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3 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica,
00133 Roma, Italy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11118-015-9529-7-x&domain=pdf
http://orcid.org/0000-0002-4281-0429
mailto:picard@mat.uniroma2.it
mailto:jcohen@umd.edu
mailto:fcolonna@gmu.edu
mailto:dsingman@gmu.edu


J. M. Cohen et al.

1 Introduction

Let D denote the open unit disk in the complex plane and let H(D) be the class of analytic
functions on D. A positive measure μ on D is called a Carleson measure if there is a C > 0
such that for each θ0 ∈ R and h ∈ (0, 1),

μ(Sθ0,h) � C h, (1.1)

where
Sθ0,h := {reiθ : 1 − h � r < 1, |θ − θ0| � h/2}.

Sets of the form Sθ0,h are commonly referred to as Carleson boxes. If we consider as ref-
erence measure the normalized two-dimensional Lebesgue measure m on D, we define a
positive measure μ on D to be an m-Carleson measure, if the ratio of the μ measure of a
Carleson box to the area of the box is bounded. This geometric condition, which has been
easily extended to higher dimensions, has been shown to be equivalent to a correspond-
ing condition, where in the case of the disk the Carleson box has been replaced by the
lens-shaped domain S(ζ, r) = {z ∈ D : |1 − zζ | < r}, where |ζ | = 1 and 0 < r < 1 [6].

In [4], Carleson proved that, for p > 1, a positive measure μ is a Carleson measure if and
only if it is a Carleson measure for Hp , that is, if there exists a constant C > 0 such that∫

D

|f (z)|p dμ(z) � C‖f ‖p
p for all f ∈ Hp,

where Hp is the classical Hardy space of analytic functions on D (note that this integral
inequality coincides with (1.1) if f is the characteristic function of the Carleson box Sθ0,h,
but of course this characteristic function does not belong to Hp).

This theorem has led to various generalizations, including a similar result for the
Bergman space Ap = Lp(m) ∩ H(D), with norm

‖f ‖Ap =
(∫

D

|f (z)|p dm(z)

)1/p

.

Let X be a Banach space of analytic functions onDwith norm ‖·‖. A positive measure μ

is said to be a Carleson measure for X (or an X-Carleson measure) if there exists a positive
constant C such that ∫

D

|f |p dμ � C‖f ‖p, for all f ∈ X.

In [15], Hastings showed that in the polydisk setting if m is the Lebesgue volume, a
positive measure μ is an m-Carleson measure if and only if μ is a Carleson measure for Ap.
In fact, rather than focusing on just integrands of the form |f |p for f ∈ Ap, he obtained the
above equivalence by considering all positive subharmonic functions. In [6], in the unit ball
setting, using the higher-dimensional analogs of the above sets S(ζ, r), Cima and Wogen
proved that if mα denotes the weighted area measure with Bergman weight (1 − |z|2)α
(where α > −1), then μ is an mα-Carleson measure if and only if μ is a Carleson measure
for A

p
α , where A

p
α is the space of analytic functions f such that |f |p is integrable with

respect to the measure mα . A similar result in a broader context was shown by Oleinik in
[19] and Luecking in [18]. In their work, in place of the Lebesgue volume, they considered
a more general class of measures on a domain in Cn and proved Carleson-type theorems for
Bergman spaces by making use of another condition equivalent to the Carleson condition in
terms of pseudo-hyperbolic balls.
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The common thread of these works is the attempt to determine appropriate conditions
that yield the equivalence between the class of positive measures μ on the underlying
domain � in C

n which satisfy a geometric Carleson-type condition relative to a fixed ref-
erence measure and the class of Carleson measures for X. Given a positive measure σ on
�, we call a positive measure μ on � a σ -Carleson measure if for some constant C > 0,
μ(S) � C σ(S), for all S belonging to a specified family F of subsets of �.

In the classical setting of the unit disk D, in light of the results outlined above, taking
F to be any of (i) the collection of Carleson boxes (with respect to area measure), (ii)
the collection of sets of the form S(ζ, r), for ζ ∈ ∂D, r > 0, or (iii) the collection of
pseudo-hyperbolic balls with a fixed pseudo-hyperbolic radius leads to the same notion of
σ -Carleson measure. For details, see the proof of Theorem 14 in [11].

Given a positive measure σ on a domain � in Cn and a Banach space X of analytic func-
tions on �, an interesting question is to determine under what conditions on σ , a positive
measure μ on � is σ -Carleson if and only if μ is a Carleson measure for X.

In this paper, we study this problem in the setting of a homogeneous tree. Comparing the
discrete analogs of the above three families, while the equivalence between the families (i)
and (ii) is immediate, some differences between these two and the discrete version of (iii)
emerge. These differences are presented at the end of Section 3. This leads us to study the
above problem using the Carleson boxes, thus developing methods that differ from those
pursued by Luecking.

After giving in Section 2 some background on trees, in Section 3, we shall introduce
the Bergman spaces of harmonic functions on a homogeneous tree and define the measure
classes under consideration in our work in terms of certain Carleson-type conditions. We
shall then give the statements of our results concerning the relations among such classes.
In particular, we consider two classes of reference measures, we call respectively optimal
and good. For optimal measures σ , we establish a full equivalence between the class of
σ -Carleson measures and the class of measures μ on the tree that satisfy the Carleson-
type condition 〈f, μ〉 � C〈f, σ 〉, for all non-negative subharmonic functions f, for some
constant C independent of f . (The notation 〈f, μ〉 is used for the integral of f over the tree
with respect to the measure μ.)

We present some interesting constructions of non-optimal measures. For good (non-
optimal) measures only some of these results are accessible, exactly as for the continuous
case. We conjecture that even for such measures, for which we can provide the sufficiency,
the above equivalence holds. We prove this conjecture for the special case of radial Carleson
measures. Furthermore, we show that the equivalence also holds for all Carleson measures if
we restrict our attention to non-negative subharmonic functions supported on finitely many
geodesic rays.

While the main focus of the paper is on Carleson-measure-type theorems for spaces of
harmonic and subharmonic functions on homogeneous trees, we also present, in Section 4,
some results on radialization and harmonic radialization of a function on a tree, and in
Section 5, we discuss the Poisson transform and its interplay with radialization, and use
some of these results to prove that the Hardy space Hp(T ) of harmonic functions on the
tree T is contained but not closed in the Bergman space Ap(σ) if the reference measure σ

is good.
Finally, in Section 6, we give the proofs of the results presented in Section 3.
For references, definitions and related results on continuous environments, we refer the

reader to [3, 4, 6, 10, 15, 18]; on trees, to [5, 8, 9, 12, 13, 17, 20]. For general properties of
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transient random walks, the Poisson boundary and Poisson representations, and boundary
martingales, see [2, 16].

2 Preliminaries on Trees

We denote by T a homogeneous tree where every vertex has the same number q + 1 � 3
of neighbors, equipped with the isotropic nearest neighbor transition operator P . We write
u ∼ v if the vertices u and v are neighbors. A reference vertex o is fixed once for all, and
for every vertex v �= o we denote by S(v) the sector of all vertices u such that u � v, in
the sense that v belongs to the geodesic path from o to u. A ray, or geodesic path, is a path
v0 < v1 < v2 . . . with vn+1 ∼ vn for every n. We let |v| denote the number of edges in
the ray from o to v, and let d(u, v) denote the number of edges in the geodesic path joining
vertices u and v. If v �= o, we let v− be the neighbor of v which lies in the geodesic path
from o to v.

