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A CONVERSE FATOU THEOREM
ON HOMOGENEOUS SPACES

BY

B.A. MAIR, STANTON PHILIPP AND DAVID SINGMAN

O. Introduction

The classical Fatou theorem states that positive harmonic functions defined
on Rn (0, ), n > 1, have limits at Lebesgue almost every boundary point
xo of R provided approach is restricted to cones

t) (0, <

Let f be a subset of Rn x (0, oo) having the origin as its only limit point in
R (0). It is shown in [12] that a similar almost everywhere convergence
result holds if cones are replaced by sets of the form (x0, 0) + f, provided f
satisfies the cone condition

(0.1) {(x, t)

and the cross sectional measure condition

(0.2) I{x Rn: (x, t) fl)l < ctn,

where the absolute value bars denote Lebesgue measure and C depends only
on n.

Similar Fatou theorems are obtained in [11] for functions on R (0, o) of
the form

(0.3) Pf(x, t) fie,P(x, t, z)f(z) dz, f Le(Rn), p >_ 1,

where P is a kernel satisfying certain conditions. This includes harmonic
functions, solutions of certain parabolic equations on the upper half space and
solutions of the heat equation on the right half space. Associated with P is a
pseudo-distance p. Then conditions on the approach region fi analogous to
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(0.1) and (0.2) are:

(0.4) There exists f’ f] such that

((x, t) R (0, oo): p(x, y) < a(t- s) for some (y, s) f) c fl’

and

[(x R: (x, t) fl’}[ _< C(IB(0, t)[), for all > 0,

where B(0, t) { x R": p(x, O) < at ). Examples of such are constructed
in [11] to contain sequences converging to the origin with arbitrary degree of
tangency.

In [14] a Fatou theorem for Poisson-Szeg/5 integrals of Lp functions on the
boundary of the generalized half-plane

z,..., z,+t) C+" Im z,+t > i= Iz12

is obtained. Examples are given of approach regions fl inside which these
functions have limits not implied by Koranyi’s theorem [5]. If we identify D
with H (0, oo), where Hn is the Heisenberg group in C, the main condi-
tions on are analogous to (0.4) and (0.5).
The above results are improved in [9] in the following way. Functions are

considered as in (0.3) with R replaced by X, a space of homogeneous type
having a group structure, and Lebesgue measure replaced by the measure #
associated with X. A Fatou theorem is obtained guaranteeing # almost
everywhere limits of such functions at points of the boundary, X {0}, where
approach is restricted to translates of an open set c X (0, oo) having the
identity, e, of X as its only limit point in X. The set f is assumed to satisfy
(0.4) (with Rn again replaced by X) and

(0.6) l({xX:(x,t)’})=l(l(xX:p(x,e)<t}l) ast0+.

Such a set f] is said to be locally a-admissible. Notice that (0.6) is a weaker
condition than (0.5) since it places no restriction on the size of the sections
through fl at height t for bounded away from 0.

In this paper we consider the converse question. We obtain our results in a
framework more general than above. We assume that X G/K where G is a
locally compact Hausdorff topological group, K is a compact subgroup of G
and (G, K) is equipped with a gauge, thus making X into a space of
homogeneous type. (The X in [9] corresponds to the case K { e }.) This is
the framework considered in [6]. We show in our main result that almost
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everywhere fl-limits of Pf for every f LP, for some p > 1, implies that f is
contained in a locally a-admissible set for every a > 0, thus showing that the
limit results of [9] are best possible. In the special case described in paragraph
2 above, this converse is obtained in [10]. However, the technique employed in
that paper does not work in the generality considered in the present setting.
Here we use a constructive approach, based on the method of A. Zygmund in
[15], though complicated by the fact that the sections

n(t) t) n)

are not necessarily connected. Lemmas 3.1 and 3.2 allow us to get around this
difficulty.
We wish to thank A. del Junco for helping us to prove Lemma 3.1.

