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CARLESON MEASURES FOR NON-NEGATIVE SUBHARMONIC
FUNCTIONS ON HOMOGENEOUS TREES

JOEL M. COHEN, FLAVIA COLONNA, DAVID SINGMAN, AND MASSIMO A. PICARDELLO

ABSTRACT. In [3], we introduced several classes of Carleson-type measures with respect to a radial
reference measure o on a homogeneous tree T', equipped with the nearest-neighbor transition op-
erator and studied their relationships under certain assumptions on o. We defined two classes of
measures o we called good and optimal and showed that if o is optimal and p is a o-Carleson measure
on 7T in the sense that there is a constant C' such that the p measure of every sector is bounded by C'
times the o measure of the sector, then there exists C,, > 0 such that > f(v) u(v) < Cn Y. f(v) o(v)
for every non-negative subharmonic function f on T, and we conjectured that this holds if and only
if o is good.

In this paper we develop tools for studying the above conjecture and identify conditions on a
class of non-negative subharmonic functions for which we can prove the conjecture for all functions
in such a class. We show that these conditions hold for the set of all non-negative subharmonic
functions which are generated by eigenfunctions of the Laplacian on T

1. INTRODUCTION AND PRELIMINARY RESULTS

Let T be a homogeneous tree rooted at a vertex o equipped with the isotropic nearest neighbor
transition probability 1/(¢ + 1) where ¢ + 1 is the degree of T. As a set, we identify T as its
collection of vertices. Two vertices v and w are called neighbors, in which case we write v ~ w, if
there is an edge connecting them. We denote by [v,w] the unique geodesic path joining v to w and
by |v — w| the number of edges in [v, w]. We use the notation |v| for the length of the path [o,v],
that is, the number of edges in [0, v], which we call the length of v. In this paper, all paths will be
geodesic paths. An infinite path will be called a ray. If v € [o,w] \ {w}, we call v an ancestor of
w and w a descendant of v. If, in addition, v ~ w, we call v the parent of w and w a child of v
and use the notation w™ for the parent of w. For every vertex v, the sector determined by v is the
set S(v) consisting of v and all its descendants, that is, all vertices u such that u > v, in the sense
that v € [0, u]. Note that S(o) =T.

Following the guidelines of Hastings, Cima & Wogen and Luecking [4, 2, 5] for Bergman spaces
on the disk, the polydisk or the ball in C”, in [3], we studied Carleson measures with respect to a
reference measure ¢ on a homogeneous tree 1, namely:

Definition 1.1. A reference measure is a radial positive decreasing function o on 7', such that
|lo|| < oo, where

o0
loll = llolleamy = o0+ (g +1)>_ ¢" o,
k=1
having denoted by o} the value of ¢ at each of the vertices of length k.
Given a reference measure o, a positive measure y on 7' is said to be o-Carleson if there is a
positive constant C' such that p(S(v)) < Co(S(v)) for each v € T

Carleson measures on disks, balls or polydisks are defined analogously with respect to the
Lebesgue measure, and the problems that were considered therein correspond, in the environment
of a tree, to optimal reference measures, namely:

Definition 1.2. A reference measure o is optimal if, up to a constant factor, o(S(v)) is bounded
by o(v) for every vertex v.
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We call a reference measure o good if

> o (S(v)) < oo.

veT

In particular, every optimal measure is good.

If o is optimal and pu is o-Carleson, then it was proved in [3] that there exists a constant C' > 0
such that

(1.1) Z f(v) p(v) < CZ f(v)o(v) for every f > 0 subharmonic,

veT veT

and our goal was to show that (1.1) holds for a more general class of reference measures o. It was
conjectured in [3] that (1.1) holds if and only if ¢ is good. This conjecture was shown to be valid
for radial Carleson measures, and also for all Carleson measures when restricting our attention to
non-negative subharmonic functions supported on finitely many geodesic rays.

This paper is a follow-up research on the work done in [3]. While the conjecture remains an
open problem in the tree setting, as well as in the continuous environment, the analysis provided
in this paper highlights the technical difficulties associated with this problem and gives alternative
objectives by focusing on large classes of non-negative subharmonic functions. Before summarizing
our main results, we give all needed background.

Denote by 9T the boundary of T, that is the set of all rays w = [0, w1,ws, ... ), where |wg| = k
for each k € N. For w € 9T, denote by K, (v) := K(v,w) the Poisson kernel normalized to have
the value 1 at the root o. Recall that [1, 6, 7]

K(v,w) _ q2|v/\w|f|v\,

where v A w denotes the vertex of maximum length on w that belongs to the path [o, v].
For any vertex v, denote by I(v) C 9T the set of all rays starting at o and containing v (if v = o,
let I(0) = OT'). The open subsets of the boundary of T" are generated by {I(v) : v € T'}.

Definition 1.3. A function f : T'— R s called subharmonic, (respectively, harmonic) if the average
value of f at the neighbors of each vertex v is at least (respectively, equal to) f(v). Equivalently,
f is subharmonic at v € T if the Laplacian at v, Af(v), is nonnegative, where for each v € T

LS f(w) - f(v).

Af(’l)) = m

We denote by Fy be the set of all non-negative functions on 7', and by Sy (respectively, ) the
set of non-negative subharmonic (respectively, harmonic) functions on 7.

Definition 1.4. Let G denote any subset of the set of non-negative functions on 7. A finite measure
pon T is called a (G,0)-Carleson measure if there exists a positive constant C' = C), g such that
for all f € G,

(1.2) S F ) <O Fw)o().
veT veT
Let Mg o) denote the set of (G, o)-Carleson measures on 7T'.
Examples of sets of (G, 0)-Carleson measures are
Mz, o) ={p: pis (Fy, o)-Carleson}
Ms, o) = {1 pis (S84, o)-Carleson}
Mg, o) ={p: pis (Hy, o)-Carleson}
It is evident that M(r, ») C M(s, o) C M, o)-
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Definition 1.5. Let u be any positive measure. We associate to u the p-sectorial measure T
defined by 7#(v) = u(Sy). In case p is a fixed reference measure o, we denote 7 by 7 and write 7,
for 7(v) where |v| is any vertex of length n. A reference measure o is called optimal if sup,, 7= < co.

We say that p is good if 7/ is a finite measure. In particular, o is good if and only if >~ 1 ¢" 7,
is finite. But note that the finiteness of ||o|| implies that ¢"7,, — 0 whether or not o is good.

Let o be a reference measure and let M, denote the set of o-Carleson measures on 7'. In [3], we
proved the following result.

Theorem 1.1. [3] (i) M(s, 5 C M,.

(ii) M, o) € M.

(iii) My = Mz, ) if and only if o is optimal.
(iv) If o is optimal, then M, C Ms, o)

(v) My C My, o) if and only if o is good.

The following conjecture was stated in [3].
Conjecture: M, C Mg, ) for every good measure o.

In that work, we proved that each radial measure u € M, is in Mg, ). In this paper, rather
than focusing on all of S, we consider sets G of non-negative subharmonic functions and seek
conditions on G for which the conjecture holds with Sy replaced by G. This involves producing
sets G of non-negative subharmonic functions for which we can prove M, C Mg ) for every good
measure o. That means we wish to see when we can prove inequalities of the form (1.2) for all f
in some set G of non-negative subharmonic functions, where o is a given reference measure, u is a
o-Carleson measure and C is a constant independent of f.

In Definition 5.1 we give a general condition on G and in Theorem 5.1 prove that for such a
set G, My C Mg, 4 for every good measure 0. As an application of Theorem 5.1, we prove in
Theorem 7.1 that the theory works for the class of non-negative subharmonic functions generated
by powers of the Poisson kernel, which includes all of the non-negative subharmonic eigenfunctions
of the Laplacian.

The paper is structured as follows. In Section 2, we analyze the properties of good and optimal
measures and introduce two related classes of measures, the suboptimal and the mesa measures.
In Section 3, we provide recipes for constructing examples of o-Carleson measures. In section 4,
we study non-negative subharmonic functions and the role that their (discrete) derivative plays
to construct them. As described above, in Section 5 we prove our main result, Theorem 5.1. In
section 6, motivated by the main result in section 7.1, we provide a succinct characterization of
the non-negative subharmonic eigenfunctions of the Laplacian. Finally, in Section 7, we apply
Theorem 5.1 to the classes of non-negative subharmonic eigenfunctions of the Laplacian and of the
radial non-negative subharmonic functions. We conclude the paper with two additional examples.

