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Abstract. The study of biharmonic functions under the ordinary (Euclidean)
Laplace operator on the open unit disk D in C arises in connection with plate
theory, and in particular, with the biharmonic Green functions which measure,
subject to various boundary conditions, the deflection at one point due to a
load placed at another point. A homogeneous tree T is widely considered as
a discrete analogue of the unit disk endowed with the Poincaré metric. The
usual Laplace operator on T corresponds to the hyperbolic Laplacian. In this
work, we consider a bounded metric on T for which T is relatively compact
and use it to define a flat Laplacian which plays the same role as the ordinary
Laplace operator on D. We then study the simply-supported and the clamped
biharmonic Green functions with respect to both Laplacians.
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1. Introduction

Let ∆E be the ordinary Laplace operator in the complex plane, so that for a C2

function f on some domain in C ,

∆
E
f = fxx + fyy = 4fzz. (1.1)

When restricting to functions in D = {(x, y) ∈ R
2 : x2+y2 < 1} (which we identify

with {z ∈ C : |z| < 1}), this operator can be viewed as the Laplace-Beltrami
operator with respect to the Euclidean metric ds2

E
= dx2 + dy2. On D there is also

the Laplace-Beltrami operator ∆
H

relative to the hyperbolic (Poincaré) metric

ds2
H

= (1− x2 − y2)−2(dx2 + dy2) = (1 − |z|2)−2ds2
E
,
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which is invariant under the action of the biholomorphic maps (see [22, Chapter 4]).
The relation between ∆

E
and ∆

H
is

∆
H

f(z) = (1− |z|2)2∆
E
f(z), f ∈ C2(D), z ∈ D. (1.2)

A harmonic function f is a solution of ∆
E
f = 0, or equivalently, ∆

H
f =

0. A Euclidean (respectively, hyperbolic) biharmonic function f is a solution of
∆2

E
f = 0 (respectively, ∆2

H
f = 0). While the sets of hyperbolic and Euclidean

harmonic functions are the same, the analogous two sets of biharmonic functions
are different.

The Euclidean biharmonic functions arise in connection with various physical
problems, such as the deflection of a thin plate, elasticity, and radar imaging (see
[4] and [20]). For applications in potential theory and complex analysis see [1],[2],[3]
and [14].

Corresponding to each of the above two Laplacians on D, we can define the
biharmonic Green functions ΓS(z, w) and ΓC(z, w) called, respectively, the simply-
supported and clamped biharmonic Green function. They both have the property
that the bilaplacian applied in the z-variable gives a point mass at w, and both
vanish as z tends to any point of the unit circle. The function ΓS has the additional
property that the Laplacian applied to it in the first variable tends to 0 at each
point of the unit circle, whereas the normal derivative of ΓC in the first variable
vanishes on the unit circle. Here, the normal derivative is defined with respect to
the Riemannian metric [23, page 16]. All four of these biharmonic Green functions
exist and are unique (see [23]). In the case of the Euclidean metric, if D represents a
thin plate, then both biharmonic Green functions at (z, w) represent the resulting
deflection at z due to a unit load at w. In both cases the edge of the plate remains
fixed. In the clamped case the plate is horizontally welded at the edge, while in
the simply-supported case the edge of the plate is merely resting on a support so
that the slope there can change.

Discretizations of many classical problems in harmonic analysis, potential
theory, geometry, functional analysis, and differential equations on fractals have
been considered. Some developments include, among many other works, [5],[6],[7],
[8],[9],[10],[11],[12],[13],[15],[16],[17],[18],[19],[24].

In this paper we consider on a homogeneous tree analogues of the simply-
supported and clamped biharmonic Green functions. A homogeneous tree under
the distance that counts the number of edges between two vertices is widely re-
garded as a discrete analogue of the hyperbolic disk in the complex plane. The
resulting Laplacian (which is the one most commonly used) defined as the aver-
aging operator minus the identity is invariant under the action of the isometries
on the tree. Hence, we call this invariant Laplacian the hyperbolic Laplacian. Both
hyperbolic biharmonic Green functions on a tree are straightforward to calculate
(Corollary 1.1).

