which we prove Theorem 5.1 can be applied. We conclude the paper by giving two
nontrivial examples of functions which are in Gε,σ introduced in Section 5 for some positive ε and
a variety of reference measures σ.

7.1. The set of non-negative subharmonic functions generated by eigenfunctions of ∆.
Let ν be a non-negative finite regular Borel measure on ∂T and let λ be a non-negative finite regular
Borel measure on [1,∞) satisfying

∫∞
1 qnpdλ(p) <∞ for all n ∈ N. Then the mapping

v 7→
∫ ∫

Kp
ω(v)dν(ω)dλ(p)(7.1)

is non-negative and subharmonic on T . It is the set G of all non-negative subharmonic functions
that are represented in this manner which we study in the following theorem. By taking λ to
be a point mass at a fixed p > 1, it follows from Theorem 6.1 that G includes all non-negative
subharmonic functions which are eigenfunctions of ∆.

Theorem 7.1. Let σ be a good reference measure. Then Mσ ⊂ M(G,σ). Of course the converse
inequality also holds, by Theorem 1.1 (i).

For the proof, we will make use of the following lemma.

Lemma 7.2. For 1 < p <∞ and a reference measure σ,
∑∞

n=1 q
npσn <∞⇐⇒

∑∞
n=1 q

npτn <∞.

Proof. It suffices to prove that if
∑∞

n=1 q
npσn is finite, then so is

∑∞
n=1 q

npτn, since the converse is
obvious. Making a change of variables and switching the order of summation, we have

∞∑
n=1

qnpτn =

∞∑
n=1

∞∑
k=0

qnpσn+kq
k =

∞∑
n=1

∞∑
m=n

qnpσmq
m−n =

∞∑
m=1

m∑
n=1

qn(p−1)σmq
m

<
qp−1

qp−1 − 1

∞∑
m=1

qm(p−1)σmq
m =

qp−1

qp−1 − 1

∞∑
m=1

qmpσm,
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proving the required implication. tu
Proof of Theorem 7.1. Let µ ∈Mσ. We will be done if we show there exists C > 0 such that∑

v∈T
Kp
ω(v)µ(v) 6 C

∑
v∈T

Kp
ω(v)σ(v) for all ω ∈ ∂T and p > 1.(7.2)

The desired result will then follow upon integrating both sides of inequality (7.2) with respect to
any non-negative finite regular Borel measure ν on ∂T and any non-negative finite regular Borel
measure λ on [1,∞).

Fix ω ∈ ∂T and p > 1. Assume first p satisfies
∑∞

n=1 q
npτn =∞. Since σ is good, p > 1. Then

by Lemma 7.2,
∑

v∈T K
p
ω(v)σ(v) >

∑∞
n=1K

p
ω(ωn)σ(ωn) =

∑∞
n=1 q

npσn = ∞, so (7.2) holds in this
case for any choice of C, in particular for C = C1. Thus we may assume without loss of generality
that there exists p0 > 1 such that

∑∞
n=1 q

np0τn <∞.
To show (7.2) holds, we treat separately the cases 1 < p < p0 and p > p0. Assume first

1 < p < p0. Let Cp := Cµ
(∑∞

n=0 q
npτn

)
/‖σ‖. Note Cp increases with p. Then∑

v∈T
Kp
ω(v)µ(v) =

∞∑
n=0

∑
v∈S(ωn)\S(ωn+1)

Kp
ω(v)µ(v) 6

∞∑
n=0

qnpµ(S(ωn)\S(ωn+1)) 6
∞∑
n=0

qnpτµ(ωn) 6 Cµ

∞∑
n=0

qnpτn.

Also, since Kp
ω is subharmonic, by Lemma 6.2 of [3],

∑
|v|=nK

p
ω(v) > (q + 1)qn−1Kp

ω(o) for n > 1.

Since Kp
ω(o) = 1,

∑
v∈T K

p
ω(v)σ(v) =

∑∞
n=0

∑
|v|=nK

p
ω(v)σn > σ0 +

∑∞
n=1(q + 1)qn−1σn = ‖σ‖,

and so∑
v∈T

Kp
ω(v)µ(v) 6

(
Cµ

∑∞
n=0 q

npτn
‖σ‖

)∑
v∈T

Kp
ω(v)σ(v) = Cp

∑
v∈T

Kp
ω(v)σ(v) 6 Cp0

∑
v∈T

Kp
ω(v)σ(v).