2. REFERENCE MEASURES: GOOD, OPTIMAL, SUBOPTIMAL, AND MESA

In this section we discuss general properties of good and optimal reference measures, and we
introduce and study suboptimal reference measures and mesa reference measures.

2.1. General comments on good and optimal measures. We begin by giving a useful char-
acterization of good measures.

Theorem 2.1. A finite measure p on T is good if and only if Y . |vlu(v) < oo. A reference
measure o is good if and only if Zm%) mom, g™ < oo.

Proof. The first part follows at once from the following chain of equalities:

1) S =S uSw) =SS uw) =3 3 uw) =3 elu).

w#o wF#o w#0o V2w veET oFw<Lv veT
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In particular, taking u to be reference measure o, o is good if and only if

(e.9] o
_ +1
00 > g [v|o(v) = E m(q+1)g™ 1am:L E mq™" o, O
veT m=1 q m=0

Theorem 2.1 allows us to give concrete examples of reference measures of various types.

Corollary 2.2. (i) Let e > 0. Then o defined by o, = ¢~ ™ or o, = (¢ +¢)~" is optimal.
(ii) Let € € R. Then o defined by o, = g "n~ (%9 is q reference measure if € > 0, is not good
if 0 < e <1, and is good but not optimal if € > 1.

Proof. Part (i) follows from

o0 o
(2.2) Ta=Y Onikd" = Y omg" "
k=0 m=n

and summing the appropriate geometric series. For o, = ¢~"n~(1%¢) | we see that o is good if and
only if ¢ > 1 using Theorem 2.1. If ¢ > 1, then it follows from (2.2) and the integral test of infinite
series that 7, is of the order ¢~"n~¢, and so 7, /0, is of the order n, proving that o is not optimal.

O

We refer the reader to [3], Theorems 3.1 and 3.2, to see how to construct many examples of
reference measures which are optimal, or good but not optimal.

Let 7 be the sectorial measure associated with ¢ as in Definition 1.5. A non-optimal reference
measure o has the property that if a, is defined by 7, = ano,, then limsup,,_,., a, = co. The
next result and its corollary deal with the relation between oy, a,, and 7,,. We only consider the
particular case that a, — oo.

Theorem 2.3. Let o be a reference measure. If 7, = an0,, where a, — 0o, then
-1
ai1o01 E 1
n—1 H <1 - 7)’
q” “an i=1 aj

where, as customary, the value of an empty product is 1. Consequently, for alln > 1,

Op =

00 n+k—1

1 1
(2.3) (1 - 7) — 1.
Proof. We have ano, = 7 = 0n + qTn41 = On + qapt10n+1, from which we get o,41 = %
The first formula of the statement now follows by induction. Thus
a101 nd 1 > = alolqk kol 1
n—1 ( ] nOn n n+kqd ntk—1 -
R “j k=0 =0 1 Untk 55 aj

Simplifying the right-hand side and cancelling common factors from this and the left-hand side
gives the desired formula. a

Corollary 2.4. If Y, C% < 00, then it is not the case that T, = anon. In particular, there is no

reference measure o such that 7, = byn'T%,,, where a > 0 and {bn} is a positive sequence bounded
away from 0.
Proof. Assume that 7, = a,05,, where 70 L < co. Then (2.3) holds but 372, -~ — 0 as

ar, Qntr
n — oo. A contradiction results from (2.3), since each factor 1 — 1/a; is less than 1, however, for

sufficiently large n, Y 72 ﬁ < 1. 0
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2.2. Suboptimal reference measures and associated power series.

Definition 2.1. A reference measure o is said to be suboptimal if there exists an optimal reference
measure ¢’ such that sup,, Zn < 00,

To any reference measure o we can associate the power series y > 0,2". In the theorem below,
we show that suboptimality is characterized by a condition on the radius of convergence of this
power series. To this end, we first give a result for optimal reference measures.

Theorem 2.5. Let o be an optimal reference measure with non-negative non-increasing coefficients
on, let C = sup,, 7=, where T is the associated sectorial measure. Then the radius of convergence
of the series Y oy 2" is at least o := qC/(C — 1).

Proof. First observe that C' = a/(a — q). Moreover, Co,, > 7, = 0y, + qTn+1. Therefore, qo, /(a0 —
q) = (C —1)oy, = qTn+1. Hence

(2.4) on = (00— q)Tny1.

Now, Ty41 = 0nt1 + ¢ Tnt2. Therefore, applying (2.4) with n replaced by n + 1, we obtain
on 2 (= q)(ont1 + qTnt2) 2 (@ — @)(( — Q) Tnt2 + ¢ Tnt2) = (e — @) Tni2.
Arguing inductively, for m € N,
on 2 " (@ = Q) Tpim1 = " (@ — @)Tpimi1 -

In particular, for n = 0, we obtain

—m

a "o

Om+1 S .
& —q

Hence, the sequence {o,,} is bounded by a multiple of o™

, proving the result. a
Theorem 2.6. Let o be a reference measure with non-negative non-increasing coefficients o,,, and
let T be the associated sectorial measure. Then o is suboptimal if and only if the series . 0,2" has
radius of convergence R > q.

Proof. Suppose first that > 0,,2™ has radius of convergence R > ¢ and let r € (¢, R). Then ) o, 7"
converges, so for all n sufficiently large, 0,7 < 1. Thus, we can find C' > 0 such that o, < C/r"
for all n € N. Since the reference measure o’ defined by o], := 1/r™ is optimal, it follows that the
measure o is suboptimal.

The converse follows immediately from Theorem 2.5 since the radius of convergence of the asso-
ciated series of a suboptimal measure ¢ must be no smaller than that of any optimal measure o’
satisfying o,, < Co/, for all n € N. O

Corollary 2.7. If o is suboptimal, then o is good.

Proof. 1t is evident that a measure that is less than a constant multiple of a good (respectively,
suboptimal) measure is good (respectively, suboptimal). So it follows that if a measure is subopti-
mal, it is less than a constant multiple of some optimal measure, and since optimal measures are
good, the original measure must also be good. O

2.3. Mesa measures. Mesa measures are constructed from a given reference measure. A step
function is created out of the reference measure by sampling it a certain jump points, with a flat
“mesa” between successive jumps, and the mesa measure is determined by this step function. We
show below that it is never optimal if the lengths of successive “mesas” diverge to oo.

Definition 2.2. Let n; be an increasing sequence of integers such that ng = 0 and nj;1 —n; > 1,
for 5 > 0, and let p be a reference measure. A mesa measure on T generated by p is a radial
function o defined by oo = pg and oy, = pj, for all integers m with n;_1 <m < nj.

If p is optimal, then any mesa measure generated by p is necessarily suboptimal.



6 JOEL M. COHEN, FLAVIA COLONNA, DAVID SINGMAN, AND MASSIMO A. PICARDELLO

Theorem 2.8. The mesa measure generated by a reference measure p and a sequence n; such that
nj41 — nj — o0 is not optimal.

Proof. Fix j € N and integer [ such that 1 <1 < njy1 —nj. Let v,, 11 denote a vertex of length
nj 4+ 1. The number of vertices v in S(vy,41) with n; +1 < |v] <njyp is

TL]'+17TLJ‘71+1 _ 1
]_ +q+ q2 + e _|_quj+1—(7‘LJ+l) = q

)

q—1

niiq—n—l niiq—n—l
which is bounded above by q”lq_ifﬂ and bounded below by %, and so it is of the

order ¢+~ !+ by which we mean the ratio is bounded above and below by positive constants
depending only on ¢. There are g™+~ ~!+1 vertices in S(vp,41) of length nj 141, so the number of
vertices v in S(vy,41) With nj11 < [v] < njyo is of the order ¢+~ =1 gnisa=ne — gnypa—n; =11

The number of vertices v in S(vy,4;) of length njo+1 is ¢"+27 1 5o the number of vertices
v in S(vy,41) with njyo < |v| < njig is of the order gL g — gy L
More generally, the number of vertices v in S(vy,4;) with nj, < [v] < njyrq1 is of the order
gtk =L Thys

oo

~ E itk—n;—l+1

(25) T+l ~ panrkqn]Hc " .
k=1

Taking [ = 1 and just the first term in the sum, we deduce that 7,,,11/pn,+1 2 ¢+ ™™ — 00 as j —
oo. This proves that the mesa measure is not optimal. a

Example 2.1. By Corollary 2.2, if B > 1, then the measure o, = ¢~ "™ is an optimal measure.
More generally let {5;} be any sequence converging to > 1. Let {n;} be an increasing sequence
of integers with ng = 0. Let o be the mesa measure such that o(v) = ¢ %1%l for n;_1 < Jv| < n;.
We can choose ' such that 1 < 8/ < B and ' < f; for all sufficiently large j. For such j,
g P > B so o, < ¢ P for sufficiently large n. Thus, since 8/ > 1, o is suboptimal. If
n; —nj_1 — 00 as j — oo, then by Theorem 2.8, o is not optimal.

