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Graphs, viewed as one-dimensional simplicial complexes, can be
given harmonic structures satisfying the Brelot axioms. In this pa-
per, we describe all possible harmonic structures on graphs. We de-
termine those harmonic structures which induce discrete harmonic
structures when restricted to the set of vertices. Conversely, given
a discrete harmonic structure on the set of vertices and an arbi-
trarily prescribed harmonic structure on each edge, we determine
when these structures yield a harmonic structure on the graph. In
addition, we provide a variety of interesting examples.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Classical potential theory is concerned with the study of harmonic functions, and more generally,
of the solutions of elliptic and parabolic partial differential equations on open subsets of R

n . From the
analysis of these different environments, it was realized that these theories could be unified, and this
led to the development of axiomatic potential theory in which the underlying space R

n was replaced
by an abstract topological space. Many axiomatic treatments of potential theory were formulated in
the last century. For a survey of the different developments of the theory and a historical context,
see [4].

Parallel to this approach, is the subject of Markov chain theory which can be formulated in terms
of discrete potential theory on the vertices of graphs ([5] for trees, [9] for Markov chains, [14] for
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lattices, [10,11,15] for random walks on groups). In this work, we attempt to bridge the two ap-
proaches by studying harmonic structures on graphs. A graph may be considered to be a discrete
object by looking only at its vertices, or may be considered as a topological space by viewing it as a
one-dimensional simplicial complex (or polyhedron). Each interpretation yields a notion of harmonic
structure. Other treatments involving potential theory on one (respectively, higher) dimensional poly-
hedra include [6] and [8], respectively. The harmonic structures in those two settings involve only the
classical Laplacian. By contrast, in the present work we consider all possible harmonic structures on
graphs in the sense of the theory of harmonic functions developed by Brelot (see [3]). Though this
seems very natural, to the best of our knowledge, such a study has not been made.

Throughout this paper, when we use the terminology harmonic structure in a nondiscrete setting,
we shall always mean a harmonic structure in the sense of Brelot.

Our goals in the present work are to understand the possible harmonic structures on a graph and
their relations to discrete harmonic structures.

To understand this paper, the needed background on graphs and Brelot spaces is fairly minimal.
We give this background in Section 2.

In Section 3, we focus our attention on the study of harmonic structures on the edges, that is,
on intervals. Specifically, we divide the harmonic structures on an interval into three types: quasi-
linear (the constants are harmonic), quasi-hyperbolic (the nonzero constants are not harmonic but
there exists a positive harmonic function), and quasi-trigonometric (there are no positive harmonic
functions). We then give a complete classification of each of these.

We call two harmonic structures Brelot isomorphic if there is a homeomorphism between the spaces
which carries one harmonic structure onto the other. In Theorem 3.3 we show that there are three
non-Brelot isomorphic quasi-linear structures which correspond to the linear structures on (0,1),
(0,∞), and R. We then show that after a suitable normalization, to each positive continuous function
there corresponds a quasi-hyperbolic structure which is unique up to a one-parameter family of linear
fractional transformations (see Theorem 3.5).

A different classification of Brelot structures on intervals was provided in [12], which was based
on an earlier work on one-dimensional harmonic spaces (see [13]). However, the authors considered
structures which they call equivalent that are non-Brelot isomorphic under our definition of Brelot
isomorphism. In [12], two harmonic structures are called equivalent if, up to a Brelot isomorphism,
one harmonic structure is obtained by multiplying each member of the other structure by some fixed
positive continuous function. In particular, in [12] all quasi-linear and quasi-hyperbolic structures are
in a single equivalence class, while they are very different in terms of Brelot isomorphism, as observed
above. Similarly, in the quasi-trigonometric case, it is easy to find non-Brelot isomorphic structures
which are equivalent in the sense of [12]. For example, the structure induced by {sin x, cos x} on R is
equivalent to the structure induced by {(2 + sin 4x) sin x, (2 + sin 4x) cos x}, while these structures are
not Brelot isomorphic because a linear combination of sin x and cos x is at most 2 to 1 between two
consecutive zeros, while (2 + sin 4x) cos x can be as much as 4 to 1 between consecutive zeros, so no
homeomorphism linking these functions can exist on R. Thus, the classification of Brelot structures
on intervals presented in Section 3 is much finer than the classification in [12].

In Section 4, we develop the concept of extendibility of a harmonic structure on an edge as a first
step towards producing a harmonic structure on the graph.

In Section 5, we show that, given a graph and an arbitrary extendible harmonic structure on each
edge, it is possible to construct harmonic structures on the graph which restrict to the given structure.

In Section 6, we introduce concepts such as Dirichlet domain, positive Dirichlet domain, as well
as the ball and weak ball regularity axioms. These all relate to various aspects of solving the Dirich-
let problem. We illustrate such concepts with several examples. In particular, we give an example
of a harmonic structure on a graph whose restriction to the vertices yields only the constant func-
tions.

In Section 7, we explore the connection between harmonic structures on a graph and discrete
harmonic structures on the vertices. The weak ball regularity axiom is key to this connection. We
conclude the section by showing that a relatively compact domain in a tree is regular if and only if
there exists a harmonic function on it which is positive and continuous on its closure.



I. Bajunaid et al. / Advances in Applied Mathematics 43 (2009) 113–136 115
The principal objectives of this paper are summarized as follows:

• Describe all possible harmonic structures on a graph in Section 3 (where we characterize the
harmonic structures on the edges) and in Theorems 5.1 and 7.4.

• Determine those harmonic structures which induce discrete harmonic structures when restricted
to the set of vertices in Theorem 7.1.

• Given a discrete harmonic structure on the set of vertices and an arbitrarily prescribed harmonic
structure on each edge, we determine in Theorems 5.2 and 7.3 when these structures yield a
harmonic structure on the graph.

2. Terminology and notation

2.1. Graphs

Two vertices v and w of a graph G that have an edge connecting them are called neighbors,
in which case we use the notation v ∼ w . A vertex with a single neighbor is called terminal. The
degree of a vertex v is the number of neighbors of v . A path is a finite or infinite sequence of
edges [v0, v1], [v1, v2], . . . , such that vk ∼ vk+1. A geodesic path is a path [v0, v1, . . .] such that
vk−1 �= vk+1 for all k. The length of a finite path [v0, v1], [v1, v2], . . . , [vn−1, vn] is n.

To avoid a compatibility issue, in this paper we shall be considering only infinite graphs G with
no parallel edges or loops, that is, graphs with infinitely many vertices such that for each pair of
neighboring vertices there exists a unique edge between them and for which a vertex is never a
neighbor of itself. In any case parallel edges and loops can be eliminated by adding new vertices to
the graph. We shall further assume that G is locally-finite and connected: each vertex has a finite
number of neighbors and for any pair of distinct vertices v and w there is a path from v to w . The
distance d(v, w) between two vertices v and w is the length of the shortest path from v to w .

A tree is a simply-connected graph, that is, a graph for which between any two vertices there is
a unique geodesic path. A tree is said to be homogeneous of degree d if each vertex has exactly d
neighbors.

The interior of a subset K of a graph G is the set of vertices of K all of whose neighbors are also
in K .

By a function on a graph G we mean a function on its set of vertices.
A discrete harmonic structure on a graph G is given by a function P : G × G → [0,∞) such

that P (u, v) > 0 if and only if u ∼ v . We define a function f on G to be discrete harmonic at a
nonterminal vertex u, if the Laplacian of f at u defined by

�P f (u) =
∑
v∼u

P (u, v) f (v) − f (u)

is equal to 0. Given an open set U in G̃ (see Section 2.3), we define f to be discrete harmonic
on U ∩ G if it is discrete harmonic at each vertex of the interior of U ∩ G . Denote by H P (U ) the set
of all such functions.

A stochastic structure on G is a discrete harmonic structure whose corresponding function P sat-
isfies the condition

∑
v∼u P (u, v) = 1 for all u ∈ G , i.e. the constant functions are discrete harmonic.

A stochastic structure is also called a nearest-neighbor transition probability on G .
If P is a discrete harmonic structure on G and λ > −1, we may define a new discrete harmonic

structure on G by P1 = P
λ+1 . Then a function f on G is harmonic with respect to P1 if and only if

�P f = λ f , that is, f is an eigenfunction of the Laplacian �P .

2.2. Brelot harmonic spaces

Definition 2.1. A Brelot space is a connected, locally connected, locally compact but not compact
Hausdorff space Ω together with a harmonic structure H in the following sense. For each open set
U ⊂ Ω there is an associated vector space H(U ) of real-valued continuous functions on U (which are
called harmonic functions on U ) satisfying the following three axioms.
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Axiom 1 (Sheaf Property).

(i) If U0 is an open subset of U , the restriction to U0 of any function harmonic on U is harmonic
on U0.

(ii) A function defined on an open set U which is harmonic on an open neighborhood of each point
of U is harmonic on U .

Definition 2.2. Let U be an open relatively compact subset of Ω . If for a real-valued continuous
function f on ∂U , there exists a unique harmonic function hU

f on U approaching f at each point

of ∂U , we say that hU
f solves the Dirichlet problem on U with boundary values f . If for any such f ,

the Dirichlet problem with boundary values f can be solved, and if, in addition, f � 0 implies hU
f � 0,

then we say that U is regular.

Axiom 2 (Regularity Axiom). There exists a base of regular domains for the open sets of Ω .

Axiom 3 (Harnack’s Property). Any increasing directed family of harmonic functions defined on a do-
main U has an upper envelope (pointwise supremum) which is either identically +∞ or is harmonic
on U .

Remark 2.1. If Ω is second countable, which it is for all the spaces considered in this paper, Axiom 3
is equivalent to the corresponding statement for increasing sequences rather than directed families.

Observation 2.1. If U is a domain and f is harmonic on U , and f � 0, then either f is identically
zero on U or f is strictly positive on U . For, if f were positive somewhere and f (x0) = 0 for some
x0 ∈ U , then the increasing sequence {nf }∞n=1 would have limit zero at x0 and limit +∞ at other
points, contradicting Axiom 3.