Denote by � the boundary of T , that is the set of all infinite geodesic rays ω = [ω0 =
o, ω1, ω2, . . . ] and by v ∧ ω the join of v and ω, that is, the last vertex in common between
the finite path from o to v and the geodesic ray ω starting at o. For any vertex v, denote by
I (v) ⊂ � the set of all rays starting at o and containing v (if v = o, let I (o) = �).

T satisfies the isoperimetric inequality: the cardinality of a ball is approximatively the
same as the cardinality of its bounding circle. Indeed, for k � 1, the cardinality of the k-ball
is 1 + q+1

q−1 (q
k − 1) and the cardinality of the k-sphere is (q + 1)qk−1.

The Laplace operator 	 on functions defined on a homogeneous tree T of degree q + 1
is defined by

	f (v) = 1

q + 1

∑
w∼v

f (w) − f (v), v ∈ T ,

where f is a function on T . A function f on T is called harmonic (respectively,
subharmonic, superharmonic) if 	f = 0 (respectively, 	f � 0, 	f � 0).

For a boundary pointω ∈ �, denote byKω(v) := K(v, ω) the Poisson kernel normalized
to have the value 1 at o. Recall that (e.g. [5, 12, 13])

K(v, ω) = q2|v∧ω|−|v|. (2.1)

For a finite Borel measure μ on �, define the Poisson transform of μ as

Kμ(v) =
∫

�

K(v, ω) dμ(ω).

Let ν be the equidistributed measure on �: ν(I (v)) = 1/|{w : |w| = |v|}| = 1/((q +
1)q |v|−1). For a Borel measurable function F on �, if μ is the ν-absolutely continuous mea-
sure on � having density F , we denoteKμ byKF . For every positive harmonic function h

on T , there exists a unique Borel measure μh such that h = Kμh on T (see [5]). By a calcu-
lation it is possible to show directly that the above measure ν is the associated representing
measure for the unit constant harmonic function.

Let F+ be the set of all non-negative functions on T and denote by S+ (respectively, H+)
the set of functions in F+ which are subharmonic (respectively, harmonic) on T .
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3 Measure Classes, Bergman Spaces and Outline of Results

We now give a broad definition of a measure σ that will play the role of the volume measure
in the setting of homogeneous isotropic trees. We shall then consider different classes of
measures μ and study the analogue of Hastings Theorem in the tree setting for the special
case when p = q = 1.

Definition 1 A reference measure on T is a radial positive decreasing function σ on T such
that ‖σ‖ = 1, where

‖σ‖ = ‖σ‖�1(T ) = σ0 + (q + 1)
∞∑

k=1

qk−1σk,

having denoted by σk the value of σ at each of the vertices of length k.

Definition 2 Let T be a homogeneous isotropic tree of degree q + 1 and σ a reference
measure. For 1 � p < ∞, let Lp(T , σ ) denote the space consisting of the functions f on
T such that

‖f ‖p
Lp :=

∑
v∈T

|f (v)|pσ(v) < ∞.

We define the Bergman space Ap(σ) of T to be the subset of Lp(T , σ ) whose elements
are harmonic functions on T . Whenever f ∈ Ap(σ), the above norm shall be denoted by
‖f ‖Ap .

Note that Ap is a closed subspace of Lp(T , σ ). Indeed, since convergence in norm of a
sequence in Lp(T , σ ) implies pointwise convergence of a suitable subsequence, if {fn} is
a sequence in Ap converging in Lp(T , σ ) to a function f , then f is the pointwise limit of
some subsequence {fnk

}, so f itself is harmonic and hence in Ap .

Notation 1 For f � 0, we let

〈f, σ 〉 =
∑
v∈T

f (v)σ (v).

In what follows, we shall assume that σ is a fixed reference measure and denote by R
the class of such measures. For any n ∈ N0 = N ∪ {0}, and any vertex v with |v| = n, set

τn = σ(S(v)).

In the following definition, we introduce two classes of reference measures.

Definition 3 Let σ ∈ R.

(1) We say that σ is optimal if

sup
n∈N0

τn

σn

< ∞.

(2) We say that σ is good if
∞∑

n=0

qnτn < ∞,
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that is, the measure μ defined by μ(v) = σ(S(v)) is finite.

The following theorem tells us how to generate examples of such reference measures
using certain sequence of positive reals. In the theorem we consider the transition operator
P on Z defined by

p(n, n − 1) = q

q + 1
, p(n, n + 1) = 1

q + 1
,

and zero otherwise.
Let σ be a reference measure. Define

an = τn qn. (3.1)

Then,
σn = τn − qτn+1 = q−n(an − an+1) . (3.2)

Therefore σ is a non-negative measure on T if and only if {an} is decreasing, and it is finite
if and only if an tends to a finite limit, because

∑
qnσn ≈ lim

n→∞ an. Moreover, it is easy to

check that the sequence {σn} is decreasing if and only if {an} is subharmonic on Z
+ with

respect to the simple transition operator P . Now, Eq. 3.1 yields τn/σn = an/(an − an+1).
Thus, with an as above, we obtain the following result, where the proof of the second part
follows at once from Eq. 3.2.

Theorem 3.1 Let σ be a reference measure on T . Then {an} is a strictly decreasing
sequence on N0 which is P -subharmonic on N0. The reference measure σ is good if and
only if {an} is summable, and σ is optimal if and only if

sup
n∈N

an

an − an+1
< ∞. (3.3)

Conversely, let {an}n∈N0 be any sequence of positive real numbers which is strictly
decreasing and P -subharmonic on N0. Let σn = q−n(an −an+1). Define σ(v) = σ|v|. Then
σ is a reference measure on T . In addition, σ is good if and only if {an} is summable; σ is
optimal if and only if {an} satisfies (3.3).

So, non-optimal reference measures are those associated to strictly decreasing sequences
{an} of non-negative reals,

( q
q+1 ,

1
q+1

)
-subharmonic on Z+ such that (3.3) fails. The

following results shows that there are many examples of such sequences.

Theorem 3.2 Let {bn}n∈N0 be any unbounded increasing sequence of positive integers.
Then there exists a sequence {an}n∈N0 of non-negative numbers satisfying the following
properties.

(i) {an} is strictly decreasing,
(ii) {an} is

( q
q+1 ,

1
q+1

)
-subharmonic on Z+,

(iii)
∑∞

n=0 an < ∞,

(iv) lim sup
n→∞

an

(an − an+1) bn

= ∞.

Definition 4 Let σ be a reference measure on T .

(1) A σ -Carleson measure is a positive measure μ on T such that there exists a positive
constant C (which we refer to as a Carleson constant for μ relative to σ ) such that
μ(S(v)) � Cσ(S(v)) for all v ∈ T .
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(2) Given a class X of non-negative functions on T , a finite measure μ on T is called an
(X, σ )-Carleson measure if there exists a positive constant C such that for all f ∈ X,

〈f, μ〉 � C〈f, σ 〉 . (3.4)

If X = Ap(σ), in Eq. 3.4 we replace f by |f |p.