In the next theorem, we show that it is possible to obtain optimal measures of arbitrarily rapid
decay, and in the corollary we make use of mesa measures to show the same holds for good non-
optimal reference measures.

Theorem 2.9. Given any sequence of positive numbers {€,,} converging to 0, there exists an optimal
reference measure o such that o, < &, for alln € N.

Proof. Let 09 = g9 and for n > 0, define 0,41 = min {5n+1, On/ q2}. Then, {0,} is decreasing and,
arguing inductively, for each n,k > 0, o4 < 05/ ¢%¢. Thus

o) )
k 1 On

Tnzg On+k9q <0n5 7:1 i)

k=0 k=0 q q

proving that ¢ is optimal. Finally, by construction, o, < &,. O

Corollary 2.10. For any function f : T — [0,00), there ezists an optimal measure o such that
(2.6) z T(v) f(v) < o0,
veT

where T is the sectorial measure associated with o. There also exists a good non-optimal measure
o satisfying (2.6).
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Proof. Let fp := 37,1, f(v) and for m > 0, define sp, := ¢™ 31" fag™". Let {en} be a sequence
converging to 0 such that >  epns, < co. Choose an optimal measure ¢ as in Theorem 2.9
corresponding to {&,,}. Then

ZT(U)f(U) = ZTnfn = Z <Z Umqm_”> fn = Z (Z fnq_"> qum = Z SmOm < 00.
n=0 n=0 \m=n m=0 \n=0

veT m=0

For the last part, apply Theorem 2.8 with reference measure o to obtain a measure which is less
or equal to o (and so satisfies (2.6) and by definition is suboptimal) and is not optimal. 0

The following immediate consequence of Theorems 2.8 and 2.9 shows that the property of opti-
mality of reference measures is not preserved by order.

Corollary 2.11. If 01 < o9, with oo optimal, then o1 need not be optimal, but there is some
optimal measure o1 such that 0 < o1 < o3.

Our next result also makes use of mesa measures.

Theorem 2.12. Let o be a reference measure. If o is suboptimal, then

(2.7) liminf ™ < oo,

n—oo Oy

but the converse is false. Moreover, there are good reference measures o that fail to satisfy (2.7)
(and hence are not suboptimal).

Proof. Assume first that o is suboptimal. Thus, there exists an optimal measure & and and a
sequence {e,} in (0,1] such that o, = e,0,, for all n € N. Let 7 be the associated 5ect0rial

measure. Thus, 7, = Y poGntkq”, for n € N. By the optimality of 4, ;—" Yoo J’L;’“q is
bounded, and

Ean

Suppose there is a subsequence {e,,} converging to some ¢ > 0. Then ¢, is bounded away from
0. Since &,k < 1, the ratio &,, 41 /ey, is bounded above by some C' > 0, and so

which is bounded. Therefore, (2.7) holds in this case.
On the other hand, if there is no subsequence of {e,} converging inside (0, 1], then {&,} must

converge to 0. Thus, for each n € N, there exists ¢, € N, 4, > n, such that ¢;, = Max ;. Then
j=n

€i,+k/€i, < 1, s0 from (2.8) with n replaced by i,, we see that 2= < Y77 U‘"*_"q , proving that

(2.7) holds also in this case.
We next provide an example of a non-suboptimal reference measure o for which (2.7) holds. For

n €N, let p, = ¢ e V™, and let n; = 42. Let o be the associated mesa measure. Then
annq” = Zne*\/ﬁ < 0,
n n

so by Theorem 2.1, p, and hence o, is a good measure. For any € > 0,

Zanq (I+¢)" an qv(1+¢e)" = ZQ”J In(14+e)—ymj — oo

J
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so, by Theorem 2.6, o is not suboptimal. We have 7,,, = 0, + ¢y, 41 = pn, +qTn,+1, S0 using (2.5)
with n; = 42, we obtain

o - 00 () o= () (R o
7_7‘L7' Tnj pnﬂ_k q € q —k} €
On +Z ) +Z q_JQQ_] +;€ e—1

i Pn;
which proves that (2.7) holds.

Finally, we show that there are good reference measures o for which (2.7) fails. Let o, = ¢ "n 3
for n € N. It follows by Corollary 2.2(ii) that ¢ is good. Then
oo k o0 n n
oy I S ey ey et
— = — = —_— —_— — = —— = 0.
\3 — k\3 & 3
In =0 on k=0 (1 + ﬁ) k=0 (1 + E) k=0 2 8
Therefore, (2.7) fails. O
3. METHODS FOR GENERATING ¢-CARLESON MEASURES
Theorem 3.1. Let o be a reference measure and T the associated o-sectorial measure.
(i) Fiz a ray w = [wp = 0, w1 ..., Wy ...|. Denote by p the function supported on w defined by

U, = Tn. Then p is a o-Carleson measure.
(ii) Let v be any finite Borel measure on the boundary of T. Then, the measure p on T defined

by pu(v) = (TM — Tpj+1) V(I (v)) is o-Carleson.
Proof. (i) It was shown in Lemma 6.1 of [3] that if in the definition of y we replace 7, by 7, — Tnt1,

we obtain a o-Carleson measure. The result then follows from the fact that 7, and 7, — 7,1 are
comparable in size. Indeed, since 7, = oy, + qTn+1, it follows

— 1 1
Tn>7'n_7_n+1:7_n_7—n qgn:'f_n(l_g)‘f'%}'rn(l_g)-

(ii) Let v € T with |v| = n. Then

) =Y nw) =) (Task = Tarkr) Y v((w)

w>v k=0 w2, |w|=n+k
= (Tnsk = Taskr1) VI (0)) = Tar(I(v)) = v(I(v))7(v),
k=0
proving that p is o-Carleson. g

Theorem 3.2. Let o be any good reference measure and let {an }22 o be any non-negative summable
sequence. Then the radial measure p defined by p, = ant, is a o-Carleson measure.

Proof. We must show that :u is a bounded sequence. We have

" o0 oo
T 1 1 k Tnil Tni2 o Tnt3 3
7272#71—&-16(] :7Zan+k7-n+kq = an t Gnt1 q+ any2 q" + an4s T +...
Tn Tn =0 Tn =0 n n Tn

For any n > 1 we have 7, = 0y, + qTn+1 > qTn+1, SO Tnt1/Tn < 1/q. It follows by induction that for

any k >0, Tpyr/Tn < ¢ F. Thus, 74 /7h < an + ang1 + ... < >k Ok, proving that p is o-Carleson.

O

In the remainder of this section, we consider reference measures o which are mesa measures as in

Example 2.1 and show how to associate to them a measure p whose property of being o-Carleson
or not depends on the parameters of the underlying mesa measure o.

Let p, 8 > 1, and let {f;}; be a sequence converging to 5. Let {n;}; be a sequence of integers

converging to oo such that n; —nj_; — co. Let p be the measure u(v) = ¢ Pl and let o be the
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reference measure associated with {3;}; as in Example 2.1. Since p and 7 are both radial, we can
refer to p(v) by pj, o(v) by o, and 7(v) by 7; for |v| = j.

Theorem 3.3. (i) If B; \, S = p, then p is not o-Carleson.
(ii) Suppose Bj = B for all j and B < p. Then p is o-Carleson if nj/njy1 — 1 and p is not
o-Carleson if nj/nj1 — 0.