Observation 2.2. Let Ω and Ω ′ be Brelot spaces such that Ω ∩ Ω ′ is open in each, and the cor-
responding harmonic structures are the same on the intersection. Then there is a unique harmonic
structure on Ω ∪ Ω ′ such that the restrictions to Ω and Ω ′ yield the original harmonic structures
on Ω and Ω ′ .

Observation 2.3. Let (Ω ′, H′) be a Brelot space and let Ω be a space homeomorphic to Ω ′ . A home-
omorphism ϕ : Ω → Ω ′ induces a harmonic structure H on Ω as follows: if U is an open set in Ω ,
h ∈ H(U ) if and only if h ◦ ϕ−1 ∈ H′(ϕ(U )). We call H the harmonic structure induced by ϕ .

Definition 2.3. Two Brelot spaces (Ω, H) and (Ω ′, H′) are Brelot isomorphic if there exists a homeo-
morphism ϕ : Ω → Ω ′ such that for every U open in Ω a function f is H′-harmonic on ϕ(U ) if and
only if f ◦ ϕ is H-harmonic on U . In particular, H is the harmonic structure induced by ϕ .

Definition 2.4. A B.H. space is a Brelot space whose sheaf of harmonic functions contains the constant
functions.

Observation 2.4. By Observation 2.1, in a B.H. space, if a harmonic function has a local extremum at
a point, it must be constant in a neighborhood of that point.

2.3. Graphs as Brelot spaces

Let G be an infinite graph. Consider the space G̃ which is the graph viewed as a 1-dimensional
simplicial complex, with the addition of an open edge at each of the terminal vertices. That is, for
all u, v nonterminal vertices with u ∼ v , consider the set [u, v] = {(1 − t)u + tv: 0 � t � 1}. If u is a
terminal vertex and u ∼ v , set [u, v] = {(1− t)u + tv: −1 < t � 1}, so that u is in the interior of [u, v].
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Then G̃ = ⋃
u∼v [u, v]. Of course, we identify (1 − t)u + tv with tv + (1 − t)u for 0 � t � 1, 0u + v

with v , and we assume that different edges intersect at most at a common vertex.
Let u be a vertex and let B1(u) be the unit ball centered at u, i.e.

B1(u) =
⋃

w∼u

[u, w).

For n > 1, define the n-ball centered at u inductively by

Bn(u) = {u} ∪
⋃
v∼u

Bn−1(v).

In [1] we showed that if T is a tree, T̃ may be given a structure of a Brelot space by extending
ordinary harmonic functions on the vertices linearly on the edges. By lifting to the universal cover,
the argument used in the tree setting can be easily adapted to graphs, which are a special case of
what Eells and Fuglede call 1-dimensional Riemannian polyhedra. In [8], they show that a Rieman-
nian polyhedron is a Brelot space. The linear harmonic structure on graphs was also studied in [6].
Furthermore, in [1] we showed that the eigenfunctions of the Laplacian relative to a positive eigen-
value r on a tree T also yield harmonic structures on T̃ . When restricted to the edges, they are the
solutions to the Helmholtz equation y′′ = ry. Again, lifting to the universal cover of a graph G , which
is a tree, it is easy to see that the Brelot axioms hold on G̃ . Unlike the structure defined by the kernel
of the Laplacian operator, these do not contain the constants. In the present paper we will consider
harmonic structures on graphs which have more general structures on the edges.

3. Classification of harmonic structures on an interval

In this section we are going to give a complete classification of harmonic structures on an interval
up to a Brelot isomorphism. Since endpoints of an interval cannot have a regular neighborhood, we
consider only open intervals.

Definition 3.1. A harmonic structure on an interval I is called quasi-linear if the constant functions
are harmonic, quasi-hyperbolic if the nonzero constants are not harmonic but there exist positive
harmonic functions on I , quasi-trigonometric if there are no positive harmonic functions on I .

On R the solutions to the differential equation u′′ + αu = 0 are examples of quasi-linear (α = 0),
quasi-hyperbolic (α < 0), and quasi-trigonometric (α > 0) harmonic structures, respectively. Actually,
these three examples yield quite literally the linear, hyperbolic, and trigonometric functions, and the
fact that R under these structures is a Brelot space was remarked in [7, p. 70].

Without loss of generality, we shall focus our analysis on the interval (0,1). Assume (0,1) is
endowed with a harmonic structure H. If U is a domain in (0,1), let H(U ) be the set of all harmonic
functions on U . Unless specified otherwise, all intervals in this section are subintervals of (0,1).

Proposition 3.1. If h is harmonic on (a,b) and zero on a subinterval, then h is identically 0. Two harmonic
functions on (a,b) which are equal on the boundary of a regular subinterval are equal on (a,b).

Proof. Let (c,d) ⊂ (a,b) be a maximal subinterval on which h is 0. If (c,d) �= (a,b), then without loss
of generality, we may assume a < c. Let (c′,d′) be a regular interval with a < c′ < c < d′ < d. Since h is
the solution to the Dirichlet problem on (c′,d′) with boundary values h(c′) and h(d′), with h(d′) = 0,
it follows from Axiom 2 that h does not change sign inside (c′,d′). Since h is identically 0 on (c,d′),
it follows from Observation 2.1 that h is identically 0 on (c′,d′) and hence on (c′,d), contradicting the
maximality of (c,d).

If two harmonic functions agree on the boundary of a regular subinterval of (a,b), then their
difference must vanish on the subinterval, hence on (a,b). �
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Corollary 3.1.

(a) Harmonic functions which are linearly independent on an interval are linearly independent on any subin-
terval.

(b) Two harmonic functions which are linearly independent on an interval I generate all the harmonic func-
tions on I .

The proof follows easily from Proposition 3.1.

Theorem 3.1. Any harmonic function f on a subinterval of (0,1) can be uniquely extended to a harmonic
function on (0,1).

Proof. Let (a,b) be a maximal interval on which f can be extended harmonically. Assume a > 0. Let
(c,d) be a regular neighborhood of a, 0 < c < a < d < b. Let h,k be the harmonic functions on (c,d)

solving the Dirichlet problem so that h(c) = k(d) = 0, h(d) = k(c) = 1. Thus h,k are linearly indepen-
dent on the two-point set {c,d}, hence on [c,d], and so by Corollary 3.1, there exist α,β ∈ R such
that f = αh + βk on (a,d). Now define

f̃ =
{

f on (a,b),

αh + βk on (c,d).

By Axiom 1, f̃ is a harmonic extension of f to (c,b), contradicting the maximality of (a,b). Thus
a = 0. Similarly we can show that b = 1. The uniqueness follows from Proposition 3.1. �

We now show that the space of harmonic functions on any subinterval (a,b) of (0,1) is two-
dimensional.

Theorem 3.2. There exist linearly independent harmonic functions f , g on (0,1) such that f , g restricted to
any subinterval form a basis for the space of harmonic functions on that subinterval.

Proof. Let (a,b) be a regular interval in (0,1) and let f , g be the solutions to the Dirichlet problems
such that f (a) = g(b) = 0 and f (b) = g(a) = 1. By Theorem 3.1, f and g can be extended harmon-
ically to (0,1). Since f and g are linearly independent on the two-point set {a,b}, they are also
linearly independent on (0,1). The result follows from Corollary 3.1. �
Definition 3.2. A pair of continuous functions f and g on any interval in R is said to be a Brelot
basis if f , g restricted to any subinterval form a basis for the space of harmonic functions on that
subinterval.

Observation 3.1. Let I, J be any two open intervals in R and let ϕ : I → J be a homeomorphism. Let
{ f , g} be a Brelot basis on J . Then { f ◦ ϕ, g ◦ ϕ} is a Brelot basis for the induced harmonic structure
on I .

Observation 3.2. If f and g are linearly independent harmonic functions on (0,1), then { f , g} is a
Brelot basis by Corollary 3.1.

Proposition 3.2. Let x0 ∈ (0,1). If f and g are linearly independent harmonic functions on (0,1) such that
f (x0) = 0, then g(x0) �= 0.

Proof. Let (a,b) be a regular neighborhood of x0 in (0,1). Then there exists a positive harmonic
function h on (a,b). Thus h(x0) > 0. But h is a linear combination of f and g , so g(x0) �= 0. �
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Proposition 3.3. Let (a,b) be regular in (0,1) and let c ∈ (a,b]. Then there exist unique constants α > 0 and
β � 0 such that for all f harmonic on (a,b) and continuous on [a,b], f (b) = α f (c) − β f (a).

Proof. Let g,h be the functions which are harmonic on (a,b), continuous on [a,b], and such that
g(a) = 1, g(b) = 0, h(a) = 0, h(b) = 1. Note that g(c) � 0 and h(c) > 0, where g(c) = 0 only for the
case c = b. Then for f equal to g or h, we have

f (c) = g(c) f (a) + h(c) f (b). (1)

Since {g,h} is a Brelot basis on (a,b), any harmonic function f on (a,b) is a linear combination of g
and h so that (1) holds for all f . Now letting α = 1

h(c) and β = g(c)
h(c) , we get the result. �

3.1. Quasi-linear harmonic structures

Assume throughout this section that (0,1) is endowed with a quasi-linear harmonic structure.

Observation 3.3. In this setting, any nonconstant harmonic function on (0,1) is 1-to-1. This follows
from Observation 2.4 and Proposition 3.1.

Theorem 3.3. Let H be a quasi-linear harmonic structure on (0,1) and let f ∈ H(0,1) be nonconstant.
Then {1, f } is a Brelot basis. Furthermore, every relatively compact subinterval of (0,1) is regular. Conversely,
every continuous 1-to-1 function f of (0,1) gives rise to a quasi-linear harmonic structure on (0,1) such that
{1, f } is a Brelot basis. Consequently, any quasi-linear harmonic structure on an interval is Brelot isomorphic
to the structure of linear functions on some interval, and hence there are three distinct classes of quasi-linear
structures on intervals represented by the linear structures on (−∞,∞), (0,∞), and (0,1).