Most of the paper is dedicated to the more difficult task of studying the ana-
logues of the Euclidean biharmonic Green functions on the tree. For this purpose
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we work with a bounded metric that makes the tree relatively compact. This met-
ric, defined in this section (see (1.5)), has been considered before, and we shall
refer to it as a Euclidean or flat metric. We use it to define the normal derivative
at a boundary point of a function on the tree and, motivated by (1.2), we define
a Laplace operator which we call the flat Laplacian. Corresponding to the flat
Laplacian we are able to write the simply-supported biharmonic Green function
ΓS(u, v) in closed form (see Theorem 2.2). Using ΓS we prove the existence and
uniqueness of the clamped biharmonic Green function ΓC(u, v) (see Theorem 5.1
and Theorem 6.3), but we have been unable to find an explicit formula for it.

Many of the calculations in this paper were carried out with the help of the
computer software Maple1.

1.1. Preliminary definitions on trees

A tree is a locally finite connected graph with no loops, which, as a set, we identify
with the collection of its vertices. Two vertices v and w of a tree are called neighbors
if there is an edge connecting them, in which case we use the notation v ∼ w. A
vertex is called terminal if it has exactly one neighbor. A path is a finite or infinite
sequence of neighboring vertices which are all distinct. An infinite path starting at
a vertex is called a ray. For any two vertices u and v, let [u, v] denote the unique
path joining u and v and let |u − v| be the number of edges in the path [u, v].

Fixing a vertex e ∈ T as a root of the tree, the predecessor u− of a vertex u,
with u �= e, is the next to the last vertex of the path from e to u. We say that v is
an ancestor of u and u is a descendant of v, if v is in the path from e to u−. The
sector Sv is the set consisting of v and all its descendants. We call children of a
vertex v the vertices u such that u− = v. For brevity we use the notation |u| for
|u− e|.

The boundary ∂T of T is the union of the set of equivalence classes of rays
under the equivalence relation generated by the unit shift together with the ter-
minal vertices. For any vertex u, we denote by [u, ω) the (unique) path starting
at u in the class ω; then ∂T can be identified with the set of paths starting at u.
Furthermore, ∂T is a compact space under the topology generated by the sets

Iv = {ω ∈ ∂T : v ∈ [e, ω)},
which we call intervals. Clearly, Ω = I

E
. For v ∈ T , n ∈ N, with n ≤ |v|, define

vn to be the vertex of length n in the path [e, v]. Similarly, for a class ω, the
path [e, ω) will be denoted by [ω0, ω1, ω2, . . . ]. If v and w are vertices or boundary
points, define v ∧w to be the vertex vk such that vk = wk and vk+1 �= wk+1.

Observe that if [v0, v1, . . . ] is an infinite path starting at e, then Ivj − Ivj+1

can be written as the disjoint union

Ivj − Ivj+1 =
⋃

u∈Cj

Iu, (1.3)

1Maple is a registered trademark of Waterloo Maple Inc.
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where Cj is the set consisting of the children of vj unequal to vj+1. Thus, for each
v ∈ T with |v| = n,

Ω =
n−1⋃
j=0

(
Ivj − Ivj+1

) ∪ Iv, (1.4)

which by (1.3) can be written as a finite disjoint union of intervals.

By a homogeneous tree of degree q + 1 (with q ≥ 2) we mean a tree all of
whose vertices have exactly q + 1 neighbors.

From this point on we shall let T be a homogeneous tree of degree q+1 rooted
at vertex e.

By the Lebesgue measure on ∂T we mean the unique probability measure
whose value on Iv is q

q+1q−|v| for v �= e.
The hyperbolic metric on T is the metric whose associated distance between

two vertices u and v is |u− v|. The automorphisms of the tree are isometries with
respect to the hyperbolic metric on T in analogy with the Möbius transformations
of D which are isometries of the hyperbolic disk.

The flat metric we consider is the metric d on T such that

d(v, ∂T ) = q−|v|. (1.5)

Therefore the length of an edge [v−, v] is given by

q−(|v|−1) − q−|v| = (q − 1)q−|v|.

In analogy to the Euclidean distance between 0 and ∂D, the distance between e
and ∂T is 1. Furthermore, the only isometries of the flat tree are the tree automor-
phisms which fix e, in analogy with the fact that the only Möbius transformations
which preserve the Euclidean distance are those that fix 0 (i.e. the rotations about
the origin).