Next, assume p > p0. In order to handle (7.2) in this case, we will make use of Theorem 5.1. For

this purpose, define ε = qp0−1−1
qp0−1 and note that p 7→ qp−1−1

qp−1 is increasing on (0,∞). Thus

1− qp−1 − 1

qp − 1
6 1− qp0−1 − 1

qp0 − 1
= 1− ε.(7.3)

To each v ∈ T we can associate n = |v ∧ ω| and j = |v − v ∧ ω|. With this notation, we have

(Kp
ω)′(v) =


0 if n = 0, j = 0,

(1− q−p)qnp if n > 1, j = 0,

−(qp − 1)q(n−j)p if n > 0, j > 1.

In the notation of Definition 5.1 (but omitting the subscript of f), II = {v ∈ T : (Kp
ω)′(v) > 0} =

{ωn ∈ T : n > 0} and I = {v ∈ T : (Kp
ω)′(v) < 0} = T r II.

Let n > 1. From the formula, τk = σk + qτk+1, we deduce that τk+1 6 q−1τk. By this and (7.3),∑
v∈I∩(S(ωn)rS(ωn+1))

−(Kp
ω)′(v)τ(v) =

∞∑
j=1

(
qp − 1

)
q(n−j)p(q − 1)qj−1τn+j6

(
qp − 1

)
qnp(q − 1)

∞∑
j=1

q−jpqj−1q−jτn

= qnp(1− q−1)τn =

(
1− qp−1 − 1

qp − 1

)(
1− q−p

)
qnpτn

=

(
1− qp−1 − 1

qp − 1

)
(Kp

ω)′(ωn)τn 6 (1− ε) (Kp
ω)′(ωn) τn and(7.4)

∑
v∈I∩(S(o)rS(ω1))

−(Kp
ω)′(v) τ(v) =

∞∑
j=1

(
qp − 1

)
q−jpqjτj 6

∞∑
j=1

(qp − 1)q−jpqjq−jτ0

= (qp − 1)
q−p

1− q−p
τ0 = τ0 = ‖σ‖ = Kp

ω(o)‖σ‖.(7.5)
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Summing over n > 1 in (7.4) and adding to it the result in (7.5), we obtain

−
∑
v∈I

(Kp
ω)′(v) τ(v) 6 (1− ε)

∞∑
n=1

(Kp
ω)′(ωn) τn +Kp

ω(o)‖σ‖ = (1− ε)
∑
v∈II

(Kp
ω)′(v) τ(v) +Kp

ω(o)‖σ‖.

We also get∑
v∈T

∣∣(Kp
ω)′(v)

∣∣τ(v) = −
∑
v∈I

(Kp
ω)′(v)τ(v) +

∑
v∈II

(Kp
ω)′(v)τ(v) 6 (2− ε)

∑
v∈II

(Kp
ω)′(v)τ(v) + ‖σ‖

= (2− ε)(1− q−p)
∞∑
n=1

qnp τn + ‖σ‖ <∞.

It follows that Kp
ω ∈ Gε,σ, and so by Theorem 5.1, formula (7.2) holds for all p > p0 with C = Cε.

Finally, (7.2) holds for all p > 1 with C = max {Cp0 , Cε}. �

Remark 7.1. Since the set of functions G defined in (7.1) includes more than the set of non-negative
subharmonic functions which are eigenfunctions of the Laplacian, we might expect that G is all of
S+(T ). However, this is not the case. Note, first of all, that any function f of G is strictly positive
or identically 0. Indeed, if f(v) = 0 for some vertex v, then

0 =

∫ ∫
Kp
ω(v)dν(ω)dλ(p) >

∫ ∫
q−p|v|dν(ω)dλ(p) = ‖ν‖

∫
q−p|v|dλ(p)

from which we deduce ν or λ is a vanishing measure, in which case f ≡ 0. Furthermore, taking the
Laplacian of f and using the fact that Kp

ω is an eigenfunction of ∆ with a non-negative eigenvalue,
a similar argument shows that if f is harmonic anywhere on T then f ≡ 0. Thus the nontrivial
members of G have no zeros on T and are not harmonic anywhere on T . However, there is a very
rich class of non-negative subharmonic functions which have zeros and which are harmonic at many
vertices of the tree.