Proof. If in (i) we replace all the 3; with (3, then the resulting mesa measure o’ is bigger than
o, so if we could show that u is not o’-Carleson, it would follow that p is not o-Carleson.
Thus we may assume without loss of generality that §; = 3 for all j. To prove (i), we must
show that limsup;_, . T]’TL /T; = oo. But by Corollary 2.2 p is optimal, so it is enough to show

limsup;_, pj/7j = co. Applying (2.5) with [ = 1, we have

[hn;+1 - qu(anrl) - q*(iﬂfl)nj o q*(pfl)nj q*(Pfl)m‘ o q(pfl)(nﬁlfnj)
Tn +1 Zq*ﬁnnkqnﬁk*ny‘ Zq*(ﬂfl)nﬁk - Z g~ (B=bm ™~ g~ B=Dnje1 =
k>1 k>1 MZ2Nj41

which diverges as j — oo.
To prove (ii), suppose first that n;/nj;1 — 0. Arguing as above, we have

Fnj+1 g~ =t njp1 [(B-1)—(p—1) 7L ]

= nj+1

— | —
Tojp1 g P Dmi T
since for large j, the bracketed part of the exponent is negative and n;4; — oo.

Finally, suppose that n;/n;j+1 — 1. Using (2.5) with general [ and a similar argument as above,
we get

P41 g Pty < g Pt ¢ mae-n-e-na5]
Tn;+1 Zq_an+kqnj+k—n_j—l+l = q*ﬁ”j+1q”_1+1*"1‘*l+1 ~ q—(ﬂ—l)njﬂ
k=1
as j — oo since 8 < p. Thus p is o-Carleson. g

Applying (ii) of Theorem 3.3 we get the following result.

Corollary 3.4. Let 1 < 8 < p. Let u(v) = ¢ Il and let p(v) = ¢~ PI’l. With respect to a specific
choice of nj, let o be the mesa measure associated with p. If nj = j2, then p is o-Carleson, and if
n; = 2% then p is not o-Carleson.

4. SOME RESULTS ON NON-NEGATIVE SUBHARMONIC FUNCTIONS

4.1. Subharmonic functions supported on rays or unions of rays. Define o to be the larger
root of the equation 22 — (¢ + 1)z + 1. The other root is a~!. Since ¢> — (¢ +1)g+1 = —q+1 <0,
it follows that ¢ lies between the two roots ! and . Thus ¢ < o < ¢ + 1.

Theorem 4.1. Let w = [wy,w1,...] be a ray and let A, B € R. Then there is a unique function
h = hap defined on the union of w and the vertices a distance 1 from {wy : n > 1} with the
following properties:

(i) h(wo) = A, h(w1) = B,

(ii) h(v) =0 at each vertexr v outside w at a distance 1 from each wy, n > 1,

(iii) A harmonic at each wy, n > 1.

It is given by
B-4 Aa—B
h(w,) :< f‘)a”%— <al> a "

Proof. For each non-negative integer n, let h,, denote h(w,). The harmonicity condition for h at
Wy is (¢ + 1)hy = hyy1 + hy_1, whose characteristic equation is 22 — (¢ 4+ 1)z + 1 = 0. Thus,

(41) hn = Clan + C2a_n7
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for some constants ¢; and co, with « as above. From the initial conditions hg = A and h; = B we
obtain ¢y + ¢ = A and cja + cpa”! = B. Solving for ¢; and ¢y and plugging into (4.1), we obtain
the desired formula. O

Theorem 4.2. Let w = [wg,w1,...] be a ray. Let f be a function on T with the following properties:

(i) f(v) =0 at each vertex v at distance 1 from w except for the neighbors of wy.

(ii) f is subharmonic at each wy, n > 1,
(113) 0 < f(wo) < flwr).
Then f(wy) increases with n and f(wy) = ha p(wy) for each n > 0, where A = f(wy) and B =
flwi). If af(w1) > f(wo), then f(wyp) = oo at least as fast as a multiple of a™ as n — oo.

Proof. Let f, denote f(wy). The proof that f, is increasing is by induction on n, n > 0. By
assumption it holds for n = 0. If n > 0 and 0 < f, < fnt1, then from the subharmonicity
condition of f at w11, we have

(¢ + 1) for1 < fro+ fatr2 < fat1 + fose,

and s0 fni2 = qfn+1 = fonr1 (with equality in the last inequality if and only if f,+1 = 0). This
completes the proof that f, increases with n.

To prove f(wn) = hap(wy), let g := f —ha p. Then g satisfies the conditions of the first part
of the theorem, and g(wp) = g(wi) = 0. Thus g(w,) increases with n, so in particular it is non-
negative. For the last assertion, if aB = af(wi) > f(wg) = A, then hy p is greater than some
positive multiple of . This completes the proof. O

We next look at a few examples of non-negative subharmonic functions, at times making use of
the above theorems. In the above two theorems we made use of the function a™ supported on a
ray w (i.e. taken to be 0 outside that ray), where n is the distance along the ray from wp. It is
harmonic at each w, for n > 1, and it is clearly subharmonic at each vertex outside of w, but it is
superharmonic at wy since the Laplacian there is a/(¢ + 1) — 1 < 0. However, if we replace a by
the right constant, we do get a non-negative subharmonic function on 7.

Theorem 4.3. Let w = [wg,w1,...] be a ray. For B > 0, the function f supported on the vertices
in w whose value at wy, is B" is subharmonic on T if and only if 8> q+ 1.

Proof. Since f > 0, f is subharmonic at each vertex where it vanishes. The subharmonicity
condition of f at wg is 8 > ¢ + 1, so the condition 5 > ¢ + 1 is necessary for subharmonicity,
while for all n > 1 the subharmonicity condition of f at w, is "' + 8"~ > (¢ + 1)3", which is
equivalent to 82 — (¢ + 1) + 1 > 0. This holds provided f lies outside the interval determined by
the roots a and 1/«, and so in particular if § > ¢ + 1, since ¢ + 1 > a. Therefore, the condition
B > g+ 1 is also sufficient for f to be subharmonic. O

Theorem 4.4. Let R denote the union of m rays (1 < m < q) all starting at the same vertex wy.
If f is a non-negative subharmonic function on T supported on R whose values at any given vertex
of R depend only on its distance from wq, then for n >0

(12) Flay > T (T DYy (o= L) an).

m o m

where wy, is a vertex in anyone of the m rays at distance n from wy. If f(wo) > 0, then f — oo
along the rays of R at least as fast as a positive multiple of o™.

Proof. Let w = [wp,wi,...| be one of the rays of R. Let A = f(wp) and B = qmilf(wo). Consider
the function g := f — ha p, where hy p is as in Theorem 4.1. Then g(wp) = 0. The subharmonicity
condition on f at wp says that mf(wi) > (¢ + 1)f(wo). This implies that g(w;) > 0. Thus by
Theorem 4.2, g > 0. This says

A
s (A=) (22 S0 s (o222
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Since m < ¢ < (¢ + 1)a, the coefficient of @™ in ha p is positive, and so it follows from (4.2) that
f(wn) — oo like a positive multiple of o™ O

The following result follows from Theorem 4.4 for m = 1 and Theorem 4.3.

Theorem 4.5. Let {n;} be a sequence of positive integers such that njii — > 2 for each j.
Fiz a ray w = [wo,w1,...]. For each j, choose a ray pl¥) = [p(()]) = wnj,pgj), pgj),...], where
P Nw = {wn, }. Define a function f supported on the union of the rays p9) in the following way.

For each j, choose bj > 0 and for all k > 0, let f(pk ) =0bj(q+ 1)* and let f be O elsewhere. Then
f is non-negative subharmom’c onT.

Theorem 4.6. Let o be a reference measure and f a non-negative subharmonic function supported
only on a single ray w, with f(wo) > 0. If Y- o f(v) o(v) is finite, then o is suboptimal.

Proof. By Theorem 4.4 with m =1, f(w,,) = ca™ for some positive constant c. We have
St o) =) flwn)on = Y caloy,
veT

so if this is finite then the radius of convergence of }_ 0,,2" is greater than or equal to .. Recalling
that a > ¢, by Theorem 2.6, we see that ¢ is suboptimal. O

4.2. The discrete derivative. In this subsection we study the discrete derivative of a function on
T and use it in Theorem 4.11 to show how to generate a wide variety of non-negative subharmonic
functions.