Fixing a σ ∈ R, we introduce the following classes of measures on T :

Mσ = {μ : μ is σ − Carleson}
M(F+, σ ) = {μ : μ is (F+, σ ) − Carleson}
M(S+, σ ) = {μ : μ is (S+, σ ) − Carleson}
M(H+, σ ) = {μ : μ is (H+, σ ) − Carleson}

M(Ap(σ), σ ) = {μ : μ is Ap(σ) − Carleson}
Our aim is to establish inclusion relations among these classes and characterize the measures
σ which, when possible, yield such inclusions.

We now state our main results.

Theorem 3.3 Fix σ ∈ R.

(a) M(F+, σ ) ⊂ M(S+, σ ) ⊂ M(H+, σ ) andM(S+, σ ) ⊂ M(Ap(σ), σ ).

(b) M(S+, σ ) ⊂ Mσ ; if σ is optimal, thenMσ ⊂ M(S+,σ ).
(c) M(F+, σ ) ⊂ Mσ ;Mσ ⊂ M(F+, σ ) if and only if σ is optimal.
(d) M(H+, σ ) �⊂ Mσ ;Mσ ⊂ M(H+, σ ) if and only if σ is good.

Concerning Theorem 3.3(b), we expect a stronger result to hold, namely, that optimality
is not a necessary condition. In view of (d), the goodness of σ is necessary to ensureMσ ⊂
M(S+,σ ). This leads to the following conjecture.

Conjecture Mσ = M(S+, σ ) for every good measure σ .
We are able to prove the conjecture for the subclass of measures μ in the above classes

which are radial. Note that goodness of σ is not needed to prove that this subclass is
contained inM(S+, σ ).

Theorem 3.4 Let σ ∈ R. Then for a radial measure μ, μ ∈ Mσ if and only if μ ∈
M(S+, σ ).

If we restrict attention to the opposite case of σ -Carleson measures μ supported on a
geodesic ray ω, and subharmonic functions supported on the same ray, we are able to pro-
vide another partial result in support of the above conjecture in the special case where the
tails of the reference measure σ decay slowly enough.

Theorem 3.5 Suppose that, for some constant B and every v �= o, |v| = n, the reference
measure σ satisfies the inequality τn := σ(S(v)) > Bσ(S(v−)) = Bτn−1, let μ be a
σ -Carleson measure supported on a ray ω, and f a non-negative subharmonic function
supported on ω. Then

〈f, σ 〉 � B

C
〈f, μ〉 ,

where C is the Carleson constant for μ (relative to σ ).
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For each v �= o, let fv denote the harmonic function with limiting values 1 on I (v) and
0 on � \ I (v). In the spirit of Theorem 3.3, we have the following result for the Bergman
space.

Theorem 3.6 Let σ be a reference measure and 1 < p < ∞.

(i) If for all v �= o,
∑

T \S(v)

|fv(w)|pσ(w) � Cσ,p σ (S(v)), (3.5)

thenM(Ap(σ),σ ) ⊂ Mσ .
(ii) Let ε > 0 such that 1/qp < ε < 1/q, and let σ be the reference measure such that

σn = εn. Then σ satisfies condition (3.5). ConsequentlyM(Ap(σ),σ ) ⊂ Mσ .

We end the section with some remarks on the natural discretization of the Carleson
condition in terms of the pseudo-hyperbolic balls of Oleinik and Luecking, which lead
us to instead adopt the conventional Carleson-box approach in our setting. The sets we
shall consider here are truncated sectors defined in terms of a fast growing function on the
non-negative integers.

Definition 5 A function f : Z+ → Z+ is called admissible if f (n) > n for each n and in
addition

lim
n→∞(f (n) − n) = ∞.

Given an admissible function f , for v ∈ T , n ∈ Z+, let

Sv,n(f ) = {w ∈ S(v) : n � |w| < f (n)}.
A nonnegative measure μ is called f σ -trapezoidal if there exists a positive constant C such
that for all v ∈ T and all n ∈ N,

μ(Sv,n(f )) � C σ(Sv,n(f )). (3.6)

The result below highlights the non-equivalence of the Carleson condition in terms of
a family of truncated sectors Sv,n(f ) and our choice of Carleson condition in terms of the
family of sectors S(v).

Theorem 3.7 (i) If σ is a reference measure on T and f an admissible function, then
any f σ -trapezoidal measure is a σ -Carleson measure.

(ii) Given any reference measure σ , there exists an admissible function f such that every
σ -Carleson measure is f σ -trapezoidal.

(iii) Given any admissible function f , there exist a reference measure σ and a non-
negative measure μ on T such that μ is a σ -Carleson measure but not f σ -
trapezoidal.

Proof (i) Fix a vertex v and define the sequence {an}∞n=0 by a0 = |v| and for n � 0,
let an+1 = f (an). Then the sector S(v) is the disjoint union of the truncated sectors
Sv,an(f ) for n � 0. Suppose μ is f σ -Carleson, so that there is a positive constant C
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such that (3.6) holds. Then

μ(S(v)) =
∞∑

n=0

μ(Sv,n(f )) � C

∞∑
n=0

σ(Sv,n(f )) = Cμ(S(v)),

proving that μ is a σ -Carleson measure.
(ii) Let σ be a reference measure. Due to the radiality of σ , for each vertex v we may

choose f (|v|) ∈ Z+ large enough so that f (|v|) − |v| → ∞ as |v| → ∞ and
σ
(
S(v)) ∩ {w ∈ T : |v| � |w| < f (|v|)}) > 1

2σ(S(v)). For n ∈ Z+, Sv,n(f ) is the
disjoint union of the sets Sw,n(f ) over all w ∈ S(v) with |w| = n. Therefore,

σ(Sv,n(f )) =
∑

w∈S(v)
|w|=n

σ (Sw,n(f )) >
1

2

∑
w∈S(v)
|w|=n

σ (S(w)) = 1

2
σ
( ⋃

w∈S(v)
|w|=n

S(w)
)
.

Hence, if μ is a σ -Carleson measure, then

μ(Sv,n(f )) =
∑

w∈S(v)
|w|=n

μ(Sw,n(f )) �
∑

w∈S(v)
|w|=n

μ(S(w)) �
∑

w∈S(v)
|w|=n

C σ(S(w))

< 2C
∑

w∈S(v)
|w|=n

σ (Sw,n(f )) = 2C σ(Sv,n(f )).

(iii) Given an admissible function f : Z+ → Z+, define a1 = f (1) and for each n � 1,
let an+1 = f (an). Moreover, let Bn = {v ∈ T : an � |v| < an+1}. Then the
cardinality of Bn is given by

An = q + 1

q

an+1−1∑
k=an

qk ≈ qan+1 .

Now define σ(v) = 1/(n3An) for an � |v| < an+1, so that σ(Bn) = n−3 and
σ(S(w) ∩ Bn) = q

q+1q
−|w|n−3 for |w| = an. Thus, for |w| = an, the quantity

βn := σ(S(w)) = q−|w|
∞∑

k=n

1

k3

is approximately q−|w|n−2. Now pick a ray {x0, x1, x2, . . . } and let

μ(xt ) =
{

βn − βn+1 if t = an for some n ∈ N,

0 otherwise.