Proof. Note that by Axiom 2 and Theorem 3.1, a nonconstant harmonic function necessarily exists. For
the first part of the statement, let f ∈ H(0,1) be nonconstant, (a,b) a relatively compact subinterval
of (0,1), h harmonic on (a,b), and let (x0, x1) be regular such that a < x0 < x1 < b. By Observation 3.3
we may set

α = h(x0) − h(x1)

f (x0) − f (x1)
, β = h(x1) f (x0) − h(x0) f (x1)

f (x0) − f (x1)
.

Then α f + β − h is a harmonic function which equals 0 at x0 and x1, hence, by Axiom 2 and Propo-
sition 3.1, it is identically zero on (a,b). Thus, {(α f + β)|(a,b): α,β ∈ R} = H(a,b), i.e. {1, f } is a
Brelot basis.

By Observation 3.3, we may set

α′ = 1

f (b) − f (a)
, β ′ = − f (a)

f (b) − f (a)
.

Then α′ f + β ′ is harmonic, vanishing at a and with value 1 at b, so, by Observation 3.3, it is in-
creasing hence positive on (a,b). Similarly, we can find constants α′′ and β ′′ such that the harmonic
function α′′ f + β ′′ has value 1 at a and vanishes at b, hence it is positive on (a,b). Thus the Dirich-
let problem can be solved uniquely and nonnegative values on {a,b} yield a nonnegative solution
on (a,b), so (a,b) is regular.

The converse assertion follows from Observation 3.1 and the fact that the constant 1 and the
identity is a Brelot basis which gives rise to the set of affine functions on any interval.

Finally, if {1, f } is a Brelot basis for the harmonic structure H on an interval (a,b), then f is a
homeomorphism from (a,b) to some interval (c,d), possibly infinite. Thus, f is itself a Brelot isomor-
phism from H to the linear structure on (c,d). Since linear structures can only be preserved by a
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linear function, the three different types of linear structures are determined by the cases: c and d are
both finite, one endpoint is finite and the other is infinite, c = −∞ and d = ∞. �
3.2. Quasi-hyperbolic harmonic structures

In this section, we assume the existence of a positive harmonic function.

Theorem 3.4. Let H be a quasi-hyperbolic structure on (0,1) and let k be a positive harmonic function
on (0,1). Then there exists a harmonic function h on (0,1) such that {h,k} is a Brelot basis. For any such k,
h/k is 1-to-1. All relatively compact subintervals of (0,1) are regular.

Conversely, let k be any positive continuous function on (0,1) and let ϕ be any homeomorphism from
(0,1) to some interval. Then the pair {k,kϕ} is a Brelot basis for a harmonic structure on (0,1) which is either
quasi-linear or quasi-hyperbolic. It is quasi-linear if and only if k is constant or ϕ is a linear combination of 1/k
and 1.

Proof. Applying Theorem 3.2, we may find h ∈ H(0,1) such that {h,k} is a Brelot basis. Let us define
H1/k on (0,1) by

H1/k(a,b) = {
f k−1|(a,b): f ∈ H(0,1)

}
,

for 0 � a < b � 1. It follows by a straightforward argument that H1/k is a harmonic structure on (0,1)

which contains the constants. Since the function h/k ∈ H1/k and is nonconstant, it is 1-to-1 by Obser-
vation 3.3. By Theorem 3.3, (a,b) is regular for H1/k .

For the converse statement, observe that if ϕ is a homeomorphism from (0,1) to some interval,
then by Theorem 3.3, {1,ϕ} is a Brelot basis for a harmonic structure H on (0,1). Thus, using the
above notation, if k is a positive continuous function on (0,1), then {k,kϕ} forms a Brelot basis for
the harmonic structure Hk . The constant 1 is harmonic with respect to this structure if and only if
k is constant or ϕ is a linear combination of 1/k and 1. �
Observation 3.4. Let H be a harmonic structure on (0,1) for which (0,1) is regular with respect
to the Dirichlet problem on [0,1]. Let k be the solution to the Dirichlet problem such that k(0) =
1 = k(1). Then k is positive on [0,1], so H is either quasi-linear or quasi-hyperbolic.

Remark 3.1. Given a positive continuous function k on (0,1), by composing it with an appropriate
homeomorphism, we may assume that the pair {k(x), xk(x)} is a Brelot basis for a quasi-linear or
quasi-hyperbolic structure on (0,1), which we refer to as the harmonic structure induced by k.

Theorem 3.5. Let k and k′ be positive continuous functions on (0,1) whose induced harmonic structures H
and H′ are quasi-hyperbolic. Then H and H′ are Brelot isomorphic if and only if k′ is a positive constant
multiple of either the function x → 1

ax+1 k(
(a+1)x
ax+1 ), for some a > −1, or the function x → 1

1−bx k( 1−x
1−bx ), for

some b > 1.

Proof. By Remark 3.1, the harmonic structures induced by k and k′ have Brelot basis {k(x), xk(x)} and
{k′(x), xk′(x)}, respectively. Thus, these structures are Brelot isomorphic if and only if there exist a
homeomorphism ϕ of (0,1) onto itself and real constants α,β,α′, β ′ such that

k′(x) = αk
(
ϕ(x)

) + βk
(
ϕ(x)

)
ϕ(x) (2)

and

xk′(x) = α′k
(
ϕ(x)

) + β ′k
(
ϕ(x)

)
ϕ(x), (3)
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for each x ∈ (0,1). Since k is a positive function, multiplying Eq. (2) by x and subtracting Eq. (3)
yields ϕ(x) = αx−α′

β ′−βx . Since the only linear fractional transformations that map (0,1) onto itself are the

transformations ϕ(x) = (a+1)x
ax+1 with a > −1, and ϕ(x) = 1−x

1−bx with b > 1, and observing that α+βϕ(x)

equals α
ax+1 in the first case, and α(1−b)

1−bx in the second case, we obtain the result. �
3.3. Zero sets of harmonic functions

Assume that (0,1) is endowed with a harmonic structure.

Proposition 3.4. Any nonzero harmonic function on (0,1) endowed with a quasi-linear or quasi-hyperbolic
structure has at most one zero.

This follows immediately from Proposition 3.1 since by Theorems 3.3 and 3.4, every relatively
compact subinterval of (0,1) is regular.

The following result follows from the fact that a harmonic structure on a regular interval is quasi-
linear or quasi-hyperbolic.

Theorem 3.6. Any subinterval of a regular interval is regular.

There are quasi-trigonometric structures on (0,1) having nonregular subintervals, as the following
example shows.

Example 3.1. Let a > π and consider the differential equation y′′ + a2 y = 0 on (0,1). The set of
solutions to this equation forms a Brelot space on (0,1) for which {sin at, cos at} is a Brelot basis. Then
every open subinterval of length greater than π/a is not regular since the harmonic function h(t) =
sin a(t − t0) vanishes at t0 and t0 + π/a for any t0 ∈ (0,1 − π/a).

Let f and g form a Brelot basis on (0,1), which will remain fixed throughout the remainder of
this section, except possibly for changing the sign of f or g , or interchanging f with g .

Theorem 3.7. The zero sets of f and g are discrete, disjoint, and alternating, i.e. between any two consecutive
zeros of one there is a unique zero of the other.

Proof. Assume f (x0) = 0. Then by Proposition 3.2, there is a neighborhood U of x0 on which g is
not 0. Changing the sign if necessary, we may assume that g is positive on U . By Theorem 3.4, the
function f /g is 1-to-1 on U , thus f has exactly one zero on U , proving the discreteness of the zero
sets. Let x0 < x1 be consecutive zeros of f . Then we may assume that f is positive on (x0, x1), so
by the same argument, g/ f is 1-to-1 on (x0, x1) and so g can have at most one zero on (x0, x1). On
the other hand, if g had no zeros inside (x0, x1), then again by the same argument, the function f /g
would be 1-to-1 on (x0, x1), contradicting the fact that f /g vanishes at x0 and x1. Thus, g must have
exactly one zero inside (x0, x1), proving that the zeros of f and g alternate. �

There are three possibilities for Z f = {xn} and Z g = {yn}, the zero sets of f and g .

Case 1. They are both doubly infinite. By Theorem 3.7, we may assume that for all n ∈ Z, xn <

yn < xn+1.

Case 2. They are both finite. By Theorem 3.7, we may assume that either both zero sets have the same
cardinality N or that one of them, say Z f , has one more element than the other. Specifically, we may
assume that either x1 < y1 < · · · < xN < yN or x1 < y1 < · · · < xN−1 < yN−1 < xN .
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Case 3. They are both infinite but not doubly infinite. Without loss of generality we may assume that
either x−N < y−N < · · · < x0 < y0 < x1 < y1 < · · · or · · · < x0 < y0 < x1 < y1 < · · · < xN < yN .

Consider the trigonometric structure on R with {sin x, cos x} as a Brelot basis. This is an example of
Case 1. Restricting to an open bounded interval of length greater than π yields an example of Case 2,
and restricting to a proper open unbounded subinterval yields an example of Case 3.

By Observation 2.1, f must have different signs on (xn−1, xn) and (xn, xn+1), and the same is true
for g on (yn−1, yn) and (yn, yn+1). Thus, without loss of generality, we may assume that (−1)n f is
positive on (xn, xn+1) and (−1)n g is positive on (yn, yn+1).

3.4. Quasi-trigonometric structures

In this section, we shall show that a quasi-trigonometric harmonic structure is very closely related
to a structure generated by sin x and cos x on some appropriate interval.

Definition 3.3. Let −∞ � a < b � ∞ with b − a > π . A trigonometric harmonic structure on (a,b) is
a structure generated by two continuous functions S(x) and C(x) such that for all x ∈ (a,b) the sign
of S(x) equals the sign of sin x, the sign of C(x) equals the sign of cos x, and S(x)/C(x) = tan x.

Theorem 3.8. Any quasi-trigonometric harmonic structure on (0,1) is Brelot isomorphic to a trigonometric
structure on some interval (a,b), where −∞ � a < b � ∞, b − a > π .