Definition 4.1. For f: T — R, define f': T — R by

i JO ifv=o0
0= s Heze

Theorem 4.7. Let f : T — R and let p be a good measure. Suppose that either f' is upper or
lower bounded, or satisfies

(4.3) > (w) | (w) < oo
weT
Then
(4.4) D F@nw) = F ) () + F0)|ul.-
veT veT
Proof. Observe that for any v € T,
(4.5) f)=flo)= ) f(w)
wE[o,v]

Assume first that f’ is lower bounded. Choose M € R such that f'+ M > 0 on T. Then for each
v eT, f(v)— flo) + M(Jv]| + 1) = 3, cp0(f'(w) + M). Using Fubini’s theorem and (2.1), w

obtain

D) = o)+ M|+ ))p)=> " > (f M)u(v) = > > (f'(w) + M)pu(v)
veT vGTwe O,U] weT v>2w
= Z )+ M)mH(w Z f(w)yr*(w) + M Z(l + |v])u(v).
weT weT veT

By Theorem 2.1, the quantity ), (1 + |[v[)u(v) is finite, so subtracting it from the first and last
terms gives the result. The case of f upper bounded is done by applying the above result to —f.
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Lastly, suppose 3 _,eq |f'(w)|7(w) < 00. Since 32, e |/ (w)[T(w) =3 e Dousw | £/ (w)]p(v),
by Fubini’s theorem, > 7> o, fl(w)pu(v) = >0 cr D e, f'(w)p(v) and both sides are finite.

Thus,
> Fw)rtw) =Y fw)pv) =D > Fw)p) =D (f(v) = f(o)u(v),
weT weT v2w veT w<v veT
completing the proof. O

Remark 4.1. When we formulated Theorem 4.7 we initially wanted to replace condition (4.3) with
> wver [f(v)|u(v) < oo. Theorem 4.7 shows that this condition is a consequence of condition (4.3).
We now show that these two conditions are not equivalent by giving an example of a good measure
p and a function f for which Y~ ., |f(v)|p(v) < oo but >° r|f'(w)|TH(w)| = oo.

Let u be the radial measure for which

0 if n =0 or n is odd,
Hn = 1

3
(3) e

where ¢, = (¢+1)¢" ! is the number of vertices of length n. Since p is dominated by the reference
measure o with o, = ¢~ "n~3, it follows by Corollary 2.2 that p is good. Let f be the radial

function on T for which
0 if n is even,
fn = n+1\2

(T) if n is odd.

if n even and n > 2,

Then f’ is also radial and
;[ (2)? ifnisodd
n n\2 . .
— (5) if n is even.
We have e [ (0)]p(v) = 0, but

S @I ) =31 @)ew) =D
veT

veT n=1

= OQ.

S

Theorem 4.8. Let g: T — R with g(o) = 0. Let b > 0. Then g is the derivative of a non-negative
function f: T — [0,00) with f(o) = b if and only if for allv € T,

(4.6) > g(w) = —b.
weE[o,v]
Proof. If such a function f exists, then by (4.5),
Y gw)= > f(w)=f@) - flo) = f(v) b= —b.
weE|o,v] welo,v]

Conversely, if (4.6) holds, define f(v) = >, g(w)+b. Then f(o) =b, f >0, and g = f'. O

wE[o,v]

4.3. Use of the derivative to construct non-negative subharmonic functions.
Definition 4.2. Let g : T'— R. We say g is wealth increasing if for all v € T,

> g(w) > g(v).

w— =0

Theorem 4.9. Let f : T — R. Then f is subharmonic if and only if f' is wealth increasing.



CARLESON MEASURES FOR NON-NEGATIVE SUBHARMONIC FUNCTIONS 13

Proof. At the root, f is subharmonic if and only if }, _; f(w) > (¢+1)f(0). Transposing all the
terms to the left and collecting, we see this happens if and only if 37, _; f'(w) = 0 = f'(0), and
so if and only if f’ is wealth increasing at the root.

At v # o, f is subharmonic at v if and only if > —_ f(w) + f(v™) = (¢ + 1) f(v). Transposing
q of the f(v™) terms to the left and the f(v~) term to the right, we see this is equivalent to
Y- —p f(w) = f'(v), and this just says that f’ is wealth increasing at v. O

Corollary 4.10. Let f be subharmonic onT'. Then for alln > 0, Z‘U‘:n f'(v) = 0. Consequently
if o is a reference measure for which Y o |f'(v)|7(v) < oo, then Y p f'(v)T(v) > 0.

Proof. The proof is by induction on n. Since f’(0) = 0, the result holds for n = 0. Let n > 1
and suppose the result holds for n. Fix v such that |[v|] = n. Since f’ is wealth increasing,
w-—p [ (W) = f'(v). Summing on all such v, we obtain >, _,.; f'(w) = >, f'(v) 2 0
completing the proof of the induction.
If 0 is a reference measure such that ) . |f'(v)|7(v) < oo, then since 7 is radial,

S Fre) =31 > ) =0,

veT n=1  |v|=n
completing the proof. O
From Theorems 4.8 and 4.9 we deduce

Theorem 4.11. Let g : T — R with g(o) = 0 and let b > 0. Then g is the derivative of
a non-negative subharmonic function f with f(o) = b if and only if g is wealth increasing and

Zwe[o,v] g(w) = =b for allveT.

4.4. Construction of radial subharmonic functions and increasing sequences. In the next
theorem, we apply the results of the previous subsection to the construction of radial positive
subharmonic functions.

If f is any radial function on T, we let f,, denote f(v) for any v with |v| = n. If f is radial
and subharmonic, we refer to {f,} as a subharmonic sequence. The function f’ is also radial, so
it has a corresponding sequence which we write as {f/} and refer to it as the derivative of {f,}.
Conversely, any sequence of numbers {f,,} represents a unique radial function f as above.

Theorem 4.12. (i) Let f be a non-negative radial subharmonic function. Then {f,} is increasing,
and 0 < f, < q f} 1. Conversely, if {gn} is a sequence such that go = 0 and 0 < gn < qgn41 for all
n, then {gn} is the derivative of a non-negative subharmonic sequence {f,}, unique if we prescribe
Jo=0.

(i1) Let {gn} be the derivative of a subharmonic sequence {f,} such that fo = 0. Define 7, =
q" gn. Then {y,} is an increasing sequence. Conversely, if {y,} is any increasing sequence with
Yo = 0, then the sequence {gn} defined by go = 0,g9n = g "yn is the derivative of a unique non-
negative subharmonic sequence {f,} with fo = 0.

Proof. Note that for any radial function g on T" with g(o) = 0, the condition that g be wealth
increasing is precisely that g, < q gn+1-

(i) Let f be non-negative radial subharmonic on T, and let g = f’. Then by Theorem 4.11, f’
is wealth increasing, so f;, < ¢ f;, ;. Since f} = 0, it follows by induction that f; > 0, and this
just says that {f,} is increasing. Conversely, the conditions g(o) = 0 and g, < ¢ gn+1 say that g is
wealth increasing, so the result follows by Theorem 4.11.

(ii) Let {fn}, {gn} and {7} be as in the first part of the statement of (ii). Since {g,} is
wealth increasing, we have v,11 = ¢ tgni1 = ¢"q gni1 = ¢ gn = Yn, proving {v,} is increasing.
Conversely, let {7,} be an increasing sequence with 79 = 0. Define g,, := ¢""7,. Then ¢"*' g, 1 =
Y+l = Yn = q" Gn, SO Gn < ¢ gn+1. The result then follows from part (i). O

From Theorem 4.12(ii) we immediately obtain
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Corollary 4.13. Non-negative radial subharmonic functions can have arbitrarily prescribed slow
growth.

Example 4.1. The function f(v) = |[v|* is a non-negative radial subharmonic function provided
a = 1. To see this, consider the corresponding derivative sequence {g,}, namely go = 0 and
gn =n% — (n—1)%. The derivative of the function h(z) = 2% — (z — 1)* satisfies h'(z) = ax® 1 —
alz — 1)1 >0 forx > 1, since a« > 1. Thus {g,} is increasing, and 50 gn < gni1 < q Gni1. It
follows from Theorem 4.12(i) that f is subharmonic.

Example 4.2. The function fy(v) = gVl s non-negative radial subharmonic provided p > 0. To
see this, consider the sequence {v,} where v = 0 and v, = ¢" (qp” — qp("*l)). Note that v, =
q"¢"" (1 — q7P). Since p > 0, this clearly increases with n, so by Theorem 4.12, f is subharmonic.