Then, for every v,μ(Sv) = 0 if xt �= v for all t (that is, if the ray {x0, x1, x2, . . . } does
not definitely belong to S(v)), but, if v = xt for am−1 < t � am, then μ(Sv) = βm =
σ(Sxam

) � σ(S(v)). Therefore μ(S(v)) � σ(S(v)). On the other hand, Sv,an(f ) =
S(v) ∩ Bn, hence σ(Sv,an(f )) ∼ q−|v|n−3. But, if we choose xan = v, then

μ(Sv,an(f )) = βn − βn+1 = q−an

∞∑
k=n

1

k3
− q−an+1

∞∑
k=n+1

1

k3
>

q−|v|

n2
,

hence μ(Sv,an(f ))/σ (Sv,an(f )) is unbounded.
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4 Radialization and Harmonic Radialization

Given a function f on T and v ∈ T with v �= o, we describe two ways to produce a new
function on T which agrees with f on T \ S(v) and which is radial on S(v).

Definition 6 For v ∈ T we introduce an operator Rv on functions on T , the local
radialization operator on the sector S(v) as follows:

Rof (w) = 1

(q + 1)q |w|−1

∑
|u|=|w|

f (u),

and for each v ∈ T , v �= o,

Rvf (w) =

⎧⎪⎨
⎪⎩

1

q |w|−|v|
∑

u∈S(v),|u|=|w|
f (u) for w ∈ S(v),

f (w) for w ∈ T \ S(v).

For n � 1, the n-th generation circular radialization operator Rn is defined on functions
f on T by

Rnf (w) =
{

Rvf (w) if |w| � n, w ∈ Sv for |v| = n,

f (w) if |w| < n.

By the same method one defines a sectorial radialization for functions on the boundary:
If F : � → C, define RvF(ω) = (1/ν(I (v)))

∫
I (v)

F dν for ω ∈ I (v), and RvF(ω) =
F(ω) for ω /∈ I (v). The n-th generation boundary radialization is defined analogously.

The following lemma will motivate our definition of harmonic radialization given below,
which is a second way of producing radial functions.

Lemma 4.1 Let v ∈ T with v �= o. Let g : {v−} ∪ S(v) → R be a radial function which
in addition is harmonic on S(v). Let A = g(v−), B = g(v). Then for any u ∈ {v−} ∪ S(v)

and j = d(u, v),

g(u) = Bq − A

q − 1
+ A − B

q − 1
q−j = L + (A − L)q−(j+1), (4.1)

where the radial limit of g in S(v) is L = Bq−A
q−1 . Conversely, for any real numbers A and

B, the formulas in Eq. 4.1 define a function on {v−} ∪ S(v) which is radial and harmonic
at each vertex of S(v).

Proof Let x−1 = g(v−) and for each nonnegative integer j , let xj = g(u), where u ∈ S(v)

and d(u, v) = j . Then the harmonicity and radiality of g imply xj = q
q+1xj+1 + 1

q+1xj−1,

for all j � 0. The solution of this recurrence relation is xj = c1 + c2q
−j , for some real

numbers c1, c2. We also have x−1 = A and x0 = B, from which we deduce c1 = Bq−A
q−1

and c2 = A−B
q−1 . Since c1 = lim

j→∞ xj , we have L = Bq−A
q−1 . From here, a straightforward

calculation yields (4.1).

Remark 1 In Lemma 4.1, if we know any two of A,B or L, we know the other and so any
two of them determine g uniquely on {v−}∪S(v). Moreover, ifL = 0, then g(v−) = q ·g(v)

and g(u) = g(v)q−d(u,v).
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Definition 7 For v ∈ T with v �= o, the local harmonic radialization operator RHv is
defined on functions f on T as follows:

RHvf (w) =
⎧⎨
⎩

f (v) q − f (v−)

q − 1
+ f (v−) − f (v)

q − 1
q−d(w,v) if w ∈ S(v),

f (w) if w ∈ T \ S(v).
(4.2)

It follows easily from Lemma 4.1 that for a fixed v ∈ T \{o}, if f is harmonic on T , then
RHvf is harmonic on T , and if f is subharmonic on T , then RHvf is subharmonic on T .
Of course, it is always the case that RHvf is harmonic and radial on S(v).

The following proposition allows us to answer analogous questions for Rvf .

Proposition 4.2 Let f be any real-valued function on T . Fix v ∈ T with |v| = n � 1. Let
u ∈ S(v), and let m = |u|. Then

qm−n�(Rvf )(u) =
∑

ũ∈S(v), |ũ|=m

�f (ũ).

If f is harmonic (respectively, subharmonic) on T , then Rvf is harmonic (respectively,
subharmonic) on T .

Proof For every u �= o there are exactly q vertices w such that w− = u. Thus, for each
k � 0, let xk = Rvf (w), for any w ∈ S(v) with |w| = n + k. Then

∑
ũ∈S(v)
|ũ|=|u|

�f (ũ) =
∑

ũ∈S(v)
|ũ|=|u|

[ 1

q + 1

∑
w−=ũ

f (w) + f (ũ−)

q + 1
− f (ũ)

]

= 1

q + 1

∑
w∈S(v)

|w|=|u|+1

f (w) + q

q + 1

∑
w∈S(v)

|w|=|u|−1

f (w) −
∑

ũ∈S(v)
|ũ|=|u|

f (ũ)

= qk+1

q + 1
xk+1 + q

q + 1
qk−1xk−1 − qkxk

= qk
[ q

q + 1
xk+1 + 1

q + 1
xk−1 − xk

]
= qk �Rvf (u).

The assertions about harmonicity and subharmonicity on S(v) now follow. Those assertions
on T \ S(v) are obvious.

Remark 2 Let f be defined on T and let v ∈ T with v �= o. It is not generally true that
Rvf and RHvf are equal; RHvf is necessarily harmonic on S(v) and Rvf need not be
harmonic.

For example, the function f (v) = |v| is radial, subharmonic on T , but not harmonic
anywhere, so Rvf ≡ f on T , and Rvf �= RHvf .

On the other hand, if f is harmonic on S(v), then Rvf = RHvf , since both sides are
radial on S(v) and they agree at v and v−.
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5 Some Results on the Poisson Transform and the Bergman Space
on a Homogeneous Tree

For a harmonic function f on T , let us define μn,p(f ) to be the average value of |f |p on
the circle Cn of radius n centered at o. Thus μ0,p(f ) = |f (o)|p and for n � 1,

μn,p(f ) = 1

(q + 1)qn−1

∑
|v|=n

|f (v)|p,

Observe that ‖f ‖p
Lp is essentially equal to

∑
n μn,p(f )qnσn. Thus,

f ∈ Ap(σ) if and only if
∑
n

μn,p(f )qnσn < ∞.

For p � 1, the harmonic Hardy space Hp(T ) is defined as the space of harmonic
functions f on T such that {μn,p(f )} ∈ �∞, with norm

‖f ‖p
Hp := sup

n∈N
μn,p(f ).