Proof. Using the notation, the signs, and the ordering of the zeros of f and g following Theorem 3.7,
let f and g form a Brelot basis for a quasi-trigonometric structure on (0,1), which will remain fixed
throughout, except possibly for changing the sign of f or g , or interchanging one for the other.

We shall construct a homeomorphism ϕ from (0,1) onto an interval (a,b) and show that C =
f ◦ ϕ−1 and S = g ◦ ϕ−1 satisfy the hypotheses of Definition 3.3.

We shall define ϕ so that on each interval (xn, xn+1), ϕ is an increasing homeomorphism onto
((n − 1/2)π, (n + 1/2)π). This will extend to the closure of the intervals except in the case that
x1 = 0 or, for some N , xN = 1 (in which cases we do not extend). Consider tan−1 : (−∞,∞) →
((n − 1/2)π, (n + 1/2)π).

Since (−1)n f is a positive harmonic function on (xn, xn+1) and (−1)n g has a negative limit at xn
and a positive limit at xn+1,

g

f
= (−1)n g

(−1)n f

is a 1-to-1 map from (xn, xn+1) onto (−∞,∞) by Theorem 3.4. Let ϕ = tan−1 ◦(g/ f ).
If necessary, we define ϕ on (0, x1) as follows. Since f and g are positive on (0, x1), they generate

a quasi-hyperbolic structure there, so that g/ f is 1-to-1. Because g(x)/ f (x) → ∞ as x ↑ x1, g/ f is
increasing on (0, x1). Let tan−1 be the branch of the inverse tangent with image (−π/2,π/2), and let

a = lim
x→0+ tan−1 g(x)

f (x)
.

Now define ϕ : (0, x1) → (a,π/2) by ϕ(x) = tan−1 g(x)
f (x) .

Similarly, if necessary, we define ϕ on (xN ,1) as follows. Consider the branch of the inverse tan-
gent with image ((N − 1/2)π, (N + 1/2)π). Let

b = lim
x→1− tan−1 g(x)

f (x)
.

Now define ϕ : (xN ,1) → ((N − 1/2)π,b) by ϕ(x) = tan−1 g(x)
f (x) .
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This now gives a homeomorphism ϕ from (0,1) onto some open interval. Then C = f ◦ ϕ−1

and S = g ◦ ϕ−1 satisfy the hypotheses of Definition 3.3 yielding a quasi-trigonometric structure
on (0,1). �
Corollary 3.2. Let (0,1) be given a quasi-trigonometric structure. Then there exists a Brelot basis consisting of
harmonic functions each of which has at least two zeros.

Proof. By Theorem 3.8, it is sufficient to prove the result for a trigonometric structure on some in-
terval (a,a + π + 3ε) for some a ∈ R, ε > 0 not an integer multiple of π . Let S(x) and C(x) be the
functions above. Let h(t) = cos t0 S(t)− sin t0C(t) where t0 = a +ε . Then h(t) equals sin(t−t0)

cos t C(t) when

cos t �= 0 or sin(t−t0)
sin t S(t) when sin t �= 0. Then h(t0) = h(t0 + π) = 0.

Similarly, let g be defined as h with t0 = a + 2ε . Since ε is not a multiple of π , {g,h} is a Brelot
basis and both g and h have at least two zeros. �
Theorem 3.9. Let f and g be continuous functions on (0,1) whose corresponding zero sets are disjoint, dis-
crete, alternating, and assume that f has at least two zeros. Suppose that the restriction of f /g and g/ f to
any interval containing no zero of g (respectively, of f ) is 1-to-1. Then { f , g} is a Brelot basis for a quasi-
trigonometric harmonic structure on (0,1).

Conversely, every quasi-trigonometric harmonic structure on (0,1) has a Brelot basis of this form.

Proof. Consider the set of all maximal intervals containing no zero of f or no zero of g . Denote this
collection by {In} ordered so that the left endpoint of In is less than the left endpoint of In+1 for
each n. Then (0,1) = ⋃

n In , In ∩ In+1 �= ∅, In ∩ In+2 = ∅ for all n. By Theorem 3.4, the pair { f , g}
is a Brelot basis for a quasi-linear or a quasi-hyperbolic harmonic structure on In for each n. By
Observation 2.2, { f , g} yields a Brelot basis on any finite union In ∪ In+1 ∪ · · · ∪ In+k (k ∈ N). Because
they are local in nature, the Brelot axioms hold, so { f , g} is a Brelot basis.

For the converse, Corollary 3.2 and Theorem 3.7 imply the existence of a Brelot basis { f , g} whose
zero sets are disjoint, discrete, and alternating. Consider k = f /g on an interval I containing no zero
of g . Let x1, x2 ∈ I be such that k(x1) = k(x2) = a. If x1 < x2, then (x1, x2) is regular, since g is nonzero
on [x1, x2]. But ag(x1) = f (x1) and ag(x2) = f (x2), so using Proposition 3.1 it follows that ag = f ,
contradicting the linear independence of f and g . �
Observation 3.5. Although by Corollary 3.2 it is always possible to obtain a Brelot basis both of
whose elements contain at least two zeros, there may exist a Brelot basis both of whose ele-
ments have exactly one zero. Indeed, the set {sin 3π

2 x, cos 3π
2 x} is a basis for a quasi-trigonometric

structure on (0,1), since any linear combination h(x) of the two functions satisfies the condi-
tion h(x + 2

3 ) = −h(x) for 0 < x < 1/3, so there are no positive harmonic functions. Both functions
in this basis have exactly one zero in (0,1).

4. Extendibility of harmonic functions

We now begin our study of harmonic structures on graphs.

Definition 4.1. We say that a harmonic structure on (0,1) is extendible if it is the restriction of some
harmonic structure on (−1,1).

Let G be a graph and let [u, v] be an edge of G . We say that a harmonic structure on (u, v) is
extendible if the two corresponding harmonic structures on (0,1) are extendible, where we identify t
with either (1 − t)u + tv or with tu + (1 − t)v .

We now characterize the extendible harmonic structures on an interval.

Theorem 4.1. A harmonic structure H on (0,1) is extendible if and only if for all f ∈ H, f (0) = limt→0+ f (t)
exists and for some f ∈ H this limit is nonzero.
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Proof. The necessity is an immediate consequence of Theorem 3.1 and Proposition 3.2. To prove the
sufficiency, let f be a harmonic function on (0,1) such that f (0) > 0. Then for some ε > 0, f is
positive on (0, ε). Thus H|(0, ε) is either quasi-linear or quasi-hyperbolic, so there exists a home-
omorphism ϕ from (0, ε) to some interval (a,b) such that { f , f ϕ} is a Brelot basis for H|(0, ε).
Note that a = limt→0+ ϕ(t) = limt→0+ ( f ϕ)(t)/ f (t) > −∞, so that ϕ may be extended to a home-
omorphism from (−1, ε) to (a − 1,b). Choose any positive continuous extension of f to (−1, ε).
By Theorem 3.4 applied to the interval (−1, ε), { f , f ϕ} is a Brelot basis for a harmonic structure
on (−1, ε) which agrees with H on (0, ε), therefore, by Observation 2.2, it yields a harmonic struc-
ture on (−1,1) extending H. �
Remark 4.1. In the proof of the next proposition we introduce a technique that shall be used exten-
sively in the remainder of the paper. The purpose of this technique is to produce a basis for the space
of harmonic functions near a vertex of a graph.

Proposition 4.1. Let H be a harmonic structure on a graph G̃. Let [u, v] be an edge. Then H|(u, v) is ex-
tendible. Furthermore, if there exists a harmonic function f such that f |[u, v] is positive, then (u, v) is regular.

Proof. Without loss of generality we may assume that u is a nonterminal vertex of G . Let v, w be
distinct neighbors of u, and let O be a regular neighborhood of u contained in B1(u). For every
neighbor z of u, let z′ be the intersection of the boundary of O with [u, z]. Let f z be the solution to
the Dirichlet problem on O which is 1 at z′ and 0 at the other boundary points. The set { f z: z ∼ u}
is a basis for the space of harmonic functions on O . Since O is regular, f z(u) > 0 by Observation 2.1.
By Theorem 3.1, each f z can be extended to a harmonic function on each edge from u, which we
still denote by f z . Observe that for v �= w the functions f v and f w are linearly independent on (u, v)

and so, by Theorem 3.2, form a Brelot basis. Therefore, every harmonic function on (u, v) is a linear
combination of f v and f w . By Theorem 4.1, H|(u, v) is extendible.

Next, assume there exists a harmonic function f such that f |[u, v] is positive. Viewing (u, v) as an
interval, we may now extend the harmonic structure on (u, v) to a larger interval I containing its clo-
sure. Then there exists some subinterval of I containing [u, v] on which f is positive. By Theorem 3.4
applied to the interval I , (u, v) is regular. �
Corollary 4.1. Given a graph endowed with a harmonic structure, the zero set of any nonzero harmonic func-
tion on an edge whose endpoints are both nonterminal vertices is always finite.

Proof. Let f be a nonzero harmonic function on an edge. Then there exists a harmonic function g
on the edge such that { f , g} is a Brelot basis. By Theorem 3.7, if f has infinitely many zeros,
then so does g , and they will cluster at one of the endpoints v of the edge. Hence limx→v f (x) =
limx→v g(x) = 0, contradicting Proposition 4.1 and Theorem 4.1. �
Proposition 4.2.

(a) If (0,1) has an extendible harmonic structure, then there exists some ε0 ∈ (0,1) such that for all ε ∈
(0, ε0), the interval (0, ε) is regular.

(b) If H is a harmonic structure on a graph G̃ and u ∈ G, then for every regular neighborhood O of u in the
unit ball of u and for every edge [u, v], O ∩ (u, v) is regular.

Proof. (a) By Theorem 3.1 and Theorem 4.1 we can find a harmonic function f on (0,1) which
extends harmonically to (−1,1) and is positive on (−ε0, ε0) for some ε0 > 0. Thus the structure
on (−ε0, ε0) is quasi-linear or quasi-hyperbolic, so by Theorem 3.6 every subinterval is regular.