7.2. The set of radial non-negative subharmonic functions. Let Srad
+ denote the set of non-

negative radial subharmonic functions on T . The use of Theorem 5.1 makes the following theorem
easy to prove.

Theorem 7.3. Let σ be a good reference measure. Then Mσ ⊂M(Srad
+ , σ).

Proof. Let µ ∈Mσ and let f be non-negative radial subharmonic on T . Let C = max
{
Cµ, ‖µ‖/‖σ‖

}
.

By Theorem 4.12, f ′ > 0, so by Theorem 5.1,∑
v∈T

f(v)µ(v) =
∑
v∈T

f ′(v)τµ(v) + f(0)‖µ‖ 6 Cµ
∑
v∈T

f ′(v)τ(v) + f(0)‖µ‖

6 C

(∑
v∈T

f ′(v)τ(v) + f(0)‖σ‖
)

= C
∑
v∈T

f(v)σ(v), �

7.3. Two interesting examples involving Theorem 5.1. For our first example we define g(v)
inductively on |v| in such a way that g is wealth increasing and for all v,

∑
w6v g(w) > 0. Define

g(o) = 0 and define g to be 1 on one vertex of length 1 and 0 on the other q vertices of length 1. Let
n > 1 and suppose we have defined g(v) for all vertices of length n or less. If |v| = n and g(v) = 0,
define g to be 0 on all children of v. If |v| = n and g(v) 6= 0, define g on the children of v depending
on whether or not

∑
w6v g(w) is positive or 0. If the sum is 0, then define g to be 1 on two children

of v and 0 on all of the other children; if the sum is positive, define g to be −
∑

w6v g(w) on one
child of v, g(v) +

∑
w6v g(w) on another child, and 0 on the remaining children.

It follows from Theorem 4.11 that g is the derivative of a unique non-negative subharmonic
function f such that f(o) = 0.



CARLESON MEASURES FOR NON-NEGATIVE SUBHARMONIC FUNCTIONS 19

Theorem 7.4. With f as above, let the reference measure σ satisfy
∑

n τnF2n < ∞, where Fk
denotes the k-th Fibonacci number. Then f ∈ G1/3,σ. In particular

∑
n τnF2n < ∞ holds if q > 3

and σn = q−nn−3.

To prove Theorem 7.4, we first note some well-known results concerning the Fibonacci sequence.

Lemma 7.5. Let {Fn}∞n=0 denote the Fibonacci sequence with F0 = 0 and F1 = 1. Let γ =

(1 +
√

5)/2 denote the golden ratio.
(i) The sequences {F2n}∞n=0 and {F2n+1}∞n=0 satisfy the recurrence relation tn−3tn−1 + tn−2 = 0.
(ii) (Cassini’s formula) Fn+1 · Fn−1 = F 2

n + (−1)n.
(iii) The sequence F2n−1/F2n is decreasing and the sequence F2n/F2n+1 is increasing. Conse-

quently 1/γ < F2n−1/F2n 6 2/3 and 3/5 6 F2n/F2n+1 < 1/γ for n > 2.

Proof of Theorem 7.4. For n > 0, let an and bn be given by

an =
∑

v∈If ,|v|=n

−f ′(v), bn =
∑

v∈IIf ,|v|=n

f ′(v).(7.6)

There is a unique ray along [o, ω1, ω2, ω3, . . . ] along which f ′ strictly increases. Let cn denote f ′(ωn).
For n > 2 we have cn = cn−1 + (c0 + c1 + · · ·+ cn−1). Similarly cn−1 = cn−2 + (c0 + c1 + · · ·+ cn−2).
Subtracting gives cn − cn−1 = cn−1 − cn−2 + cn−1, which says cn − 3cn−1 + cn−2 = 0. In addition
c1 = 1 and c2 = 2. Thus by Lemma 7.5, cn = F2n−1, n > 1.

Let dn denote the value of −f ′ at the child of ωn−1 (n > 2) where f ′ is negative. Then

dn = c0 + c1 + . . . cn−1 =

n−1∑
k=1

F2k−1 =

n−1∑
k=1

(F2k − F2k−2) =

n−1∑
k=1

F2k −
n−2∑
k=0

F2k = F2n−2 − F0 = F2n−2.