5. A REFORMULATION OF THE ORIGINAL PROBLEM

As stated in the introduction, the main object of the paper is to study when we can prove
inequalities of the form

(5.1) D fu(v) <CD 7 fw)o(v)

veT veT

for all f in some set of non-negative subharmonic functions G, where ¢ is a given reference measure,
u is a o-Carleson measure, and C' is a constant independent of f.

If it were the case that f > 0 for all f € G, then we could easily prove (5.1) by using formula
(4.4) of Theorem 4.7. In fact, this is what we do in Theorem 7.3 in the next section.

Theorem 5.1 below allows us to deal with the more typical case where f’ can be positive or
negative. It gives us a useful reformulation of how to prove inequalities of the form (5.1).

Definition 5.1. For f: T — R define the sets
Ir={veT:f(v)<0tand Iy ={veT: f(v) = 0}.

For 0 < ¢ < 1 and a reference measure o, let G. , be the set of non-negative subharmonic functions
f on T satisfying the following conditions:

@) D1 @)lr(v) < oo;

veT
(i) =Y fW)r) <1 =) Y f'w)r(o) + fO)]o].
vely velly

Remark 5.1. Given a non-negative subharmonic function f on T satisfying (i), f € G., for any ¢

satisfying 0 < e < min{l, % + f(O)HUH}'

Theorem 5.1. Let o be a good reference measure, 0 < € < 1, and G, , the set in Definition 5.1.

Then My C M(g. , o). Specifically, if p is o-Carleson and C; = % 4 el e

loll”
> f)p(w) < C Y fw)o(v) for all f € Gy
veT veT
Proof. First observe that from condition (ii), for f € G, 5,

(52) > ) < L X rwr + folll).

velly veT



CARLESON MEASURES FOR NON-NEGATIVE SUBHARMONIC FUNCTIONS 15

Since 7" < C,7, by condition (1) we can apply Theorem 4.7 to both p and o, so using (5.2) we get

D f@uw) = f@W)rw) + fo)llul < Y f(v) o)l < G Y F'(@W)r(w) + f(o)lull

veT veT vElly vEllf
c
< ;(Zf'wwv) +1)lal) + F@ll = = X F)rio) + Cio)lel
veT veT
c:(( X reyro+ folol ) = 3 s
veT veT
where we used Corollary 4.10 to deduce % Yover f'(W)T(v) < C: > cp f'(v)7(v) from the obvious
inequality C), /e < C-. O

6. THE SET OF NON-NEGATIVE SUBHARMONIC FUNCTIONS WHICH ARE EIGENFUNCTIONS OF A

Much interesting harmonic analysis, and in particular the study of eigenfunctions of A, has been

done on free groups. See for example [6], [7], and [8]. It is shown that on a free group with r
generators, the real eigenvalues of A are precisely the numbers of the form (2r— 1)“—2(% D' g

for p € R, and Theorem A of [8] says that a function is an associated eigenfunction if and only if
it is the Poisson transform of a martingale. In our terminology, since ¢ + 1 = 2r, this says that

if the homogeneity g + 1 is even, then for any p € R, f is an eigenfunction of the Laplacian with
Pqgl— . . . . " . .

4 (;‘fl — 1 if and only if there exists a finitely additive set function p defined on finite

unions of intervals I(v) (i.e. a distribution) such that

Oy = KG()dpw').

oT

eigenvalue

q*+q' "
That S|

eigenfunction. To see this, note that a typical value of K?, is ¢’P with one neighbor of value qUutbp

—1 is an eigenvalue of A follows from the fact that for any fixed w’, K?, is an associated

and the remaining ¢ neighbors of value ¢U—bP.

Fix w € 0T and p € R. The quantity q,,;_% —-1= H*P();# is 0 for p =0 or 1, is strictly

positive for p > 1 or p < 0, and is strictly negative for 0 < p < 1. Thus K% is positive subharmonic
if and only if p > 1 or p < 0. Note also that the eigenfunctions corresponding to p and 1 — p share
the same eigenvalue. Thus for p > 1 or p < 0 and any non-trivial non-negative finite regular Borel
measure p on 9T, the function [ K7, (v)du(w') is a subharmonic eigenfunction of A.

Our interest in this section is in showing the following theorem. We will make use of it in
section 7.1.

Theorem 6.1. The non-negative subharmomc functions which are eigenfunctions of the Laplacian
are precisely the functions of the form f(v f@T w(w'), where p € [1,00) and p is a non-

P 1-p
T — 1 In

particular the negative powers Kblj_p(v) do not contribute any additional eigenfunctions.

negative finite regular Borel measure on 8T . The assoczated eigenvalue is A =

Theorem 6.1 in case ¢ + 1 is even can be proved using Theorem A of [8]. But instead we include
the following complete proof based on the potential theory given in [1], which is more elementary.

Proof. If f is a non-negative subharmonic function which is an eigenfunction of A corresponding
to the eigenvalue A, then 0 < Af = Af,so A > 0.

Let us consider two different potential theories as described in general in Chapter 2 of Cartier [1].
Each of these potential theories is determined by the selection of a positive number p(v, w) for each
pair of neighboring vertices v and w. The isotropic potential theory which we have been using thus
far comes from assigning 1/(q + 1) to each such pair. For the other potential theory, fix A > 0 and

for each pair of neighboring vertices v and w, define p(v, w) = m. We call A—harmonic the
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functions f annihilated by the associated Laplacian Ay f(v) := >, ., mf(w) — f(v). Then

the A-harmonic functions are precisely the eigenfunctions of A with eigenvalue A\. The associated
Green function Gy (v, w) is defined in Section 2.3 of [1] as follows: if we let I', ,, denote the set of

all paths from v to w and for each v € I, , we define p(v) := <m>n where n is the number

of edges in v, then G\(v,w) = > p(7). If we replace p(v,w) by 1/(¢ + 1) in the definition of
G, we get the Green function G for the isotropic potential theory. In Section 4.5 of [1] it is shown
that G(v,w) = Z4pq7 "I, Since p < 1/(g + 1), it follows that Gy < G.

It follows from the general theory that for each w, v — G)(v,w) is A—harmonic outside of {w}
and by symmetry it is radial with respect to w. This leads to the difference equation qry4+1+xx—1 =
(¢ + 1)(A + 1)z. Both roots of the resulting characteristic equation are positive, so if we write
one of the roots as ¢7? for some p € R, then since the product of the roots must be 1/q, the other
root is ¢P~1. Since the sum of the roots is M, we obtain A = qu% 1. The right side
is positive for p > 1 or p < 0 and negative for 0 < p < 1, and it is the same if we interchange
p with 1 — p. Thus, since A > 0, we may assume that p > 1. Since G)(v,w) < G(v,w) — 0 as
|v| = o0, it follows that Gx(v,w) — 0 as |v| — oo, and so it is the smaller root ¢~P which is needed
in representing Gy. Thus we obtain G)(v,w) = ¢ G(v,w)P, for some constant c. It follows from
the representation of the A-Poisson kernel as a ratio of values of the A—Green function as given in
Section 2.5 of [1] that the A\-Poisson kernel is given by KZ(v). The proof is completed by applying
Theorem 2.1 on page 232 in [1] which says that all positive A-harmonic functions can be written in
the form [, K§(v)du(w) for some finite non-negative regular Borel measure p on 9T O

7. APPLICATIONS OF THEOREM 5.1

In the first two theorems of this section, we introduce two large classes of positive subharmonic
functions for which we prove Theorem 5.1 can be applied. We conclude the paper by giving two
nontrivial examples of functions which are in G , introduced in Section 5 for some positive € and
a variety of reference measures o.

7.1. The set of non-negative subharmonic functions generated by eigenfunctions of A.
Let v be a non-negative finite regular Borel measure on 9T and let A be a non-negative finite regular
Borel measure on [1, 00) satisfying floo q"Pd\(p) < oo for all n € N. Then the mapping

(7.1) UH//KmWme@

is non-negative and subharmonic on 7. It is the set G of all non-negative subharmonic functions
that are represented in this manner which we study in the following theorem. By taking A to
be a point mass at a fixed p > 1, it follows from Theorem 6.1 that G includes all non-negative
subharmonic functions which are eigenfunctions of A.

Theorem 7.1. Let o be a good reference measure. Then M, C Mg ). Of course the converse
inequality also holds, by Theorem 1.1 (i).