(b) Without loss of generality, by replacing O by each of its connected components, we may as-
sume O is connected. Let f be the solution to the Dirichlet problem on O with boundary values 1,
which is positive on O by the regularity of O . Let [u, v ′] = O ∩ (u, v). Then by Theorem 3.4 if v ′ �= v ,
or Proposition 4.1 if v ′ = v , (u, v ′) is regular. �
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Theorem 4.2. Let T̃ be a tree endowed with a harmonic structure. Any function which is harmonic on a domain
may be extended to a function which is harmonic on all of T̃ . In particular, a harmonic structure on T̃ is given
completely by describing only the space of functions which are harmonic on all of T̃ .

Proof. Let f be harmonic on a domain U in T̃ and let x be an element of the boundary of U . If x = u
is a vertex, let O = B1(u) ∩ U . Without loss of generality, we may assume that u is a nonterminal
vertex. There exists a unique v ∼ u such that (u, v) ∩ O is nonempty. Call this intersection (u, y).
Using the same notation as in the proof of Proposition 4.1, since f |(u, y) is harmonic, it has the form
α f v + β f w where w is another neighbor of u and α,β are constants. But α f v + β f w is defined
on a neighborhood of u which yields a harmonic extension of f . If x ∈ (u, v) with u, v neighboring
vertices, then by Theorem 3.1, f may be extended to a harmonic function on all of (u, v).

By the above, f can be extended (if necessary) to a harmonic function on a larger domain contain-
ing a vertex v0. By induction on the distance of vertices from v0, f may be extended to a harmonic
function on a neighborhood of every vertex. This yields a harmonic extension of f to all of T̃ . �
Observation 4.1. Theorem 4.2 cannot be extended to graphs, as the following example shows. Let G be
the graph with vertices u, v, w,1,2, . . . , with edges [u, v], [u, w], [v,1], [w,1], [1,2], [2,3], . . . , and
with all nearest-neighbor transition probabilities equal to 1/2, except p(1, v) = p(1, w) = p(1,2) =
1/3. Consider on G̃ the harmonic structure which is linear on the edges. Let O be the domain
which includes [u, v], [u, w], and the open half-edges about v and w , that is, O = [u, v] ∪ [u, w] ∪
[v, 1

2 v + 1
2 1) ∪ [w, 1

2 w + 1
2 1). Define f on O by f ( 1

2 w + 1
2 1) = −1/2, f ( 1

2 v + 1
2 1) = 5/2, f (w) = 0,

f (u) = 1, and f (v) = 2. Then f has a unique linear extension to [v,1] so that f (1) = 3. On the other
hand, f has a unique linear extension to [w,1] so that f (1) = −1. Thus, f is harmonic on O and
cannot be extended harmonically to G .

There is, however, a local version of Theorem 4.2 that holds on graphs.

Corollary 4.2. Let G be a graph such that G̃ is endowed with a harmonic structure. Then every harmonic
function on a unit ball has a harmonic extension to a neighborhood of the ball in G̃.

The proof of the corollary is based on the argument given in the first paragraph of the proof of
Theorem 4.2.

5. Construction of harmonic structures on graphs

We now study the relationship between a given harmonic structure on a graph G̃ and a collection
of harmonic structures on its edges. By a directed edge we mean an edge τ = [u, v] where u is
considered as the initial vertex of τ . We use the notation ι(τ ) = u.

Theorem 5.1. Let G̃ be endowed with a harmonic structure. For each vertex u, let O u ⊂ B1(u) be a regular
neighborhood of u and for each directed edge τ with ι(τ ) = u, let uτ be the boundary point of O u on τ . Let fτ
be the solution to the Dirichlet problem on O u with boundary value the characteristic function of {uτ }. Define
P (u, uτ ) = fτ (u). For f continuous on G̃ and harmonic on each edge of G̃ , f is harmonic on G̃ if and only if
for all u ∈ G, f (u) = ∑

ι(τ )=u P (u, uτ ) f (uτ ).

Proof. Suppose first that f is harmonic on G̃ . Thus f is harmonic on O u and agrees with∑
ι(τ )=u f (uτ ) fτ on ∂ O u , hence agrees with

∑
ι(τ )=u f (uτ ) fτ on O u , and so

f (u) =
∑

ι(τ )=u

f (uτ ) fτ (u) =
∑

ι(τ )=u

P (u, uτ ) f (uτ ).
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Conversely, assume that f is continuous on G̃ , harmonic on each edge and that for each vertex u,
f (u) = ∑

ι(τ )=u P (u, uτ ) f (uτ ). We need to show that f is harmonic at u. Consider the function f̃ =∑
ι(τ )=u f (uτ ) fτ on O u . Then

f̃ (u) =
∑

f (uτ ) fτ (u) =
∑

P (u, uτ ) f (uτ ) = f (u).

Thus on (u, uτ ), f̃ and f are harmonic functions which agree at the endpoints for each τ with
ι(τ ) = u. By part (b) of Proposition 4.2, (u, uτ ) is regular, so f̃ = f on (u, uτ ). Hence f̃ = f on O u .
Since f̃ is harmonic at u, so is f . �

It is clear from the statement of Theorem 5.1 that for each directed edge τ we may have different
choices for uτ . The lemma below and its proof make precise the relationship among different choices.

Lemma 5.1. Given a graph G, assume that each edge of G̃ has an extendible harmonic structure. For each
directed edge τ , let ι(τ ) = u and pick a point uτ ∈ τ , uτ �= u, such that (u, uτ ) is regular and let P (u, uτ ) be
an arbitrary positive number. Then for each u′

τ ∈ (u, uτ ], there exists a positive constant P (u, u′
τ ) such that

for all u ∈ G and all functions f which are continuous on
⋃

v∼u, τ=[u,v][u, uτ ) and harmonic on each (u, uτ ),
the conditions

f (u) =
∑

ι(τ )=u

P (u, uτ ) f (uτ ) (4)

and

f (u) =
∑

ι(τ )=u

P
(
u, u′

τ

)
f
(
u′

τ

)
(5)

are equivalent.

Proof. Since (u, uτ ) is regular, applying Proposition 3.3 there exist constants ατ > 0, βτ � 0 such
that f (uτ ) = ατ f (u′

τ ) − βτ f (u) for all f harmonic on (u, uτ ) and continuous on [u, uτ ]. Thus the
condition (4) is equivalent to

f (u) =
∑

ι(τ )=u

P (u, uτ )
(
ατ f

(
u′

τ

) − βτ f (u)
)
,

so that
(

1 +
∑

ι(τ )=u

P (u, uτ )βτ

)
f (u) =

∑
ι(τ )=u

P (u, uτ )ατ f
(
u′

τ

)
.

Setting σ = 1 + ∑
P (u, uτ )βτ , we can define P (u, u′

τ ) = P (u, uτ )ατ /σ . Clearly (4) and (5) are now
equivalent conditions. �

The following result, a converse of Theorem 5.1, shows how to create a harmonic structure on G̃ ,
given harmonic structures on its edges.

Theorem 5.2. Let G be a graph with an extendible harmonic structure on each edge of G̃ . For each directed
edge τ , let ι(τ ) = u and pick a point uτ ∈ τ , uτ �= u, such that (u, uτ ) is regular and let P (u, uτ ) be an
arbitrary positive number. Let U ⊂ G̃ be a connected open set. For each directed edge τ with ι(τ ) = u ∈ U , let
u′

τ ∈ (u, uτ ]∩ U . Let H(U ) be the set of functions f such that for each edge [u, v] intersecting U , f |(u, v)∩ U
is harmonic and (5) holds for each vertex u in U . Then H yields a harmonic structure on G̃.
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Observation 5.1. By Lemma 5.1, condition (5) is independent of which point u′
τ is chosen.

For the proof of Theorem 5.2 we will need the following result.

Lemma 5.2. Under the hypotheses of Theorem 5.2, O = ⋃
ι(τ )=u[u, u′

τ ) is a regular open set.

Proof. For each directed edge τ , with ι(τ ) = u, let aτ ∈ R be given. We will show that there is a
unique harmonic function f on O such that f (u′

τ ) = aτ . Let a0 = ∑
ι(τ )=u P (u, u′

τ )aτ and let f be the
solution to the Dirichlet problem on (u, u′

τ ) with boundary values f (u) = a0 and f (u′
τ ) = aτ . Then by

definition, f satisfies (5), and so f is harmonic on O . This function f is unique since any harmonic
extension would agree with f at each u′

τ and at u. Since each P (u, u′
τ ) is positive, if aτ � 0 for all

directed edges τ starting at u, then f (u) � 0, hence f is nonnegative on O . �
Proof of Theorem 5.2. Clearly, the set of functions harmonic on any open set is a real vector space.

Axiom 1. If f is harmonic on a domain U , and U0 is a connected open subset of U , then since
Axiom 1 holds on each edge (u, v), f |U0 ∩ (u, v) is harmonic.

Furthermore, by Observation 5.1, at each vertex u ∈ U condition (5) is exactly the same for f |U0
as for f . So f |U0 is harmonic.

Next assume f is continuous on U and that each point in U has some connected neighborhood on
which f is harmonic. Then f is harmonic on each of the edges which intersect U and (5) is satisfied
at each vertex u in U . Hence f is harmonic on U . This completes the proof of the first Brelot axiom.

Axiom 2. Since each open edge is a Brelot space, each x ∈ G̃\G has a base of regular neighborhoods.
Thus, we only need to show that every vertex does also. But this follows from Lemma 5.2.

Axiom 3. Let { fn} be an increasing sequence of harmonic functions on some domain U . On each
interval contained in some edge and in U , the sequence either converges to a harmonic function
or diverges to ∞ everywhere. Let O be a connected neighborhood of a vertex u contained in U ∩⋃

ι(τ )=u[u, uτ ), which is regular by Lemma 5.2. Let u′
τ ∈ (u, uτ ] ∩ O for each τ starting at u. Thus,

{ fn} is increasing on
⋃

ι(τ )=u[u, u′
τ ]. By Lemma 5.1, for each edge τ there exist P (u, u′

τ ) > 0 such that

fn(u) =
∑

ι(τ )=u

P
(
u, u′

τ

)
fn

(
u′

τ

)
.