Now that we have identified the sequences cn and dn, we write down recurrence relations for
an and bn. Note that in assigning the values of f ′, once we arrive at a vertex v for which the∑

w6v f
′(w) = 0, the process begins over again. This then implies

an = dn + 2(a2 + a3 + · · ·+ an−2) and bn = cn + 2(b1 + b2 + b3 + · · ·+ bn−2).

Thus an+1 = dn+1 + 2(a2 + a3 + · · ·+ an−1). Subtracting gives an+1 − an = dn+1 − dn + 2an−1 =
F2n − F2n−2 + 2an−1 = F2n−1 + 2an−1, and so an is uniquely determined by

an+1 − an − 2an−1 = F2n−1, a1 = 0, a2 = 1.

A similar calculation shows that bn is uniquely determined by bn+1−bn−2bn−1 = F2n, b0 = 0, b1 = 1.
We show next by induction that bn 6 kF2n, where k = (1 + γ)/(2γ − 1) ≈ 1.17082. As bn 6 F2n

for 0 6 n 6 4, we proceed to the inductive step. Taking n > 4 and assuming the result true for
all k 6 n, we must prove bn+1 6 kF2n+2, i.e. prove bn + 2bn−1 + F2n 6 kF2n+2. Applying the
inductive hypothesis, it suffices to prove that kF2n + 2kF2n−2 + F2n 6 kF2n+2. Simplifying this
expression after replacing F2n by F2n−1 + F2n−2 and F2n+2 by 3F2n−1 + 2F2n−2 reduces this to
proving (k+ 1)F2n−2 6 (2k− 1)F2n−1. But from Lemma 7.5, we have that F2n−2/F2n−1 6 1/γ, so
the desired inequality follows since γ = (k + 1)/(2k − 1).

Next we show by induction that for all n > 0, an 6 (2/3)bn. This is clear for n = 0, 1, 2. Let
n > 2 and suppose it holds for all indices up to n. Then applying the inductive hypothesis and

Lemma 7.5, an+1 = an + 2an−1 + F2n−1 6 2
3

(
bn + 2bn−1 + F2n

)
= 2

3bn+1. Since an 6 (2/3)bn and

bn 6 kF2n, it follows that
∑

T |f ′(v)|τ(v) <∞. Thus,∑
If

−f ′(v)τv =
∞∑
n=0

anτn 6
2

3

∞∑
n=0

bnτn =
2

3

∑
IIf

f ′(v)τv,

proving that f ∈ G1/3,σ.
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If q > 3 and σn = q−nn−3, then τ is of the order of q−nn−2. Since F2n is of the order γ2n ≈ 2.62n,
it follows that

∑
n τnF2n <∞. �

Remark 7.2. In the proof of Theorem 7.4, we needed to show that f satisfies (ii) of Definition 5.1.
We did this by proving the stronger result that an 6 (2/3)bn for all n, where an and bn are defined
in (7.6). It is easy to see that for any f satisfying the conditions of Definition 5.1, an/bn < 1 for
all n. One might wonder if it is always the case that for any such f , an/bn 6 2/3 for all n, or if
not 2/3 at least some constant strictly less than 1. We might suspect this since in constructing
g = f ′ in Theorem 7.4, at each generation we made each negative value as negative as possible as
soon as possible (still satisfying (4.6) with b = 0 of Theorem 4.8) and the resulting positive value as
small as possible (being sure to keep g wealth increasing). However, we show in the next example
a function f for which lim sup

n→∞
an/bn = 1, yet which satisfies f ∈ G1−1/q,σ for any good reference

measure σ.

Let nk = 2k for k > 1, and let n0 = 0. Let {αk}∞k=1 be the sequence for which α1 = 1 and αk+1 =

nkαk for each k > 1. It follows that αk = n1n2 . . . nk−1 = 2(k−1)k/2. Fix a ray ω = [o = ω0, ω1, . . . ].
For each k > 1, let ωk be one of the children not in ω of ω(n1−1)+(n2−1)+···+(nk−1) = ωn1+···+nk−k.

Thus |ωk| =
∑k

i=1 ni − k + 1. For each k > 1,
∑k−1

i=0 ni − (k − 2) + (nk − 1) =
∑k

i=0 ni − (k − 1).
Thus we can define g : T → [0,∞) by

g(v) =


αk if k > 1, v = ωj with

∑k−1
i=1 ni − (k − 2) 6 j 6

∑k
i=1 ni − k;

−
(
1− 1

nk

)
αk+1 if k > 1, and v = ωk;

0 otherwise.