1. Assumptions and statement of principal result

We begin by recalling some definitions in [6]. Let G be a locally compact
Hausdorff topological group and let K be a compact subgroup of G. Denote
the identity element of G by e. Let g denote a left invariant Haar measure on
G, normalized in case G is compact. Let r: G G/K be the canonical map
with G/K topologized so that rr is continuous and open.
A gauge for (G, K) is a map G [0, oo), denoted by g Igl, such that for

allg, k G, kK:

(i) Ig" kl Igl.
(ii) Ig-Xl Igl.
(iii) The gauge balls B(r) { g G: Igl < r), r > O, are relatively com-

pact and measurable; the sets r(B(r)), r > O, form a neighbourhood base at
r(e ) in G/K.

(iv) Ig" hi < ’(Igl + Ihl), where , > 1 is independent of g and h.
(v) /(B(2r)) < Alx(B(r)), where A is independent of r.

It is shown in [6] that g is necessarily right invariant, hence for each
measurable subset E of G,

(1.1) /(E) =/(E-1)

[8, Section 30]. It is also shown that each compact subset of G is contained in
a gauge ball B(r) for some r > 0.

Let X be the homogeneous space G/K. Let m be the measure on X that is
the image of # under r. The action of G on X defined by r(g. r-l(x)) is
written as g x. Using the gauge we can define the pseudo-distance

t((g), r(h)) Ig-x. h
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Properties (i) and (ii) of the gauge ensure that p is well defined. This makes X
into a left invariant space of homogeneous type [1, Chapter 3]. That is, for all
x,y,zX,gG,

(1.2) (i)
(ii)
(iii)
(iv)
(v)

(vi)

o(g.x, g-y) o(x, y),
p(x, y)= p(y, x),
p(x, y) 0 if and only if x y,
p(x, z) < V(p(x, y) + p(y, z)),
the sets B(x, r) (y X: p(x, y) < r ), r > 0, form a neigh-
bourhood base at x,
m(B(x,2r)) < Am(B(x, r)), for all r > 0.

Note that (iii) is a consequence of the fact that Igl--0 precisely when
g K [6, page 578].

Let fl be an open subset of X (0, oo) such that (r(e), 0) is its only limit
point in X {0}. The section through fl at height > 0 is

a(t) (x x: (x, t)

Assume that for all sufficiently close to 0

(1.3) a(t) K. a(t) O{k. x" k K, x e a(t)}.

We say that (x, t) X x (0, c) f-converges to xo X if converges to 0
and x converges to xo in such a way that x rr-l(x0} f(t). Assumption
(1.3) implies that if (x, t) f-converges to r(e) then x f(t), so we can think
of fl as an approach region at r(e). We say that a function u: X x (0, oo) R
has fMimit L at xo X if u(x, t) converges to L as (x, t) f-converges to x0.

Of course this definition makes sense whether or not f is open.
Let P: X X (0, oo) x X - [0, c) be m-measurable in the last component.

We assume there is a positive constant B such that for all x X and s > 0,

(1.4) P(x,s, z)dm(z) > B.
(x,2s)

We also assume there is a subset C of S x (0, oo) such that

(1.5) foP( x, t, z) dm (z) has C-limit Xo at m-a.e, point of X,

for every m-measurable subset D of X. Here XD is the function which is 1 on
D and0on X\D.

Remark 1.1. In case K { e } we identify X with G. If in addition there is
a one parameter group (as}s> 0 of automorphisms of G, a nonnegative
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function p defined on G and q > 0 such that
(i) all maps B(2s) to B(2),
(ii) s q dm(z) dm(as(z)) and
(iii) P(x, s, z) is bounded below by s-qp(ax/s(X -1 2)),
then (1.4) holds by invariance of m and the variable change w al/,(z) as
the integral is just fB(2) p(z) dm(z).

Let a > 0. We say [2 is locally a-admissible if there exists an open set
containing fl such that

(1.6) ((x,t) X (0, oo): p(x, y)< a(t- s) forsome(y,s)

and

m(f’(t)) O(m(B(r(e), t)) as ---) 0 +.

We can now state our main result.

THEOREM 1.2. Let [2 be an open subset of X (0, oo) with (,r(e), O) as its
only limit point in X {0}. Assume that K. [2(t) f(t) for all sufficiently
close to O. Then if is not contained in a locally a-admissible set, there is a
subset F ofX such that the function fF P(x, t, z) dm(z) fails to have f-limits on
a set ofpositive m-measure.