Assume that limn→∞ fn(u) = ∞. If x ∈ (u, u′
τ ) for some τ , then fn(x) is a positive linear combination

of fn(u) and fn(u′
τ ) by Proposition 3.3, and thus limn→∞ fn(x) = ∞. On the other hand, if for some

directed edge τ0 starting at u, fn goes to ∞ somewhere on (u, uτ0 ) ∩ O , then limn→∞ fn(u′
τ0

) = ∞,
whence limn→∞ fn(u) = ∞. Therefore, if { fn} diverges anywhere, it diverges everywhere. On the other
hand, if it converges, then its limit is harmonic on each edge and satisfies (5). Thus it is harmonic
on O .

Consequently, the Brelot axioms hold on G̃ . �
6. Dirichlet domains and ball regularity axioms

Let G be a graph. One of our principal aims is to use the Brelot theory on G̃ to understand the
underlying function theory on G . Thus, it is of less interest from the discrete point of view to study a
harmonic structure on G̃ which yields a small subspace of the harmonic functions when restricted to
the vertices. In this section, we introduce certain additional axioms with the purpose of seeing when
a harmonic structure on G̃ restricts to a discrete harmonic structure on G .
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Definition 6.1. Given a Brelot space Ω , a relatively compact domain U in Ω is said to be a Dirichlet
domain if, for any set of boundary values, there exists a unique solution to the Dirichlet problem
on U , that is, for any continuous function f on ∂U there exists a unique continuous extension hU

f

of f to U which is harmonic on U .
A Dirichlet domain U is called a positive Dirichlet domain if the solution to the Dirichlet problem

with nonnegative boundary values is nonnegative in some neighborhood of the boundary.

At the end of the section, we provide an example of a Dirichlet domain which is not a positive
Dirichlet domain and of a positive Dirichlet domain which is not regular.

Definition 6.2. A Dirichlet domain U is said to be weakly regular with respect to x ∈ U if for any
function f defined on the boundary of U which is nonnegative and not identically zero, hU

f (x) > 0.

We introduce the following axioms:

The ball regularity axiom. The unit ball centered at any (nonterminal) vertex is regular.

The weak ball regularity axiom. The unit ball centered at any (nonterminal) vertex is weakly regular
with respect to its center.

Observation 6.1. The ball regularity axiom is satisfied for the harmonic structure of Theorem 5.2 in
the case when each open edge is regular. This follows from Lemma 5.2. In particular, if G is a graph
endowed with a nearest-neighbor transition probability, the harmonic structure obtained by extending
the harmonic functions on the vertices linearly on the edges (as described in Section 2.3) satisfies the
ball regularity axiom.

Example 6.5 shows a graph for which the weak ball regularity axiom fails.

Theorem 6.1. Let G̃ be endowed with a harmonic structure H.

(a) If H satisfies the weak ball regularity axiom, then each edge is a Dirichlet domain.
(b) H satisfies the ball regularity axiom if and only if it satisfies the weak ball regularity axiom and each edge

is regular.

Proof. Assume H satisfies the weak ball regularity axiom. Let u be a nonterminal vertex and let v ,
w be distinct neighbors of u. Let f v be the solution to the Dirichlet problem on B1(u) with value 1
at v and 0 at all other neighbors of u. Define f w similarly. Note that f w(u) > 0. Then for any real
numbers α and β , the function

g = β f v + α − f v(u)β

f w(u)
f w

is harmonic on (u, v), g(u) = α, and g(v) = β . Since f v and f w are linearly independent on (u, v),
they form a Brelot basis, so g is the unique solution to the Dirichlet problem with boundary values α
and β . Thus each edge is a Dirichlet domain, proving (a).

Next assume H satisfies the ball regularity axiom. Then H obviously satisfies the weak ball regu-
larity axiom and by Proposition 4.2(b), each edge is regular.

Conversely, assume H satisfies the weak ball regularity axiom and each edge is regular. We may
then solve uniquely the Dirichlet problem on any unit ball B1(u). Furthermore, if the boundary values
are nonnegative, the solution h is nonnegative at u. Since each edge is regular, the restriction of h to
the edges containing u is unique and nonnegative. Hence h is nonnegative on B1(u). Thus H satisfies
the ball regularity axiom. �
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In Example 6.6, we will show that the converse of Theorem 6.1(a) is false. In fact, in this example
each edge is regular (which is stronger than being a Dirichlet domain), yet the unit ball about each
vertex is not even a Dirichlet domain (which is weaker than having weak ball regularity). Example 6.6
will also show that a harmonic structure on a tree T̃ which is linear on the edges can fail to satisfy
even the weak ball regularity axiom.

Let G̃ be a graph with a harmonic structure and let v1, . . . , vd be the neighbors of a vertex u.
Assume O is a regular neighborhood of u contained in B1(u), and for each i ∈ {1, . . . ,d}, let v ′

i be the
point of ∂ O on (u, vi]. Let f i be the solution to the Dirichlet problem on O such that f i(v ′

j) = δi j and
let f i j = f i(v j).

Proposition 6.1. B1(u) is a Dirichlet domain if and only if the matrix F = (( f i j)) is invertible.

Proof. A function f on B1(u) is harmonic if and only if it has the form f = ∑d
i=1 ai f i . In this case

(
f (v1), . . . , f (vd)

) = (a1, . . . ,ad)F (6)

and so for an arbitrary set of values of f |∂ B1(u) there exists a unique vector (a1, . . . ,ad) satisfying (6)

if and only if F is invertible. �
6.1. Examples

Example 6.1 (Harmonic structure on G̃ which is constant on G). Use Theorem 5.2 to define a harmonic
structure on G̃ as follows. Let the structure on each directed edge τ = [u, v] be given by the Brelot
basis {cos 2πt, sin 2πt} and let uτ = 7

8 u + 1
8 v . Since cos 2πt is positive on [0,1/8], (u, uτ ) is regular.

Let Pτ > 0 be arbitrary. The harmonic structure on G̃ obtained by this construction is nontrivial, that
is, on every edge the space of harmonic functions is two-dimensional. Observe, however, that if f is
harmonic on G̃ and u ∼ v , then f (u) = f (v). Thus f |G is constant. In particular, we cannot solve any
Dirichlet problem with nonconstant boundary values on the unit ball centered at any vertex.

Observation 6.2. Assume R is endowed with a harmonic structure. Then for a,b ∈ R with a < b,
(a,b) is a Dirichlet domain if and only if there exist harmonic functions f and g on (a,b), continuous
on [a,b], such that f (a) = g(b) = 0 and f (b) = g(a) = 1. In this case, { f , g} is a Brelot basis on (a,b).
Then (a,b) is regular if and only if f and g are both positive; (a,b) is weakly regular with respect
to one of its points x if and only if f (x) and g(x) are both positive. In particular, by Theorem 4.1, if
(a,b) is a Dirichlet domain, then the harmonic structure on (a,b) is extendible.

Example 6.2 (Dirichlet domain weakly regular with respect to some points, but not all, or with respect to
no points). Let U = (0, 5

2 ) with Brelot basis {sinπt, cosπt}. Using Observation 6.2, we see that U is
not weakly regular with respect to any point x ∈ [1/2,2], but is weakly regular with respect to any
other point, because the functions f and g in Observation 6.2 exist and are given by f (t) = sinπt
and g(t) = cosπt . On the other hand, the interval U ′ = (0, 3

2 ) is a Dirichlet domain but is not weakly
regular with respect to any of its points, because in this case f (t) = − sinπt and g(t) = cosπt .

Example 6.3 (Positive Dirichlet domain, but not regular). The interval U in Example 6.2 is not regular but
since it is weakly regular with respect to the points 0 and 5/2, it is a positive Dirichlet domain.

Example 6.4 (Dirichlet, but not positive Dirichlet, domain). On R consider the harmonic structure with
Brelot basis {cosπt, sinπt}. The interval U = (0, 3

2 ) is a Dirichlet domain because for any constants
α,β , the function h(t) = α cosπt − β sinπt is the unique solution to the Dirichlet problem on U
such that h(0) = α, h( 3

2 ) = β . On the other hand, the function t → −sinπt is nonnegative on ∂U but
attains negative values arbitrarily close to 0. Thus U is not a positive Dirichlet domain.
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Example 6.5 (Failure of weak ball regularity). Let G be a graph endowed with a nearest neighbor tran-
sition probability and let G̃ be its linear extension. Then G̃ is a Brelot space, and for each vertex u,
B1(u) is regular. In [1] (see proof of Theorem 2.1), we showed that any ball centered at a vertex of
radius ε < 1 is regular, provided that the structure on the edges is linear. Thus, B1/8(u) is also regular.
For each directed edge τ = [u, v], let uτ = 7

8 u + 1
8 v and let P (u, uτ ) be the constant given by Theo-

rem 5.1. Pick one edge τ0 = [u0, v0] and replace the linear structure on τ0 with the structure having
Brelot basis {cos 2πt, sin 2πt}. Then (u0, uτ0) is regular since cos 2πt is positive on its closure. Leav-
ing all the constants P (u, uτ ) as before, we now get a new harmonic structure by Theorem 5.2. This
structure has the property that for every f harmonic on G̃ , f (u0) = f (v0) and thus, by Theorem 6.1,
B1(u0) is not weakly regular with respect to u0.

Example 6.6 (Edges are regular, but B1(u) is not a Dirichlet domain, so weak ball regularity fails). Let T be
a homogeneous tree of degree 3 and for each u ∼ v , let v ′ be the midpoint of the edge (u, v), and
let P (u, v ′) = 2/3. We define a function f to be harmonic on T̃ if its restriction to each edge is linear
and for each u ∈ T ,

f (u) =
∑
v∼u

P (u, v ′) f (v ′) = 2

3

∑
v∼u

f (v ′).