For the proof, we will make use of the following lemma.
Lemma 7.2. For 1 < p < oo and a reference measure o, y o | "o, < 00 <= > >° | ¢"P1, < 00.

Proof. Tt suffices to prove that if > 7, ¢"Po,, is finite, then so is Y 2 | ¢"P7y, since the converse is
obvious. Making a change of variables and switching the order of summation, we have

9 0o 00 0o 0 o m
Z anTn — Z Z qnpo.n+qu _ Z Z qnpo.mqm—n _ Z Z qn(p—l)gmqm
n=1

n=1 k=0 n=1m=n m=1n=1

1
qp (p—1) P
qr- 1_1Zq Umq qpl Zq Tms
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proving the required implication. O
Proof of Theorem 7.1. Let u € M,. We will be done if we show there exists C' > 0 such that
(7.2) Z KP(v)p CZ KP(v ) for all w € 9T and p >

veT veT

The desired result will then follow upon integrating both sides of inequality (7.2) with respect to
any non-negative finite regular Borel measure v on 9T and any non-negative finite regular Borel
measure A on [1,00).

Fix w € T and p > 1. Assume first p satisfies Y 7 | ¢"P7, = co. Since o is good, p > 1. Then
by Lemma 7.2, 3 r KD (v)o(v) = Y02 | Kb (wn)o(wn) = Y ooy ¢"™Poy = 00, so (7.2) holds in this
case for any ch01ce of C, in particular for C = (. Thus we may assume without loss of generality
that there exists pp > 1 such that ) 7, ¢"P°7, < co.

To show (7.2) holds, we treat separately the cases 1 < p < po and p > pg. Assume first
1 <p<po. Let Cp:=Cpu( >0, q"1n)/|lo||l. Note Cp increases with p. Then

> Khuv) =) Y KLu(v) <Y q"u(S@a)\S(wns1)) Zq”pT“ (wn) < Cu ) "7
veT n=0veS(wn)\S(wn+1) n=0 n=0

Also, since K% is subharmonic, by Lemma 6.2 of [3], Z\v\ KO (v) = (g + 1)¢" LKL (o) for n > 1.
Since K&(0) = 1, Fper K(0)o(v) = 3020 Yjumn Ko()ow = 00 + 302 (¢ + 1)g"lon = lo]],

and so

ZO: q"Pry,
> KD (v)u(v) < (C“ZH?IH> > KB()o(v) = Cp Y KB(v)o(v) < Cpy Y KB(v)a(v)
veT veT veT veT

Next, assume p > pg. In order to handle (7.2) in this case, we will make use of Theorem 5.1. For

—1 -1
this purpose, define ¢ = qz(;,o __11 and note that p — ‘121,7__11 is increasing on (0,00). Thus

p—1_1 po—1 _ 1
(7.3) [ S [ G
qp —1 qp() —1
To each v € T we can associate n = |[v Aw| and j = |[v — v A w|. With this notation, we have

0 ifn=0,5 =0,
(KE)(v) = § (1 =qP)g" ifn>1,j=0,
—(¢* — 1)q(n*j)p ifn>0j>1
In the notation of Definition 5.1 (but omitting the subscript of f), Il = {v € T : (Kb)'(v) > 0} =

{wp €T n>0}and]—{v6T (KB) (v) <0} =T\ II.
Let n > 1. From the formula, 7, = o), + q7x11, we deduce that 711 < < ¢ '73;. By this and (7.3),

oo
>, (KD Z ¢ —1)q" (g =gy < (P - 1)g™P (g - DY g P g,
veEIN(S(wn) NS (wr +1)) j=1 =1
_ 1 — -1 —P\ P
=q¢"(1—q" )Tn(l qp_1>(1q )a"
¢t -1
(7.4) = < | )(Kf))'(wn)Tn < (1 —¢) (KE) (wn) 7 and
—(K2)' (v) 7(v) =Y _ (¢ = 1)g 7P’ < Z ¢’ —1)g ¢ q
velIN(S(o)~S(w1)) j=1
(7.5) =(¢"—-1) 70 =70 = |lo|| = KZ(o)||o]].

1—qP
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Summing over n > 1 in (7.4) and adding to it the result in (7.5), we obtain

o0

— > (KDY <(1—2) Y (KDY (wn) T+ KB(0)|lo] = (1 =€) D _(KE) (v) T(v) + KE(0) o ]|-
vel n=1 vell
We also get
D O IEEY (v)]r(v) = = (KE )+ > (KLY <(2-2) Y (KDY (v)7(v) + o]
veT vel vell vell
=2-9)1—=¢")D ¢ 70+ |lo]| < 0.
n=1
It follows that K& € G. ,, and so by Theorem 5.1, formula (7.2) holds for all p > py with C = C..
Finally, (7.2) holds for all p > 1 with C = max {C,,, C:}. O

Remark 7.1. Since the set of functions G defined in (7.1) includes more than the set of non-negative
subharmonic functions which are eigenfunctions of the Laplacian, we might expect that G is all of
S+ (T). However, this is not the case. Note, first of all, that any function f of G is strictly positive
or identically 0. Indeed, if f(v) = 0 for some vertex v, then

O_//Kp )dv(w)dX(p // Pl gy (w)d(p —Hy\/ —Pllgx(p

from which we deduce v or A is a vanishing measure, in which case f = 0. Furthermore, taking the
Laplacian of f and using the fact that K7 is an eigenfunction of A with a non-negative eigenvalue,
a similar argument shows that if f is harmonic anywhere on 7' then f = 0. Thus the nontrivial
members of G have no zeros on T" and are not harmonic anywhere on 7. However, there is a very
rich class of non-negative subharmonic functions which have zeros and which are harmonic at many
vertices of the tree.

7.2. The set of radial non-negative subharmonic functions. Let Sff‘d denote the set of non-
negative radial subharmonic functions on 7. The use of Theorem 5.1 makes the following theorem
easy to prove.

Theorem 7.3. Let o be a good reference measure. Then M, C M(Sf‘d,a).

Proof. Let € M, and let f be non-negative radial subharmonic on T'. Let C' = max {Cy,, ||u||/||o]| }-
By Theorem 4.12, f’ > 0, so by Theorem 5.1,

D f@ulw) = f W) ) + FO)llull < Cu Y ()7 (0) + f(O)ul

veT veT veT

C(Zf’(v)f(v) 0lal) =3 f(w)o 0

veT veT

7.3. Two interesting examples involving Theorem 5.1. For our first example we define g(v)
inductively on |v] in such a way that g is wealth increasing and for all v, »_ ., g(w) > 0. Define
g(0) = 0 and define g to be 1 on one vertex of length 1 and 0 on the other ¢ vertices of length 1. Let
n > 1 and suppose we have defined g(v) for all vertices of length n or less. If |v| = n and g(v) =0,
define g to be 0 on all children of v. If |v| = n and g(v) # 0, define g on the children of v depending
on whether or not > ., g(w) is positive or 0. If the sum is 0, then define g to be 1 on two children
of v and 0 on all of the other children; if the sum is positive, define g to be —3_ ., g(w) on one
child of v, g(v) + >_,,«, g(w) on another child, and 0 on the remaining children.

It follows from Theorem 4.11 that ¢ is the derivative of a unique non-negative subharmonic
function f such that f(o) =
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Theorem 7.4. With f as above, let the reference measure o satisfy Y, T Fa, < oo, where F
denotes the k-th Fibonacci number. Then f € Gy3,. In particular ), 7,Fon < 00 holds if ¢ > 3

and o, = ¢ "n"3.

n
To prove Theorem 7.4, we first note some well-known results concerning the Fibonacci sequence.

Lemma 7.5. Let {F,}°, denote the Fibonacci sequence with Fy = 0 and Fy = 1. Let v =
(1++/5)/2 denote the golden ratio.

(i) The sequences {Fan} and {Fany1}02, satisfy the recurrence relation t, —3tn—1 +t,—2 = 0.

(ii) (Cassini’s formula) Fpy1 - Fp_q = F2 4+ (=1)".

(ili) The sequence Fon_1/Fsy, is decreasing and the sequence Fa,/Fony1 is increasing. Conse-
quently 1/v < Fop_1/Fon, < 2/3 and 3/5 < Fop/Fopnt1 < 1/7 forn > 2.