Equivalently, f ∈ Hp(T ) if and only f is harmonic on T and f has a harmonic majorant
on T . See [7], Theorem 2.3. Note that for all f ∈ Hp(T ),

‖f ‖p
Ap =

∑
v∈T

|f (v)|pσ(v) = σ(o)μ0,p(f ) +
∞∑

n=1

μn,p(f )(q + 1)qn−1σn � ‖f ‖p
Hp‖σ‖.

Thus, the inclusion operator ofHp(T ) into Ap(σ) is bounded.

Lemma 5.1 Let v ∈ T , |v| = n � 1. Let χ = χI (v). Then

Kχ(w) =

⎧⎪⎪⎨
⎪⎪⎩

1 − q−d(w,v)

q + 1
if w ∈ S(v),

q

q + 1
q−d(w,v) if w ∈ T \ S(v).

Proof It follows from Eq. 2.1 that, for ω ∈ I (v), K(v, ω) = K(ωn, ω) = q |v|. Therefore

Kχ(v) =
∫

I (v)

K(v, ω) dν = q |v| ν(I (v)) = q

q + 1
.

Let w ∈ T \ S(v). Then for ω ∈ I (v), 2|ω ∧ w| − |w| = |v| − d(w, v). Thus

Kχ(w) =
∫

I (v)

K(w, ω) dν = q |v|−d(w,v) ν(I (v)) = q

q + 1
q−d(w,v),

in agreement with the formula in the statement. In particular, Kχ(v−) = 1/(q + 1). By
symmetry, Kχ is radial on S(v). Using Lemma 4.1 with A = Kχ(v−) = 1/(q + 1) and
B = Kχ(v) = q/(q + 1), we obtain the desired result on S(v).

Remark 3 As a consequence, we see that lim
m→∞Kχ(ωm) = 1, as expected.

Note that,Kχ is clearly radial when restricted to the sector S(v) and also radial around v

in the complement T \S(v), hence it is radial in each of the other sectors Sw with |w| = |v|.



Bergman Spaces and Carleson Measures on Homogeneous Isotropic Trees

Corollary 5.2 For every v ∈ T , there is a non-negative harmonic function f such that
f ≈ χI (v), in the sense that there exist 0 < C1 < C2 < 1 independent of v such that
C2 � f � 1 for v ∈ S(v), and 0 � f � C1 for v /∈ S(v). Moreover, there exists a
non-negative subharmonic function g supported in S(v) such that g ≈ χI (v).

Proof From Lemma 5.1 we see that an instance of f is KχI (v). For g we make use of
Lemma 4.1. Define g to be 0 on T \ S(v). We wish to apply Lemma 4.1 with A = 0 and
L = 1. Since L = (Bq − A)/(q − 1), we get B = (q − 1)/q. Then define g on S(v) by
g(u) = Bq−A

q−1 + A−B
q−1 q−d(u,v). By that lemma, g is harmonic on S(v), and it is easy to see

that it is subharmonic on T .

Proposition 5.3 The Poisson transform intertwines the radializations on T and�: for every
integrable F on � and v ∈ T , one has KRvF = RvKF .

Proof Note that Rv has different meanings in the above equation; on the left side it operates
on a boundary function and on the right side on a tree function. By linearity, it is enough for
us to consider separately the cases that F has no support on I (v) and F has all of its support
on I (v). So suppose first that F has all its support in � \ I (v). Then by definition, RvF =
0 = F on I (v), so RvF = F on �. ThusKRvF = KF . Let us now calculate RvKF . Since
F has no support in I (v), it follows that KF is radial on S(v), so RvKF = KF on S(v),
and so by definition on T . This completes the proof in case F has all its support in �\ I (v).

Suppose now that F has all its support in I (v). Let Fa be the number given by

Fa = 1

ν(I (v))

∫
I (v)

F (ω)dν(ω).

Then RvF = FaχI (v) = Faχ (notation as in Lemma 5.1) so KRvF = FaKχ, where the
formula forKχ is given in Lemma 5.1. Now let us calculateKF(w) forw ∈ (T \S(v))∪{v}.
For suchw, we have 2|w∧ω|−|w| = |v|−d(w, v), soKF(w) = q |v|−d(w,u)

∫
F(ω)dν(ω).

Multiplying top and bottom by ν(I (v)), we get KF(w) = q
q+1Faq

−d(w,v). By Lemma 5.1,
this agrees with FaKχ(w) on (T \S(v))∪{v}. NowKF is harmonic, so RvKF = RHvKF

(recall Definition 7 and Remark 2), and the latter on S(v) is, according to Lemma 4.1,
determined by the values ofKF at v and v−. It follows that RvKF = FaKχ on S(v), hence
on T . Thus KRvF = FaKχ = RvKF .

Our next goal is to show that Hp(T ) is not closed in Ap(σ) for certain reference
measures σ . For this purpose we first prove the following lemma. Fix a reference mea-
sure σ . Fix ε ∈ (0, 1), ω0 ∈ �. Define Fε : � → R by ω �→ qε|ω∧ω0|, where
|ω ∧ ω0| = max{k ∈ N0 : ωj = ω0

j for each j = 0, . . . , k}, and fε = KFε .

Lemma 5.4 (i) For h nonnegative harmonic on T ,
∑

v∈T h(v)σ (v) � ‖σ‖·‖νh‖, where
νh is the representing measure of h.

(ii) Hp(T ) ⊆ Ap(σ), for p � 1.
(iii) c1 � q−εkfε � c2 on S(ω0

k) \ S(ω0
k+1), for constants c1, c2 depending only on ε and

q.
(iv) fε ∈ Hp(T ) if and only if εp < 1. If σ is good and εp � 1, then fε ∈ Ap(σ).
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Proof (i): By symmetry, since σ is radial,
∑

v∈T K(v, ω)σ (v) is independent of ω ∈ �.
Integrating out ω with respect to ν gives

∑
v

K(v, ω)σ (v) =
∫

�

∑
v

K(v, ω)σ (v)dν(ω) =
∑

v

∫
�

K(v, ω)dν(ω)σ(v)

=
∑

v

σ (v) = ‖σ‖.

Thus, if h � 0 is subharmonic on T , then

∑
v

h(v)σ (v) =
∑

v

∫
�

K(v, ω)dνh(ω)σ (v) =
∫

�

∑
v

K(v, ω)σ (v)dνh(ω)

=
∫

�

‖σ‖dνh(ω) = ‖σ‖ · ‖νh‖.

(ii): Let g ∈ Hp(T ). Then |g|p has a harmonic majorant h on T . Thus

∑
v

|g(v)|pσ(v) �
∑

v

h(v)σ (v) = ‖νh‖‖σ‖ < ∞.