By Theorem 5.2, this defines a harmonic structure on T̃ .
Assume f is harmonic. Since f is linear on each edge, for each v ∼ u, we have f (v ′) = ( f (u) +

f (v))/2. Thus

f (u) = 2

3

∑
v∼u

1

2

(
f (u) + f (v)

) = f (u) + 1

3

∑
v∼u

f (v),

so that
∑

v∼u f (v) = 0. Thus, arbitrary prescribed values on the boundary of B1(u) do not yield a
unique harmonic solution in B1(u). Hence, the weak ball regularity axiom is not satisfied. But since
on each edge the harmonic functions are the linear functions, the open edges are regular.

Example 6.7 (Weak ball regularity holds, but ball regularity does not). On the interval [0,1], let g(t) =
cos( 9

4 πt) and h(t) = sin( 9
4 πt), and let A be the space of linear combinations of g and h. Observe

that A does not contain any positive functions. Moreover, g(1 − t) = 1√
2
(h(t) + g(t)) and h(1 − t) =

1√
2
(h(t) − g(t)), for 0 � t � 1, so that {g(1 − t),h(1 − t)} is a basis consisting of elements of A. Thus,

the involution t → 1 − t preserves A.
Let T be a tree. Identifying each edge [u, v] with [0,1], let the harmonic functions on the edge

be the elements of A. Observe that it does not matter whether u or v is identified with 0. Also
notice that if f ∈ A, then for 0 � t � 1/9, f (t) = f (t + 8/9). Furthermore, if f is nonnegative at one
endpoint, it is nonnegative at the other endpoint.

For each directed edge τ = [u, v], let uτ = 8
9 u + 1

9 v and let P (u, uτ ) be any positive number. By

Theorem 5.2, there is a unique harmonic structure H on T̃ such that a continuous function f on T̃ is
harmonic if it is harmonic on each edge and for each u ∈ T , f (u) = ∑

v∼u P (u, uτ ) f (uτ ).
Notice that by our choice of harmonic structure on the edges, any harmonic function f has the

property that for each edge [u, v], f (uτ ) = f (v). Since
⋃

v∼u[u, uτ ) is regular, it follows that B1(u)

is weakly regular with respect to u. Thus H satisfies the weak ball regularity axiom. However, since
no edge is regular (because there are no positive harmonic functions), Theorem 6.1(b) implies that
H does not satisfy the ball regularity axiom.
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7. Interplay between discrete and harmonic structures

Assume that G has a discrete harmonic structure P (see Section 2.1). For each u ∈ G , let α(u) =∑
v∼u P (u, v) and define P ′(u, v) = P (u, v)/α(u) for all v ∼ u. Then P ′ defines a stochastic structure

on G .
We now wish to characterize the harmonic structures which restrict to discrete harmonic struc-

tures on the set of vertices.

Lemma 7.1. Let H be a harmonic structure on G̃ and let u be a vertex. Then the dimension of H|B1(u) is the
degree of u.

Proof. Let O ⊂ B1(u) be a regular neighborhood of u. Then there is a 1-to-1 correspondence between
the functions harmonic on O and the real-valued functions defined on the boundary of O . Thus
the dimension of H|O is the cardinality of ∂ O , which is the degree of u. But the restriction map
H|B1(u) → H|O is a monomorphism by Proposition 3.1 and an epimorphism by Theorem 3.1, and
hence an isomorphism. �
Theorem 7.1. Let G be a graph. Given a harmonic structure H on G̃, the following statements are equivalent:

(a) H satisfies the weak ball regularity axiom (respectively, the ball regularity axiom).
(b) (i) Each edge is a Dirichlet (respectively, regular) domain, and

(ii) there exists a discrete harmonic structure on G such that for every open set U in G̃, the restriction
of H(U ) to U ∩ G is equal to H P (U ).

In particular, any harmonic structure on G̃ satisfying the weak ball regularity axiom induces a unique
discrete harmonic structure on G.

Proof. (a) ⇒ (b). Let U be an open set in G̃ . Fix an interior vertex u in U ∩ G (i.e. a vertex all
of whose neighbors are in U ) and a neighbor v . Let f v be the solution to the Dirichlet problem
on B1(u) such that f v(v) = 1 and f v(w) = 0 for all the other neighbors w of u. Define P (u, v) to be
f v(u), which by the axiom is positive. Let f be harmonic on U . Then f and

∑
v∼u f (v) f v agree on

the boundary of B1(u), hence are equal on B1(u). Thus f (u) = ∑
v∼u f (v) f v(u) = ∑

v∼u P (u, v) f (v),
so the restriction of each element of H(U ) to U ∩ G yields an element of H P (U ).

We now show that every function f0 ∈ H P (U ) is the restriction to U ∩G of some element of H(U ).
Fixing a vertex u in the interior of U ∩ G , observe that the function f = ∑

v∼u f0(v) f v satisfies

f (u) =
∑
v∼u

P (u, v) f0(v) = f0(u),

and f agrees with f0 at each neighboring vertex of u. Thus, f0 may be extended harmonically to each
ball B1(u). On balls sharing a common edge, the corresponding extensions agree at the endpoints, and
by Theorem 6.1, the edge is a Dirichlet domain, so the extensions agree on the entire edge. For each
v ∈ U ∩ G not an interior vertex, extend f to B1(v) as follows: choose one neighbor w outside of U
and prescribe its value to be f0(v) − (

∑
x∼v, x∈U∩G P (v, x) f0(x))/P (v, w). For all other neighbors not

in U ∩ G prescribe its value to be 0, and for those that are in U ∩ G , prescribe the value to be f0(w).
This yields a function harmonic on B1(v) ∩ U .

(b) ⇒ (a). Let u be a nonterminal vertex of G . Let f be a function defined on the boundary
of B1(u). Define

f (u) =
∑
v∼u

P (u, v) f (v). (7)

Let U be an open set in G̃ containing the closure of B1(u) with no additional vertices. Then f ∈
H P (U ) so by assumption it is the restriction of an element of H(U ). This shows that the Dirichlet
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problem can be solved on B1(u). By assumption, any solution of the Dirichlet problem satisfies (7).
Thus, since each edge is a Dirichlet domain, the solution of the Dirichlet problem is unique. If the
prescribed boundary values are nonnegative, by (7), the value at u is nonnegative. Therefore, the
weak ball regularity axiom holds.

The assertions concerning ball regularity follow from part (b) of Theorem 6.1. �
Theorem 7.2. Let G̃ be endowed with a harmonic structure and let u ∈ G. Then B1(u) is regular if and only if
there exists a positive continuous function k on B1(u), harmonic on B1(u). Consequently, if G̃ is a B.H. space,
then its harmonic structure satisfies the ball regularity axiom and the induced discrete harmonic structure on G
is stochastic.

Proof. Observe that if B1(u) is regular, the existence of a positive harmonic function on its closure is
guaranteed by solving the Dirichlet problem with positive boundary values.

Conversely, assume there exists a positive continuous function k on B1(u). Without loss of gen-
erality, we may assume that k(u) = 1. Observe that each edge in B1(u) is regular by Proposition 4.1.
Let O u be a regular neighborhood of u. For each v ∼ u and τ = [u, v], let uτ and P (u, uτ ) be as in
Theorem 5.1 so that f is harmonic on B1(u) if and only if f is harmonic on each of its edges and
f (u) = ∑

ι(τ )=u P (u, uτ ) f (uτ ). For any edge τ with initial vertex u, let us denote by ι′(τ ) the ter-
minal vertex of τ , and let hτ be the unique continuous function on τ , harmonic in its interior, such
that hτ (u) = 0 and hτ (ι′(τ )) = 1. Then {k|τ ,hτ } is a Brelot basis on the interior of τ so that every
harmonic function f inside τ has the form f = f (u)k + [ f (ι′(τ )) − f (u)k(ι′(τ ))]hτ . Thus

f (uτ ) = f (u)k(uτ ) + [
f
(
ι′(τ )

) − f (u)k
(
ι′(τ )

)]
hτ (uτ )

and the harmonicity condition of f at u becomes

f (u) =
∑

ι(τ )=u

P (u, uτ )
{

f (u)k(uτ ) + [
f
(
ι′(τ )

) − f (u)k
(
ι′(τ )

)]
hτ (uτ )

}
. (8)

Since k is harmonic on B1(u),
∑

ι(τ )=u P (u, uτ )k(uτ ) = k(u) = 1, so (8) becomes

f (u)
∑

ι(τ )=u

P (u, uτ )k
(
ι′(τ )

)
hτ (uτ ) =

∑
ι(τ )=u

P (u, uτ )hτ (uτ ) f
(
ι′(τ )

)
.

For w ∼ u and τ ′ = [u, w], the quantities P (u, uτ ′ ), k(w), and hτ ′ (uτ ′ ) are all positive, so

P (u, w) = P (u, uτ ′ )hτ ′ (uτ ′ )∑
ι(τ )=u P (u, uτ )k(ι′(τ ))hτ (uτ )

is positive and the harmonicity condition for f at u becomes

f (u) =
∑
v∼u

P (u, v) f (v). (9)

Now let us solve the Dirichlet problem on B1(u) with boundary values f (v), for all v ∼ u. Let f (u)

be given by (9). Then for each edge [u, w] solve the Dirichlet problem on [u, w] with boundary values
f (u) and f (w). Thus, f is the unique solution to the Dirichlet problem on B1(u). Clearly, f (v) � 0
for v ∼ u implies f (u) � 0, which implies that f � 0 everywhere in B1(u). This completes the proof
that B1(u) is regular.

Next assume G̃ is a B.H. space. Taking k to be the constant 1, we see that the harmonic structure
satisfies the ball regularity axiom, and hence the weak ball regularity axiom. Theorem 7.1 shows that
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the harmonic structure induces on G a discrete harmonic structure, which is stochastic since the
constants are harmonic. �

In Theorem 7.5 in the special case of a tree, we generalize Theorem 7.2 to an arbitrary relatively
compact subset.