Proof of Theorem 7.4. For n > 0, let a, and b, be given by

(7.6) an= Y =f), b= D fl)

vely,lv|=n velly,|v|=n

There is a unique ray along [0, w1, wa, ws, . .. | along which f’ strictly increases. Let ¢, denote f'(wy,).
For n > 2 we have ¢, = ¢p—1+ (co+c1+ -+ cp—1). Similarly ¢,—1 = o+ (co+c1+- - +cn_2).
Subtracting gives ¢, — ¢p—1 = Cp—1 — Cn—2 + ¢n—1, Which says ¢, — 3¢,—1 + ¢—2 = 0. In addition
c1 =1 and ¢ = 2. Thus by Lemma 7.5, ¢;, = Fop,—1, n > 1.

Let d,, denote the value of —f” at the child of w,—1 (n > 2) where f’ is negative. Then

n—1 n—1 n—1 n—2
dy=co+c1+...cn1 = Z Fop_q = Z(sz — Fyp_9) = Zsz - Z Fyp = Foy_ o — Fy = Fyy,_o.
k=1 k=1 k=1 k=0

Now that we have identified the sequences ¢, and d,, we write down recurrence relations for
a, and b,. Note that in assigning the values of f’, once we arrive at a vertex v for which the
> we<w f'(w) = 0, the process begins over again. This then implies

an = dp +2(az +az+ -+ ap—2) and by, = cp +2(b1 +b2 + b3 + -+ + by_2).

Thus ap+1 = dpt1 + 2(ag + a3 + -+ + ap—1). Subtracting gives a1 — ap = dpy1 — dp + 241 =
Fo, — Fop—o + 2ap,—1 = Fo—1 + 2a,,—1, and so a,, is uniquely determined by

Apt1 — Ap — 20p_1 = Fop_q1,a1 = 0,a2 = 1.

A similar calculation shows that b,, is uniquely determined by b,,+1—b,—2b,—1 = Foy,, b9 = 0,61 = 1.

We show next by induction that b, < kFb,, where k = (1++)/(2y — 1) =~ 1.17082. As b, < Fy,
for 0 < n < 4, we proceed to the inductive step. Taking n > 4 and assuming the result true for
all k < n, we must prove b,1+1 < kFb,40, i.e. prove b, + 2b,_1 + Fo, < kF5,49. Applying the
inductive hypothesis, it suffices to prove that kFs, + 2kFs,_2 + Fo, < kFo,12. Simplifying this
expression after replacing Fo, by Fon—1 + Fop—o and Fo,io by 3Fo,_1 + 2F5, o reduces this to
proving (k + 1) Fy,—2 < (2k — 1) Fyy,—;. But from Lemma 7.5, we have that Fa,_o/Fo,—1 < 1/7, so
the desired inequality follows since v = (k +1)/(2k — 1).

Next we show by induction that for all n > 0, a,, < (2/3)by,. This is clear for n = 0,1,2. Let
n > 2 and suppose it holds for all indices up to n. Then applying the inductive hypothesis and

Lemma 7.5, aps1 = an + 2an_1 + Fan_1 < %(bn 4 2by g + an) = 2b,.1. Since a, < (2/3)by and
by, < kFay, it follows that >, |f'(v)|7(v) < co. Thus,

Z _f/(U)TU = ian'rn < g ib”,rn = g Zf/(v)’rm
I; n=0 3 n=0 3 Iy

proving that f € Gy/3,-
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If g > 3 and 0,, = ¢~ "n 3, then 7 is of the order of ¢""n~2. Since Fy,, is of the order v?" ~ 2.62",
it follows that >, 7, F5, < oc. d

Remark 7.2. In the proof of Theorem 7.4, we needed to show that f satisfies (ii) of Definition 5.1.
We did this by proving the stronger result that a, < (2/3)b, for all n, where a,, and b,, are defined
n (7.6). It is easy to see that for any f satisfying the conditions of Definition 5.1, a,, /b, < 1 for
all n. One might wonder if it is always the case that for any such f, a,/b, < 2/3 for all n, or if
not 2/3 at least some constant strictly less than 1. We might suspect this since in constructing
g = [’ in Theorem 7.4, at each generation we made each negative value as negative as possible as
soon as possible (still satisfying (4.6) with b = 0 of Theorem 4.8) and the resulting positive value as
small as possible (being sure to keep g wealth increasing). However, we show in the next example

a function f for which limsupa, /b, = 1, yet which satisfies f € G;_;/,, for any good reference
n—oo

measure o.

Let ng, = 2% for k > 1, and let ng = 0. Let {ay}32, be the sequence for which a; = 1 and ay41 =
ngoy for each k > 1. Tt follows that oy, = nyng ... ng_; = 2F"D8/2 Fix a ray w = [0 = wo, w1, . . . .
For each k > 1, let wy be one of the children not in w of W(n, 1) 4 (no—1)4+(np—1) = Wnyt-tnp—k-
Thus |wk|:Zf:1ni—k:—l—1. For each k > ZZ Onz—( —2)+(nk—1):Zf:0nl—( 1)
Thus we can define g : 7' — [0, 00) by

ag, ifk}lv—w]vvlthz i — (k‘—2)<j<2f:1ni—k:;
(7.7) g(v) = (1 - 7)04]4:-1—1 if k>1, and v = Wy;
0 otherwise.

For each k there are ny — 1 consecutive vertices on which g takes the value ay. See the figure below.

1 1 1 1
—(1—771)042 —(1—7?2)a3 —(1—E)CY4 —(I—H)Oq)
O (%1 Qo -+ Qo g Qg Qg 0y
~~~ N—— S—— N——
n1—1=1 copy ngs—1 copies ns—1 copies na—1 copies

Theorem 7.6. Let g be as in (7.7).
(i) There is a unique non-negative subharmonic function f with f(o) =0 such that f' = g.

(ii) Define ap = Y. —g), andb,= >,  g(v). Then limsup,,_, . an/b, = 1.
vely,|v|=n vell,lv|=n

(iii) Let o be any good reference measure. Then f € Gy_g-1 ,.

Proof. For each k > 1, if we sum g over the ny — 1 terms on which it is oy, we get ag(ng — 1) =
agng(1—=1/ng) = agr1(1—1/ng). Thus, g satisfies (4.6) with b = 0. Also —(1—1/ng)agr1 + g1 =
Qag11/nE = ag, S0 g is wealth preserving at some vertices and wealth increasing at all vertices. Thus
(i) follows by Theorem 4.11.

Noting that for any n, a, is either 0, or it equals (1 — 1/ng_1)a for some k, in which case
by, = ay, (ii) follows since ny — 0o as k — oo.

Note that for k > 1, ng+ni+na+- - -+np_1—(k—2) = 28—k and ny+no+---+np—k = 281 k-2,

Let o be a good reference measure. To prove (iii), we need to show >, |g(v)|r(v) < oo and
51, —g(0)r(0) < (1/9) Xy, 9(0)r(v). Clearly, 3,7, [9(0)lr(0) < ¥,cq, 9()7(v), 50 t0 prove the

summability of |g|7 on T, it suffices to show the summability of g7 on II;. Grouping together the
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terms where g is constant and using the decreasing property of j — 7; and the assumption that o
is good, we obtain

Z g(v)T(v) = 1T +ao(re+ T3+ 74) +as(ts + 76 + -+ T11) +az(Tiz + o+ Te6) -
’UGHf

k—1 k oo 2k g2 00
S MET IR LR 9 } S e <> anlne - Dy
i=1 i=1 k=1

k=1 j=2k—Fk

(]2 T0e

oo k(k+1) oo oo o0
< Qp1Tok_f < E 272 Tor-1 < E 7'2k 1 < E 2", < 4 E q" T < 00.
k=1 k=1 k=1 k=1 k=1

To complete the proof of (III), note that |wy| = E?:o ni—k+1=21_% —1 and for any n,
Tn = Op + qTng1 > qTpy1. Thus, since j — 7; is decreasing, we have

2_9(”)7(’0) = (1 - n11>0427’2 + (1 - n12>6¥37'5 + (1 - ;3)044712 +...

Iy

o0 1 oo

= Z (1 — ;)ak+17_2k+1 (nk )Ozk Tok+1_f_1
k=1 k k=1
1 e’} oo 2k+1_

< - Z (nk - 1) O Tokt+1_j_g < Z Z ap Tj = ZQ(U)T v
1,2 =1 johy, 47,

Therefore, f € G;_;-1, and the proof is complete. a
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