Remark 1.3. For any a > 0 define

(1.8)
f= ((x,t) X (0, oo): t)(X, Xo) < a(t- to) for some (x0, t0) f).

The following properties are easy to show:

(i)
(ii)
(iii)
(iv)

C.
,r(e) ,(t) for all > 0.
0 < s < implies that f(s) c f(t).
If (y, s) f‘‘ and )(x, y) < a(t s), then (x, t) i2r.

Property (i) holds since if (x, t) [2, then (x, t- e) [2 for some e > 0
(recall [2 is open); hence (x, t) ‘‘ as p(x, x) 0 < a(t (t e)). Prop-
erty (ii) holds for the following reason. Let > 0. Since (,r(e), 0) is a limit
point of f, there exists (x, s) fl such that s < t/2 and t)(r(e), x) < at/2.
Thus p(,r(e), x) < a(t- t/2) < a(t- s) and so (,r(e), t) f. Property
(iii) is obvious and property (iv) comes from (1.2). Observe that, by (1.2)(i), [2,,
satisfies (1.3) if [2 does. It follows that (1.6) is satisfied if we replace f by f‘‘
and f’ by fv. Thus, if, as in the statement of Theorem 1.2, f fails to be
contained in a locally a-adrhissible set, it must be true that m(f‘‘(t))
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O(mB(,r( e ), t)) as 0 +, hence there exists a sequence tj 0 + such that

m(B(r(e),ty))
m (.,(ty)) 0 as j --->

2. Examples

For the reader’s convenience we describe in more detail the examples given
in [11] and [14] that were mentioned in the introduction and indicate why they
satisfy the conditions of Section 1. For a proof of the corresponding Fatou
theorem where approach is restricted to a locally admissible region, see [9].

In each of the examples K { e } so we identify X with G. In the first three
examples m is Lebesgue measure on X Rn. In all of the examples (1.4)
follows as P is bounded below by a dilated convolution kernel as in Remark
1.1. Also in all cases the set C of (1.5) can be taken to be {(0, t): > 0}. In
what follows, cn denotes a constant depending only on n, not necessarily the
same at each occurrence.

Harmonic functions on Rn X (0, ).
p(x) (1 + [xl2) -(n+1)/2, a(x) s.x, p(x, y) Ix -Yl, 3’-- 1 and

q n. The functions

Pf(x, t) fP(x, t, z)f(z) dm(z), f L’(R), p >_ 1,

are solutions of Laplace’s equation

Parabolic functions onR x (0, ).
P(x, t, z) is bounded above and below by

ct-n/2exp(- Ix yl2/2rit), 1,2,

where rx, r2 are positive constants, p(x, z) Ix zl 2, 3’ 2 and q n/2.
To verify (1.4) we may apply Remark 1.1 since P(x, s, z) is bounded below by

c.s-n/9-P(al/.(x z)),

where p(x) exp(-Ixl2/4r2) and as(x) S1/2" X. The functions Pf satisfy
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the second order linear parabolic equation in divergence form

0 (Aij(x t)
Ou )

i-1 "1 -i + Aj ( x, ) u

Ou Ou+ Bj(x,t)’j +c(x,t)u-- =0,
j’-I

where the coefficients satisfy certain general conditions (cf. [11]).

Solutions of the heat equation on the right half-space.
We represent a point of R" as (x’, x,) where x’ (Xl,..., x,_l). Then

p(x) x;(n+2)/2exp(--(1 + Ix’lZ)/4x.)

if x > 0 and 0 otherwise, as(x’, x,) (s. x’, s 2. x,). We define

p(x, y) (Ix’ y’lZ + Ix, y1)1/9_.
Then y 1 and q n + 1. The functions Pf satisfy

i=l 4- Ot----T Oxn.
The remaining conditions of Section 1 are shown in [11] to hold for these

examples.

Poisson-Szeg6 integrals on the generalized half-plane.
X C" R, with the Heisenberg group law

(See [5] and [14].)