As is customary, by a function on a tree T we mean a function on its set of
vertices. For a function f on T the hyperbolic Laplacian of f , which is the most
commonly used Laplacian, is defined by

∆
H

f(v) =
1

q + 1

∑
w∼v

f(w)− f(v),

where w ∼ v means that w and v are neighbors, i.e. they are connected by an
edge. The flat Laplacian of f is defined as

∆
E
f(v) = q2|v|∆

H
f(v), v ∈ T. (1.6)

This is motivated by (1.2) because 1−|z|2 is essentially the distance from z to the
boundary in the unit disk and q−|v| is the distance from v to ∂T .

Clearly, as in the case of the unit disk, the harmonic functions with respect
to the operator ∆

E
are the same as the harmonic functions with respect to ∆

H
.

However, the two classes of biharmonic functions f satisfying ∆2
E
f = 0 and ∆2

H
f =

0 are quite different.
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For u, v ∈ T , let G
H

(u, v) = q
q−1q−|u−v| denote the hyperbolic Green function

and for ω ∈ ∂T , let
KH (u, ω) = q2|u∧ω|−|u|

be the hyperbolic Martin kernel. A hyperbolic Green potential is a function of the
form

G
H

f(u) =
∑
w∈T

G
H

(u, w)f(w),

where f is a function on T for which∑
w∈T

G
H

(e, w)|f(w)| <∞.

Then G
H

f is finite-valued on T and satisfies the Poisson equation

∆H (GH f) = −f. (1.7)

For a finite Borel measure µ on T , the hyperbolic Martin integral of µ is given by

K
H

µ(u) =
∫

K
H

(u, ω) dµ(ω) =
∫

q2|u∧ω|−|u| dµ(ω). (1.8)

The above formulas are developed fully in [6].
Observe that there is a flat harmonic Green function which is given by

GE (u, w) =
q

q − 1
q−|u−w|−2|w|,

as one can immediately verify by showing that its flat Laplacian with respect to u
is −δw. However, there is no nearest-neighbor transition probability that produces
∆E . Indeed, if we assumed the existence of such a transition probability p and

∆
E
f(u) =

∑
w∼v

p(u, w)f(w)− f(u),

then for f = δv for some vertex v �= e we would obtain ∆
E
f(v) = −1. But ∆

H
f(v)

is also −1, contradicting the definition ∆
E
f(v) = q2|v|∆

H
f(v).

For a function f on T we define various kinds of normal derivatives. For v �= e
we define the hyperbolic normal derivative of f at v by

∂f

∂n
(v) = f(v)− f(v−). (1.9)

For ω a boundary point of T , we define the hyperbolic normal derivative of f at ω
by

∂f

∂n
(ω) = lim

m→∞
∂f

∂n
(ωm) (1.10)

and if we can extend f to ω by the formula

f(ω) = lim
m→∞ f(ωm),

then we define the flat normal derivative of f at ω by

∂nf(ω) = lim
m→∞

f(ωm)− f(ω)
q−m

, (1.11)
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provided these limits exist.
The simply-supported flat biharmonic Green function ΓS and the clamped flat

biharmonic Green function ΓC are respectively real-valued continuous functions
defined on T × T such that for each v ∈ T ,

⎧⎪⎨
⎪⎩

(∆
E
)2uΓS(u, v) = δv(u) for all u ∈ T

ΓS(ω, v) = 0 for all ω ∈ ∂T

limu→ω(∆E )uΓS(u, v) = 0 for all ω ∈ ∂T

(1.12)

and ⎧⎪⎨
⎪⎩

(∆E )2uΓC(u, v) = δv(u) for all u ∈ T

ΓC(ω, v) = 0 for all ω ∈ ∂T

∂nΓC(ω, v) = 0 for all ω ∈ ∂T,

(1.13)

where the subscript refers to the variable used in the calculation of the Laplacian
and δv is the Kronecker delta function.

The existence and uniqueness of ΓS are proved in Theorems 2.1 and 2.2.
The corresponding theorems for ΓC are harder to prove. The existence is shown
in Theorem 5.1 and the uniqueness is shown in Theorem 6.3. The proof of the
existence of ΓC requires the use of ΓS . In a Riemannian manifold setting, the
same is true [21].

We define the hyperbolic simply-supported and clamped biharmonic Green

functions as above with ∆
E

replaced by ∆
H

and ∂nΓC(ω, v) replaced by
∂ΓC

∂n
(ω, v).

Because of the symmetry of the tree and the translation invariance of the hyper-
bolic Laplacian, it seems intuitively obvious that these biharmonic Green functions
are unique. The formal proof of the uniqueness is similar to the proofs on the flat
tree given in Theorem 2.1 and Theorem 6.3 so we omit them. The hyperbolic bi-
harmonic Green functions are much easier to deal with than ΓS and ΓC and, in
fact, are equal. We give the formula in Corollary 1.1.