Definition 7.1. Let G be a graph and let U be a relatively compact domain in G̃ such that ∂U ⊂ G .
Then S = U ∩ G is called a finite complete subset of G .

Let G be a graph endowed with a discrete harmonic structure P , let H be a harmonic structure
on G̃ , and let u ∈ G . If f ∈ H(B1(u)), then f extends to a continuous function f̂ on B1(u). We say
that H induces the discrete harmonic structure H P on G if for every vertex u, the restriction of f̂
to the vertices of B1(u) induces an isomorphism from H(B1(u)) to H P (B1(u) ∩ G).

Observation 7.1. Given a graph G̃ , assume that each edge [u, v] is endowed with a harmonic struc-
ture such that (u, v) is regular and assume that there is a discrete harmonic structure P on G . The
harmonic structure defined on G̃ by Theorem 5.2 satisfies the ball regularity axiom by Observation 6.1.

We can now state the result that sums up the relation between harmonic structures on G̃ and
discrete harmonic structures on G .

Theorem 7.3. Let G be a graph with a discrete harmonic structure on G. Assume that each edge of G̃ has a
harmonic structure for which the whole edge is a positive Dirichlet domain. Then, there is a unique harmonic
structure on G̃ which induces the given discrete structure and whose restriction to each edge is the given
harmonic structure. Furthermore, it satisfies the weak ball regularity axiom.

Proof. To define a harmonic structure H on G̃ , it suffices to define for each x ∈ G̃ harmonicity in a
neighborhood of x. If x ∈ (u, v) for some neighboring vertices u, v , then a function f is harmonic at x
if there is an interval O about x in (u, v) such that f is defined on O and harmonic with respect to
the given structure on [u, v]. If x is a vertex, and f is defined in a connected neighborhood O of x
in B1(x), assume that for each neighbor v of x, f is harmonic on O ∩ (x, v), and let f̃ be the unique
harmonic extension of f |O ∩ (x, v) to [x, v], so that f̃ is the unique extension of f |O to all of B1(x)
harmonic on each segment. We say that f is harmonic at x if f (x) = ∑

v∼x P (x, v) f̃ (v).
We claim that H yields a harmonic structure on G̃ . We first show that each point has a regular

neighborhood. Let x ∈ G̃ . If x is not a vertex, then x ∈ (u, v) for some neighboring vertices u, v and
since H(u, v) is already a harmonic structure on the edge, x has a regular neighborhood in (u, v).
Next assume that x is a vertex of degree d. Let v1, . . . , vd be the neighbors of x. Let f i, gi (i = 1, . . . ,d)

be continuous on [x, vi] and harmonic in the interior such that f i(x) = 0, f i(vi) = 1, gi(x) = 1, and
gi(vi) = 0. For each i ∈ {1, . . . ,d} choose ui ∈ (x, vi] such that f i |(x, ui] and gi|(x, ui] are positive
(we can do this because [x, vi] is a positive Dirichlet domain). Let O = ⋃[x, ui). Let Pi = P (x, vi),
γi = gi(ui), and ϕi = f i(ui). Given nonnegative numbers α1, . . . ,αd , we solve the Dirichlet problem
on O with boundary values αi as follows. Let h be ai f i + bgi on [x, vi], where a1, . . . ,ad,b are the
solutions to the system of linear equations

⎧⎪⎪⎨
⎪⎪⎩

aiϕi − bγi = αi, i = 1, . . . ,d,

d∑
i=1

Piai − b = 0.

For j = 1, . . . ,d, let N j be the determinant of the (d + 1) × (d + 1) matrix whose upper left-
hand d × d block is the diagonal matrix with diagonal entries ϕ1, . . . , ϕd , whose bottom row is
P1, . . . , Pd,0, and whose right-hand column is the unit vector with 1 in the jth place. Then, by
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Cramer’s rule we can solve the above system for each ai as long as the coefficient matrix has a
nonzero determinant D . Letting ϕ = ∏d

i=1 ϕi , we see that D = ∑d
i=1 γi Ni − ϕ . Since Ni = −ϕPi/ϕi ,

D = −ϕ(
∑d

i=1 γi P i/ϕi + 1) < 0. Furthermore,

b =
∑d

i=1 αi Ni

D
=

∑d
i=1

αi P i
ϕi∑d

i=1 γi P i/ϕi + 1
� 0.

By Theorem 3.4, since f i is positive and harmonic on (x, ui), (x, ui) is regular. Hence, h(x) � 0 and
h(ui) = αi � 0 imply that h is nonnegative on (x, ui). Thus, O is a regular neighborhood of x.

Now for i = 1, . . . ,d, let hi be the solution to the Dirichlet problem satisfying hi(u j) = δi, j , j =
1, . . . ,d. Let p′

i = hi(x). So {h1, . . . ,hd} is a basis for H(O ), and thus, a function harmonic on O is one

which has the form h = ∑d
i=1 h(ui)hi . That is, a continuous function h on O is harmonic if and only

if h|(x, ui) is harmonic for each i and h(x) = ∑d
i=1 p′

ih(ui). By Theorem 5.2, this yields a harmonic
structure on G̃ . �

The following result follows immediately from Theorem 7.3 by considering on G̃ the harmonic
structure obtained from the discrete harmonic structure by linear extension.

Corollary 7.1. If G has a discrete harmonic structure, then there are harmonic structures on G̃ which induce P .
All such structures satisfy the weak ball regularity axiom.

Theorem 7.4. A harmonic structure on G̃ satisfying the weak ball regularity axiom induces the discrete har-
monic structure P defined as follows: if u ∼ v, P (u, v) is the value at u of solution f[u,v] to the Dirichlet
problem on B1(u) with boundary values equal to the characteristic function of v.

Proof. Let f be harmonic on G̃ and let u be a vertex. Then
∑

v∼u f (v) f[u,v] is harmonic on
the closure of B1(u) and agrees with f on ∂ B1(u), so f = ∑

v∼u f (v) f[u,v] and thus f (u) =∑
v∼u f (v) f[u,v](u) = ∑

v∼u P (u, v) f (v). Conversely, assume that f (u) = ∑
v∼u P (u, v) f (v) for each

vertex u. Let f̃ be the harmonic function
∑

v∼u f (v) f[u,v] . Then for each edge [u, v], f̃ (v) = f (v) and
f̃ (u) = f (u). Thus, since both f and f̃ are harmonic on [u, v], f̃ = f on each edge, so f is harmonic
on G̃ . �

Let G̃ be endowed with a harmonic structure satisfying the ball regularity axiom, and for each di-
rected edge τ = [u, v], let fτ and P be as in the statement of Theorem 7.4 and gτ = ∑

w∼u, w �=v f[u,w] .
Thus, a function f on G̃ is harmonic if and only if it satisfies the following three properties:

(1) f is continuous on G̃;
(2) For all u ∈ G , f (u) = ∑

v∼u P (u, v) f (v);
(3) For any directed edge τ , f |τ is a linear combination of fτ and gτ .

Proposition 7.1. Let G̃ be endowed with a harmonic structure satisfying the ball regularity axiom. With the
above notation, G̃ is a B.H. space if and only if for all directed edges τ , fτ + gτ is the constant 1, in which case,
P is stochastic.

Proof. For all directed edges τ , the function ( fτ + gτ )|∂ B1(u) is the constant 1. Thus, fτ + gτ is the
constant 1 for each τ if and only if constants are harmonic, i.e. if and only if G̃ is a B.H. space. �

The regularity of the unit ball of each vertex does not guarantee the regularity of a larger ball as
the following example shows.
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Example 7.1. Let T be a homogeneous tree of degree d and for each vertex u let P (u, v) = 1/
√

d for
all v ∼ u and extend P -harmonic structure on T linearly to a harmonic structure on T̃ . The unit ball
centered at any vertex u is regular, but the function f on B2(u) defined by f (u) = 1, f (v) = 1/

√
d

for v ∼ u, f (w) = 0 for d(u, w) = 2, and extended linearly on the edges is positive and harmonic
on B2(u), yet f |∂ B2(u) is identically 0. Consequently, B2(u) is not regular, because f and the 0
function satisfy the same boundary conditions.

Let T be a tree. In the following theorem we characterize the relatively compact domains in T̃
which are regular, in analogy with Theorem 3.4.

Theorem 7.5. Let T̃ be endowed with a harmonic structure H and let U be a relatively compact domain in T̃ .
Then U is regular if and only if there exists a harmonic function k such that k|U is positive.

Proof. If U is regular, then the solution to the Dirichlet problem on U with boundary values 1 is a
positive continuous function on U which can be extended to a global harmonic function.

Conversely, let U be a relatively compact domain in T̃ and assume there exists a harmonic func-
tion k that is positive on U . Let O be a neighborhood of U such that k restricted to O is positive. Let
H′ be the harmonic structure on O defined by 1

k H, so that constants are harmonic on O . Clearly, it
is enough to show that U is regular with respect to H′ .

Let T0 be the tree whose vertices are the vertices in U together with ∂U . Then T̃0 = U which
we take with the B.H. harmonic structure H′ . By Theorem 7.2, the ball regularity axiom is satisfied
in T̃0 and the induced discrete harmonic structure is stochastic. Then T0 is a finite complete subtree
of a tree endowed with a nearest-neighbor transition probability. It is well known (see [5,2]) that
the Dirichlet problem can be solved uniquely on T0 with positive boundary data yielding a positive
solution. By Theorem 7.4, this solution can be extended harmonically to U . �
Remark 7.1. Theorem 7.5 may be true also on graphs, but our technique works only on trees. If any
relatively compact subset of a graph carried a positive potential, then the theorem would hold for
graphs because in this case regularity is a local condition [3] and a graph is locally a tree. However, on
a general harmonic space, the existence of a positive harmonic function does not imply the existence
of a positive potential. Example 7.1 illustrates this fact.

We now state a result that follows immediately from Theorem 7.5 and is an extension to trees of
Theorem 3.6.

Corollary 7.2. Let T be a tree and suppose T̃ is endowed with a harmonic structure. Then any open subset of a
regular set is regular.
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