(z, t)" (w, s) (z + w, + s + 2Im(z, w)),

where (z, w) Zi.lgii Then

p(z t) (t+ ([z[Z+ 1)2)
-n-1

ah(Z t) (h1/" z, h. t),

m is Lebesgue measure on Rv-n+ 1,

p((z, t), (w, s)) max(lz w[ 2, It s 2. Im(w, z)[},- 2and q=n + 1.
We remark that a result analogous to Theorem 1.2 holds for the harmonic

functions on the unit ball in Rn and Poisson-Szeg5 integrals on the unit ball in
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Cn by applying the Kelvin transform [2, page 26] and the Cayley transform
[5, page 511].

3. Proof of the theorem

We first prove two lemmas.

LnMMA 3.1. Let E be a subset of G contained in U B(r), r > 0. Let
U B(sl), s > r and let U2 B(s2) contain U. U1. Denote by a- 1 the
greatest integer in (it(E))-1. Then there exist gl,..., g U2 such that

Proof. Let F be any subset of Ux. Then,

fu(E g F)dp(g) ftjfFXe.g(h ) dp(h) dp(g)

f(e-1 h )d(h)

tt(E)tt(F).

The last equality follows by the right invariance of and the facts that
E-1. F c U2 and tt(E-1) it(E).
Now apply (3.2) with F U1 \ E. It follows there exists gx U2 such that

(e.g c (v \ e)) >
(e)(Vl \ e)

(v)

(e)((v,) (e)}

Therefore, since E t3 E. gl D E t3 { E. gl N (U \ E)}, and the latter is a
disjoint union, we get
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Now suppose we have chosen the points gl,..., gm U2, rn > 1. Apply
(3.2) with

(3.3) F U \ E tO E. gl to UE. gin"

Then there exists g,,+ U2 such that

lx(E’g,,,+x F) > I(E)I(F)/I.t(U2)

> .(e)
(U2) {(U1) I(E U E. g to toE. gin)}"

Thus, since

E U E. gl U UE" gm+l

3 (E U E" g U UE" gin) U (E gm+ (q F)

and the latter is a disjoint union, we have

Put

and

(E U E. g1U UE.g,,+l)
> bt(E U E’g U UE" gin) + P’(E’gm+l 0 F)
> I,(E U E.g U UE. g.,)

+ .(e)
t,(U:) {tx(Ux) ( E to E gx tO toE. g,, ) )

(e u e.gl u ue. g)(1 (e)/(v,))
+

o =,(e). am’- IJ,(E U E" g U UE" gm),

b i ,(e)l,(v,)

c ,(E),(U1)/,(U,).

Then we have shown that a,,+ > b. a,, + c for all rn > 0, hence

am >_ bm.ao + c(1 bin)l(1 b) >/,(U){1 (1 t*(E)llx(U2))m},
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for all m > 1. Taking m a, we get

()

1 1. (u)

since (1 t/a) < exp(-t) for 0 < < a. This completes the proof.

The following lemma is a modification of Lemma 1.24 in Chapter XIII of
[16].

LEMMA 3.2. Let notation be as in Lemma 3.1. Let V and V be gauge balls
such that U. U2 c V c V. V c V. (Notice that the translates, E.gj, of
Lemma 3.1 are all contained in V.) Let (gj } be a sequence of subsets of V such
that Etx(G) oo. Then there is a sequence (g } in V such that

Proof. Let h be a point of W. Then

since G-I. h c V-1. V c g
1.

Let P be a positive integer to be chosen below. Then

(3.4)

Pl

fglLjU1Xg\Gj.gj(h ) d() d(gl) d(gpl)

pl.(v) rI (.(Vl) .())(.(v))"’ j-
Pl

p,(V) I-I (1 I(G)/I,t(Vx)).
j=l
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Since Ett(Gj)/tt(V1) oo, the product I-I_l(1 tI(Gj)/lt(V1)) is 0. Thus we
may choose Px so that the expression in (3.4) is less than 1. It follows there
exist gl, g2,..., gPx V1 such that

Continuing in this way we get p < P2 < and a sequence { gj ) in V such
that, for each k >_ 1,

Pk+

J=Pk

Thus, for each integer p > 1, ttnjoop (V \ Gj gj) 0, and the result follows.