(iii): We first calculate fε(ω
0
k):

fε(ω
0
k) =

∫
�

q2|ω∧ω0
k |−kqε|ω∧ω0|dν(ω)

= q−k q

q + 1
+

k−1∑
j=1

q2j−kqεj

(
q − 1

q + 1

)
q−j +

∞∑
j=k

q2k−kqεj

(
q − 1

q + 1

)
q−j

= q−k q

q + 1
+

(
q − 1

q + 1

)
q−k

k∑
j=1

q(1+ε)j + qk

(
q − 1

q + 1

) ∞∑
j=k

q−(1−ε)j

= q

q + 1
q−k +

(
q − 1

q + 1

)
q−k

[
q(1+ε)k − q1+ε

q1+ε − 1

]
+ qk

(
q − 1

q + 1

)[
q−(1−ε)k

1 − q−(1−ε)

]

= qεk

(
q − 1

q + 1

) [
1

q1+ε − 1
+ 1

1 − q−(1−ε)

]
+ q−k

q + 1

[
q − (q − 1)q1+ε

q1+ε − 1

]
(5.1)

By the Fatou Theorem (see [5], Theorem 3.3), lim
n→∞ fε(ωn) = Fε(ω) for ν−a.e.

ω ∈ �. Since fε is radial on S(ω0
k) \ S

(
ω0

k+1

)
, it follows that lim|u|→∞ fε(u) = qεk,

k � 1, where the limit is taken in S(ω0
k) \ S

(
ω0

k+1

)
. Let Lk = qεk and Ak = fε(ω

0
k).

Then by Lemma 4.1, fε(u) = Lk + (Ak − Lk)q
−d(u,ω0

k ) for u ∈ S(ω0
k) \ S

(
ω0

k+1

)
.

The result then follows by applying the above formula (5.1) for fε(ω
0
k).
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(iv): To prove the result concerning Hp(T ), it is enough to prove that Fε ∈
Lp(�, ν) if and only if εp < 1. We have

∫

�

qε|ω∧ω0|pdν(ω) =
∞∑

k=0

∫

I (ω0
k )\I (ω0

k+1)

qε|ω∧ω0|pdν(ω)

= q

q + 1
+

∞∑
k=1

qεkp

(
q − 1

q + 1

)
q−k = q

q + 1
+

(
q − 1

q + 1

) ∞∑
k=1

q−(1−εp)k

and this is finite if and only if εp < 1.
Suppose now that εp � 1. By part (iii), to show

∑
u∈T

f
p
ε (u)σ (u) < ∞, we may replace

fε on each S(ω0
k) \ S(ω0

k+1) by qεk . This gives

∞∑
k=0

qεkpσ
(
S(ω0

k) \ S
(
ω0

k+1

))
�

∞∑
k=0

qkσ (S(ω0
k) =

∞∑
k=0

qkτk < ∞,

since σ is good.

We are now ready to prove the following theorem.

Theorem 5.5 Let σ be a good reference measure on T . ThenHp(T ) is not closed inAp(σ).

Proof First assume p > 1. Let ε = 1/p, ω0, f = fε and F = Fε as defined just before
Lemma 5.4, With notation as in Eq. 4.2, for each k � 1, let fk = RHω0

k
F , Ak = f (ω0

k−1)

and Bk = f (ω0
k). Then

fk(u) =

⎧⎪⎨
⎪⎩

f (u) if u /∈ S(ω0
k),

Bkq − Ak

q − 1
+ Ak − Bk

q − 1
q−d(u,ω0

k ) if u ∈ S(ω0
k).

For the integral estimates we wish to obtain for fk , by Lemma 5.4(iii) we may replace fk

on S(ω0
k) with the constant qεk .

Each fk is bounded, hence in Hp(T ). The sequence converges pointwise to f , but f /∈
Hp(T ) by Lemma 5.4(iv), so the convergence is not in Hp(T ). Thus we will be done with
this case if we show that fk converges to f in Ap(σ). But fk = f outside of S(ω0

k), so
we just need to check that

∑
S(ω0

k )

|fk(u) − f (u)|pσ(u) → 0 as k → ∞, and this will hold

provided
∑

S(ω0
k )

|fk(u)|pσ(u) → 0 and
∑

S(ω0
k )

|f (u)|pσ(u) → 0 as k → ∞. The first of these

follows from qεkp σ
(
S(ω0

k)
) = qkτk → 0 as k → ∞, and the second by applying the

Dominated Convergence Theorem to the sequence χS(ω0
k ) · f p. This completes the proof in

case p > 1.
For p = 1, instead of f we use K(·, ω0) for a fixed ω0 ∈ �. This is in A1(σ ) (by

Lemma 5.4(i)) but not in H1(T ) (since δω0 /∈ L1(ν)). The proof is carried out as before by
harmonically radializing K(·, ω0

k).
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6 Proofs of the Results in Section 3

Recall that σ is a reference measure, σn = σ({v}) where |v| = n, and τn = σ(S(v)). We
begin with the following lemma.

Lemma 6.1 Choose a geodesic ray ω = [ω0 = o, ω1, . . . , ωn, . . . ]. Denote by μ the
function supported on this geodesic ray defined byμωn = τn−τn+1. Thenμ is a σ -Carleson
measure.

Proof If v /∈ ω then μ(S(v)) = 0. On the other hand,

μ(S(ωn)) =
∞∑

k=n

μ(ωk) =
∞∑

k=n

(τk − τk+1) = τn = σ(S(ωn)) .

So μ is σ -Carleson.

In the following proof, C denotes a number depending at most on parameters of T , but
possibly varying in different instances (even in the same string of inequalities).

Proof of Theorem 3.3 The first string of inequalities of (a) are evidently true, and the last
follows since |f |p is subharmonic whenever f is harmonic.

To prove (3.3), suppose first that μ is an (S+, σ )-Carleson measure. Let v �= o

and let g be the non-negative subharmonic function of Corollary 5.2: g ≈ χS(v). Then
μ(S(v)) ≈ 〈μ, g〉 � C〈σ, g〉 ≈ σ(S(v)). So μ(S(v)) � Cσ(S(v)) for some constant C.
ThusM(S+,σ ) ⊂ Mσ . The last part will follow from Eq. 3.3 once we prove (3.3).

We now turn to Eq. 3.3. Since the inclusion Mσ ⊃ M(F+, σ ) holds for all σ ∈ R by
parts (3.3) and (3.3), to prove (3.3) it suffices to prove the opposite inclusion when σ is
optimal and, conversely, that such an inclusion implies the optimality of σ .

Suppose σ is optimal and μ is a σ -Carleson measure. Then for all v ∈ T ,

μ(v) � μ(S(v)) � Cσ(S(v)) � Cσ|v|.
Thus, if f ∈ F+, then

∑
v∈T

f (v)μ(v) � C
∑
v∈T

f (v)σ|v|. This shows that μ is (F+, σ )-

Carleson (and hence also (S+, σ )-Carleson).
Conversely, assume Mσ ⊂ M(F+,σ ) and let μ be the measure supported on a ray

ω introduced in Lemma 6.1. We have proved there that μ is σ -Carleson, hence, by the
hypothesis, it is (F+, σ )-Carleson. Let gn = δvn . Then

< gn,μ >

< gn, σ >
= τn − τn+1

σn

is bounded. On the other hand, splitting a sector as the union of its apex and the nearest
neighbor subsectors, we see that τn = σn + qτn+1. Thus, τn+1 = 1

q
(τn − σn), so

τn − τn+1 = q − 1

q
τn + 1

q
σn.