(7.7)

For each k there are nk−1 consecutive vertices on which g takes the value αk. See the figure below.

−
(
1− 1

n1

)
α2 −

(
1− 1

n2

)
α3 −

(
1− 1

n3

)
α4 −

(
1− 1

n4

)
α5 · · ·

0 α1︸︷︷︸
n1−1=1 copy

α2 · · ·α2︸ ︷︷ ︸
n2−1 copies

α3 · · ·α3︸ ︷︷ ︸
n3−1 copies

α4 · · ·α4︸ ︷︷ ︸
n4−1 copies

· · ·

Theorem 7.6. Let g be as in (7.7).
(i) There is a unique non-negative subharmonic function f with f(o) = 0 such that f ′ = g.
(ii) Define an =

∑
v∈If ,|v|=n

−g(v), and bn =
∑

v∈IIf ,|v|=n
g(v). Then lim supn→∞ an/bn = 1.

(iii) Let σ be any good reference measure. Then f ∈ G1−q−1,σ.

Proof. For each k > 1, if we sum g over the nk − 1 terms on which it is αk, we get αk(nk − 1) =
αknk(1−1/nk) = αk+1(1−1/nk). Thus, g satisfies (4.6) with b = 0. Also −(1−1/nk)αk+1 +αk+1 =
αk+1/nk = αk, so g is wealth preserving at some vertices and wealth increasing at all vertices. Thus
(i) follows by Theorem 4.11.

Noting that for any n, an is either 0, or it equals (1 − 1/nk−1)αk for some k, in which case
bn = αk, (ii) follows since nk →∞ as k →∞.

Note that for k > 1, n0+n1+n2+· · ·+nk−1−(k−2) = 2k−k and n1+n2+· · ·+nk−k = 2k+1−k−2.
Let σ be a good reference measure. To prove (iii), we need to show

∑
T |g(v)|τ(v) < ∞ and∑

If
−g(v)τ(v) 6 (1/q)

∑
IIf
g(v)τ(v). Clearly,

∑
v∈If |g(v)|τ(v) 6

∑
v∈IIf g(v)τ(v), so to prove the

summability of |g|τ on T , it suffices to show the summability of gτ on IIf . Grouping together the
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terms where g is constant and using the decreasing property of j 7→ τj and the assumption that σ
is good, we obtain∑

v∈IIf

g(v)τ(v) = α1τ1 + α2(τ2 + τ3 + τ4) + α3(τ5 + τ6 + · · ·+ τ11) + α3(τ12 + · · ·+ τ26) + . . .

=

∞∑
k=1

αk
∑{

τj :

k−1∑
i=1

ni − (k − 2) 6 j 6
k∑
i=1

ni − k
}

=

∞∑
k=1

2k+1−k−2∑
j=2k−k

αkτj 6
∞∑
k=1

αk(nk − 1)τ2k−k

6
∞∑
k=1

αk+1τ2k−k 6
∞∑
k=1

2
k(k+1)

2 τ2k−1 6 4

∞∑
k=1

22
k−1

τ2k−1 6 4

∞∑
k=1

2nτn 6 4

∞∑
k=1

qnτn <∞.

To complete the proof of (III), note that |ωk| =
∑k

i=0 ni − k + 1 = 2k+1 − k − 1 and for any n,
τn = σn + qτn+1 > qτn+1. Thus, since j 7→ τj is decreasing, we have∑

If

−g(v)τ(v) =
(

1− 1

n1

)
α2τ2 +

(
1− 1

n2

)
α3τ5 +

(
1− 1

n3

)
α4τ12 + . . .

=

∞∑
k=1

(
1− 1

nk

)
αk+1τ2k+1−k−1 =

∞∑
k=1

(
nk − 1

)
αk τ2k+1−k−1

6
1

q

∞∑
k=1

(
nk − 1

)
αk τ2k+1−k−2 6

1

q

∞∑
k=1

2k+1−k−2∑
j=2k−k

αk τj =
1

q

∑
IIf

g(v)τ(v).

Therefore, f ∈ G1−q−1,σ and the proof is complete. tu
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