Proof of Theorem 1.2. Without loss of generality we may assume that fl
contains the subset C introduced in (1.5). Indeed if we construct a set F such
fFP(X, t, z) dtt(z) fails to have f U C limits on a set of positive rn measure,
our assumption on C implies it must fail to have fl limits on a set of positive
rn measure as well.

Let U be a gauge ball that contains K and let e > 0 be less than/t(U). Our
assumption on f and Remark 1.3 implies there is a sequence (tj } decreasing
to 0 such that

(3.5) _, m(B(r(e),
j=l m(a(tj)) < e.

Choose b so that for each j,

(3.6) m(a(tj))<b.

Let Ej r-t(fv(tj)). Since (r(e)),0) is the only limit point of fv in
X {0}, we may assume that Ej c U for all j. Let aj- 1 be the greatest
integer in (/t(Ej)) 1.

Let V be as in Lemma 3.2. According to Lemma 3.1, there is a > 0 such
that, for each j, there are aj points { g(j,1),..., g(j, aj)} with

(3.7) /.t(Ej U Ej" g(j,x) U UEj" g(J,"A) > ’’
and each of the translates in this union is contained in V.
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Let Ry {(g(j,k))-l: k 1,...,%} U (e). Put

Gj ( g . V: g-1. Ej (3 Rj 4: ) Ej 1,3 Ej g(j,1) U UEj- g(j,,j).

Then, by (3.7) we have I(Gj) > i. It follows from Lemma 3.2 that there exists
a sequence (hj } such that

i [,.J r) ( V \ Gj. hj) O,
p--1 j=p

hence

(3.8) ( )z Vrq U UGj.hj =#(V).
p=l j=p

Let

Note that Gy" hj {g: g-1. Ej
It follows from (3.8) that / almost every g in V is in G2.h2 for infinitely

many j. Thus, for such g, g- Ej tq Sj 4: fJ for infinitely many j. By (1.1), we
get that for/ almost every g in V, g E2 $2 I for infinitely many j. Hence

r(g. Ej) C r(S2) g.ft,v(t2) C r(S)for infinitely manyj. Noting that,
by the right K-invariance of the gauge, r--(rr(V)) V, we get

m { x r ( V)" r-t(x). f(ty) t r (Sj) 4= for infinitely many j }
#(g V: g-flv(ty) N r(Sy) 4= J for infinitely many j)

re(or(V)).

We thus deduce that for m-almost every x r(V) there is a sequence in

r= U
j--1

that flv-converges to x.
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Let Fj be the union of p-balls of radius ,/(a-/+ 2)tj with centers the points
of ,r(Sj). Put F-- UFj.. By (1.2)(vi), (3.5) and (3.6) we have

p.(F) < ., otj. (B(cr(e), y(ot"t + 2)tj))
jl

< c., ay. t(B(r(e),

)<_ c,v
1

j=l /x(a.v(tj)) + 1 lz(B(r(e), tj))

< cv(1 + b)e,

where c,v depends on a and V. For (x, t) X x (0, oo) let

u(x, t) fFV(X, t, z) dm(z).

We will show that u fails to have f limits at m-almost every point of
,r(V) \ F.

Since f contains C, it follows from (1.5) that if u had fl limits on a subset
of ,r(V) of positive m measure, the limit would have to be 0 at m-almost every
point of r(V) \ F. Thus we will be done if we can show that at m-almost
every point of ,r(V) there is a sequence that fl-converges to it on which u is
bounded away from 0.

Let x ,r(g) be a point of r(V) and let (xj, tj) be a sequence in T that
f,v converges to x. We have seen that this is possible for m-almost every x in
,r(V). Thus there are sequences kj K and zj ,v(tj) such that xj
g. kj.zj. By the definition of v(tj) there is a sequence (wj, s.i) f such
that p(zl, wj) < ay (tj- sj). Put yl g. kl. wj. Then yj ,r-t(x) (sj),
so by (1.2), (yj, sj) f converges to x. Since (xj, yj)= p(zj, wj), we have
B(xj, (aV + 2)tj) D B(yj,2sj). It follows that

u(yj, sj) 2 fn P(yj, sj, z) am(z)
(xj, v(a’+ 2)tj)

>- fl )P(yj, sj, z) dm(z)
yj 2sj

>B

by (1.4). This completes the proof, m
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