It follows that τn/σn is bounded, proving that σ is optimal. This completes the proof of (c).
We now prove (3.3). Observe that, by definition of reference measure,

∞∑
n=0

qnσn < σ0 +
∞∑

n=1

q + 1

q
qnσn = ‖σ‖.
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Choose an increasing sequence {cn} → ∞ such that
∑∞

n=0 cnσnq
n < ∞ . Let μn = cnσn

and let μ be the radial measure on T defined as μ(v) = μ|v|. Notice that μ is finite. For
each h ∈ H+, h(o) is the average of the values of h on the neighbors of o. By iteration,
(q + 1)qn−1h(o) = ∑

|v|=n h(v). Then, for every radial measure ρ on T ,

〈h, ρ〉 =
∑
n�0

ρn

∑
|v|=n

h(v) = h(o)‖ρ‖ .

Hence, as μ and σ are radial,

〈h, μ〉 = h(o) ‖μ‖ = Ch(o) ‖σ‖ = 〈h, σ 〉
whereC = ‖μ‖/‖σ‖. Thereforeμ ∈ M(H+, σ ). Butμ is not a σ -Carleson measure. Indeed,
since {cn} is increasing,

μ(S(v))

σ (S(v))
=

∑∞
k=0 μn+kq

k∑∞
k=0 σn+kqk

=
∑∞

k=0 cn+kσn+kq
k∑∞

k=0 σn+kqk
� cn → ∞

as n → ∞. We have thus shown thatM(H+,σ ) �⊂ Mσ .
Suppose now that σ is not good. Then

∑
n qnτn = ∞, where τn = σ(S(v)) with |v| = n.

Fix a ray ω ∈ � and define μ to be 0 off ω and μ(ωn) = τn − τn+1. We have proved in
Lemma 6.1 that μ is a σ -Carleson measure. By the way μ is defined,

∫
Kω dμ =

∞∑
n=0

qnμ(ωn) =
∞∑

n=0

qn(τn − τn+1) . (6.1)

Fix m ∈ N. Then,

m∑
n=0

qn(τn − τn+1) =
m∑

n=0

qnτn −
m+1∑
n=1

qn−1τn

= τ0 +
m∑

n=1

(qn − qn−1)τn − qmτm+1

= τ0 − qmτm+1 +
(
1 − 1

q

) m∑
n=1

qnτn. (6.2)

Denote by Bm the ball of radius m in T centered at o and observe that

qmτm+1 = 1

q + 1
σ(T \Bm).

Since σ is a finite measure, letting m → ∞, we see that qmτm+1 → 0. But the third term on
the right side in Eq. 6.2 tends to ∞, because σ is not good, hence the same happens to the
left hand sides of Eqs. 6.2 and 6.1. It follows that μ is not an (H+, σ )-Carleson measure.

Conversely, suppose that σ is good and set A = ∑
n qnτn. Let μ be a σ -Carleson

measure. Fix ω on �, and for each n ∈ N, let Wn = S(ωn)\S(ωn+1). Then

μ(Kω) =
∫

Kω(v) dμ(v) =
∑
n

∫
Wn

Kω(v) dμ(v)

�
∑
n

∫
Wn

qn dμ(v) �
∑
n

∫
Svn

qn dμ(v) �
∑
n

qnτn = A.
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Since μ(Kω) is bounded and σ(Kω) is independent of ω, it follows that μ(Kω)/σ(Kω)

is bounded as well. This implies that μ is an (H+, σ )-Carleson measure and proves the
desired inclusion.

We now turn to the proofs of Theorems 34 and 3.5 which provide some support for our
conjecture. We begin with the following lemma.

Lemma 6.2 Let f be a nonnegative subharmonic function on T . Define the circular sums
Fn := ∑

|v|=n

f (v), n � 0. Let A0 := f (0) and for n � 1, let An := Fn/((q + 1)qn−1)

denote the circular averages of f . Then both Fn and An are increasing.

Proof Let n = |v|, denote by v+ any of the offspring of v, that is its forward neighbors
v+ > v, |v+| = n + 1. Let us take the sum over all vertices v in the circle Sn of radius
n > 0, that is at distance n from o, of the subharmonicity condition

f (v) � f (v−) + ∑
v+ f (v+)

q + 1
.

Since each forward neighbor v+ appears only once in this sum over Sn, but the same vertex
v− is repeated q times, we obtain

∑
|v|=n

f (v) �
q

∑
|u|=n−1 f (u) + ∑

|w|=n+1 f (w)

q + 1
.

That is, the circular sums Fn := ∑
|v|=n f (v) satisfy the inequality

Fn � Fn+1 + qFn−1

q + 1
(6.3)

for n > 0, and F0 = f (o) � F1/(q+1). Note that the last inequality implies F1−F0 � qF0.
Let us rewrite (6.3) as

Fn+1 � (q + 1)Fn − qFn−1 , (6.4)

that is,

Fn+1 − Fn � q(Fn − Fn−1) . (6.5)

Since F1−F0 � qf (o) � 0, it follows from Eq. 6.5 that Fn+1−Fn � 0 for all n. Therefore
{Fn} is increasing. By Eq. 6.4 we see that An+1 � ((q + 1)/q)An − (1/q)An−1, that is,

An+1 − An � q−1(An − An−1). Since A1 − A0 = 1
q+1

(∑
|v|=1 f (v)

)
− f (o) � 0, the

same argument shows that the averages An are increasing.

Proof of Theorem 3.4 Let σ be a reference measure, and let μ be a radial σ -Carleson mea-
sure. We must show that μ ∈ M(S+,σ ). We start by recalling the Abel partial summation
formula (see, e.g. [14], [1, Theorem 8.27]): if an, bn ∈ R (n ∈ N) and Bk = ∑k

n=0 bn, then

k∑
n=1

anbn = akBk − a0B0 −
k∑

n=1

(an − an−1)Bn−1.
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For k > n, Bk − Bn−1 = ∑k
i=n bi , and the formula becomes

k∑
n=1

anbn =
(
ak −

k∑
n=1

(an − an−1)
)
Bk − a0B0 +

k∑
n=1

(an − an−1)

k∑
i=n

bi

= a0(Bk − B0) +
k∑

n=1

(an − an−1)

k∑
i=n

bi .

Let B = limk Bk = ∑∞
n=0 bn and assume B < ∞. Adding a0B0 and letting k → ∞ gives

∞∑
n=0

anbn = a0B +
∞∑

n=1

(an − an−1)

∞∑
i=n

bi (6.6)

=
∞∑

n=0

(an − an−1)

∞∑
i=n

bi , (6.7)

where we define a−1 = 0.
Let v ∈ T , |v| = n � 1. Let μn and σn denote the values of μ and σ on vertices of

length n. Sinceμ is radial, we haveμ(S(v)) =
∞∑

r=0
qrμn+r =

∞∑
j=n

qj−nμj , so qnμ(S(v)) =
∞∑

j=n

qjμj . Similarly, qnσ(S(v)) =
∞∑

j=n

qjσj . Thus our assumption that μ is σ -Carleson

implies that the tails satisfy

∞∑
j=n

μjq
j = qnμ(S(v)) � Cqnσ(S(v)) = C

∞∑
j=n

σj q
j .

Now let f � 0 be a subharmonic function on T , and An be its circular averages. By
Lemma 6.2, An is increasing. Therefore

∞∑
n=0

(An − An−1)

∞∑
j=n

μjq
j � C

∞∑
n=0

(An − An−1)

∞∑
j=n

σj q
j .

But then, the formula of summation by parts (6.6) with an = An and bn = μnq
n followed

by bn = σnq
n implies that

∞∑
n=0

Anμnq
n � C

∞∑
n=0

Anσnq
n,

which yields 〈f,μ〉 � C〈f, σ 〉.

Proof of Theorem 3.5 Let fk := f (ωk), and set f−1 = f−2 = 0. Because of subharmonic-
ity, the sequence fk is increasing (there cannot be local maxima), f1 � (q + 1)f0, and
(q + 1)fk−1 � fk−2 + fk , that is fk − qfk−1 � fk−1 − fk−2 for all k � 0. Therefore

fn

qn
=

n∑
j=0

(
fj

qj
− fj−1

qj−1

)
=

n∑
j=0

fj − qfj−1

qj
�

n∑
j=0

fj−1 − fj−2

qj
.
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But then

〈f, σ 〉 =
∑
n�0

fnσn �
∞∑

n=0

n∑
j=0

(fj−1 − fj−2)σnq
n−j

=
∞∑

j=1

∞∑
n=j

(fj−1 − fj−2)σnq
n−j =

∞∑
j=1

(fj−1 − fj−2)τj

� B

∞∑
j=1

(fj−1 − fj−2)τj−1 �
B

C

∞∑
j=1

∞∑
m=j−1

(fj−1 − fj−2)μm

= B

C

∞∑
m=0

μm

m+1∑
j=1

(fj−1 − fj−2) = B

C

∞∑
m=0

fmμm = B

C
〈f, μ〉 .

We next give a proof of our theorem of Carleson type for the Bergman space.

Proof of Theorem 3.6 To prove (i), let v ∈ T and assume that σ satisfies (3.5). By Lemma
5.1, q/(q + 1) � fv on S(v) and 0 � fv � 1 on T . So fv ∈ Ap(σ), hence, for all
μ ∈ M(Ap(σ),σ ),

q

q + 1
μ(S(v)) �

∑
w∈S(v)

|fv(w)|pμ(w) �
∑
w∈T

|fv(w)|pμ(w)

� C
∑
w∈T

|fv(w)|pσ(w) � C (1 + Cσ,p) σ (S(v)).

To prove (ii), we will let Cε,p denotes any real number depending at most on ε and p

but possibly varying from line to line. Fix |v| = n > 0. If w ∈ T \ S(v), let k = |w ∧ v|
and j = d(w,w ∧ v). Then |w| = d(o,w ∧ v) + d(w ∧ v, w) = k + j and d(v,w) =
d(v, w ∧ v) + d(w ∧ v,w) = n − k + j . Therefore, by Lemma 5.1,

∑
w∈T \S(v)

|fv(w)|pσ(w) �
n−1∑
k=0

∞∑
j=0

q(k−n−j)p εk+j qj

=
n−1∑
k=0

∞∑
j=0

q−np (qpε)k (q−(p−1)ε)j

= Cε,p

n−1∑
k=0

q−np(qpε)k (since q−(p−1)ε < q−p < 1)

= Cε,pq−np(qpε)n (since qpε > 1)

= Cε,pεn = Cε,pσ (v) < Cε,pσ (S(v)).
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Finally, we give the proof of Theorem 3.2 in which we show how to construct non-
optimal reference measures.

Proof of Theorem 3.2 Define recursively an increasing sequence of positive integers by
x0 = 0 and for k � 0,

xk+1 = xk + (1 + xk) bxk
. (6.8)

Moreover, define the sequences fk : R+ → R+ and ωk > 0 as follows. The function f0
is supported in the interval [x0 , x1] and its graph is the descending segment that connects
the points (x0 , 1) and (x1 , 0). Choose x0 < ω0 < x1 and define the piecewise linear
function f1 on [x0 , x2] that coincides with f0 on (x0 , ω0) and whose graph in the interval
[ω0 , x2] is the line segment connecting the points (ω0 , f0(ω0) and (x2 , 0): clearly, this
second line segment decreases at a lower rate than the first, and so f1 is convex. We choose
ω0 sufficiently close to x1 so that

x1 − ω0 < 1 , f1(ω0) = f0(ω0) � 2f1(x1), and
∫ x2

ω0

f1 < 1 .

Suppose for k � 1 we have chosen f0, f1, . . . , fk and ωj ∈ (xj , xj+1) for 0 � j � k − 1.
The inductive step is to choose ωk ∈ (xk, xk+1) (we explain below additional conditions on
ωk) and define fk+1 to be the piecewise linear function on [x0 , xk+2] that coincides with
fk on [x0 , ωk] and whose graph on [ωk , xk+2] is the linear segment from (ωk , fk(ωk)) to
(xk+2 , 0). The rate of descent of each segment in the graph of fk+1 is less than the previous
one, so fk+1 is convex. Choose ωk sufficiently close to xk+1 so that

xk+1 − ωk < 1 and
∫ xk+2

ωk

fk+1 <
1

(k + 1)2
.

From elementary geometric considerations we obtain that

fk+1(ωk) � 2fk+1(xk+1).

Indeed, since xk+1 − ωk < 1 < xk+2 − xk+1, we see that
xk+2−ωk

xk+2−xk+1
� 2, and so

fk+1(ωk) =
(

xk+2 − ωk

xk+2 − xk+1

)
fk+1(xk+1) � 2fk+1(xk+1).

Now let f (x) = limk fk(x). The function f coincides with fk on [x0 , ωk], is strictly
decreasing and convex, and∫ ∞

0
f <

∫ ω1

0
f +

∑
k

1

(k + 1)2
< ∞ . (6.9)

Moreover, the graph of f on [ωk , xk+2] is a segment of negative slope D+f (ωk) that
intersects the x-axis at xk+2. Thus, using Eq. 6.8, we have

−D+f (ωk) = f (ωk)

xk+2 − ωk

<
f (ωk)

xk+2 − xk+1
= f (ωk)

(1 + xk+1) bxk+1

.

Hence, for k � 0,
f (ωk)

|D+f (ωk)| bxk+1

> xk+1 . (6.10)

Next, define an = f (n). By Eq. 6.9,
∑

n an < ∞. It is easy to verify that {an} is
P−subharmonic on N, since f is convex and decreasing on R+. Finally, let k ∈ N and n =
xk . Observe that xk−1 < ωk−1 < xk , the piecewise linear function f is linear in the interval
[ωk−1 , ωk], and xk belongs to this interval. Thus Df (n) = Df (xk) = D+f (ωk). We may
also assume that also xk + 1 ∈ [xk , ωk], because xk+1 − xk diverges and xk+1 −ωk < 1, so
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also ωk+1 − xk diverges. But then f is linear on the interval [xk , xk + 1] = [an , an + 1],
and so an − an+1 = f (n) − f (n + 1) = Df (n) = Df (xk) = D+f (ωk−1). Therefore, by
Eq. 6.10,

an

(an − an+1) bn

= f (xk)

|D+f (ωk−1)| bxk

� 1

2

f (ωk−1)

|D+f (ωk−1)| bxk

>
xk

2
→ ∞ .
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