In the following proposition, a function defined on a sector Sv is called radial
if its value at each vertex u ∈ Sv depends only on |u− v|.

Proposition 1.1. The radial functions defined on a sector Sv that are flat (respec-
tively, hyperbolic) biharmonic at every vertex u in Sv such that |u − v| > 1 are
precisely the linear combinations of 1, q−|u−v|, q−2|u−v| and q−3|u−v| (respectively,
1, |u− v|, q−|u−v| and |u− v|q−|u−v|).

Proof. Since |u − v| = |u| − |v| on Sv, it suffices for us to prove the result in case
v = e. Denote by fn the value of the radial function f(u) where |u| = n. Then
∆

E
f and ∆

H
f are also radial. The equation ∆2

E
f = 0 has the same solutions as
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∆
H

∆
E
f = 0, which can be written as

0 =
q

q + 1
(∆E f)n+1 +

1
q + 1

(∆E f)n−1 − (∆Ef)n

=
q

q + 1

[
q

q + 1
fn+2 +

1
q + 1

fn − fn+1

]
q2(n+1)

+
1

q + 1

[
q

q + 1
fn +

1
q + 1

fn−2 − fn−1

]
q2(n−1)

−
[

q

q + 1
fn+1 +

1
q + 1

fn−1 − fn

]
q2n,

(1.14)

and the equation ∆2
H

f = 0 is the same with the factors q2(n+1), q2(n−1), q2n re-
moved. Multiplying by (q+1)2 and dividing by q2(n−1), equation (1.14) reduces to
a fourth order, linear, homogeneous difference equation. The corresponding char-
acteristic equation is

q6r4 − q3(q + 1)(q2 + 1)r3 + q(q2 + 1)(q2 + q + 1)r2 − (q + 1)(q2 + 1)r + 1 = 0,

whose roots are 1, 1/q, 1/q2, 1/q3.
Similarly, the equation ∆2

H
f = 0 yields a fourth order, linear, homogeneous

difference equation whose associated characteristic equation is

q2r4 − 2q(q + 1)r3 + (q2 + 4q + 1)r2 − 2(q + 1)r + 1 = 0.

Its roots are 1 and 1/q, each with multiplicity 2. �

Using Proposition 1.1 we now determine both the hyperbolic simply-suppor-
ted and clamped biharmonic Green functions on T .

Corollary 1.1. The hyperbolic simply-supported and clamped biharmonic Green
functions are equal to each other and are given by

Γ(u, v) =
[
q2 + 1 + (q2 − 1)|u− v|

(q − 1)3

]
q−(|u−v|−1).

Proof. By the proposition, the radial functions on T that tend to 0 at ∂T and
which are hyperbolic biharmonic at all vertices u with |u| > 1 are of the form
f(u) = (a + b|u|)q−|u| for constants a and b. A simple calculation shows that
for each boundary point ω and any choice of a and b, ∆

H
f(u) → 0 as u → ω

and ∂f
∂n (ω) = 0. The additional restrictions that ∆2

H
f(u) = 0 for all |u| = 1 and

∆2
H

f(e) = 0 lead to a set of two linear equations in the unknowns a and b for
which the solution is a = q(q2 + 1)/(q − 1)3 and b = q(q2 − 1)/(q − 1)3. This
then gives us a single function Γ(u, e) that satisfies the defining properties of
the hyperbolic simply-supported and clamped biharmonic Green functions. The
formula for Γ(u, v) follows by translation. �

Remark 1.1. Of the radial flat biharmonic functions in Proposition 1.1, only the
last three go to 0 at infinity. Of these last three, only the second and fourth
have a flat Laplacian that is zero at infinity and only the last two have a flat
normal derivative at infinity that is zero. Thus, we expect the flat simply-supported
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biharmonic Green function, ΓS , with respect to e be written as a linear combination
of q−|u| and q−3|u|, and with respect to a fixed vertex v, as a linear combination
of q−|u−u∧v| and q−3|u−u∧v| on the set of vertices u such that u∧ v = vj , for some
j = 0, . . . , |v|. Similarly, we expect the flat clamped biharmonic Green function,
ΓC , to be written as a linear combination of q−2|u−u∧v| and q−3|u−u∧v| on that
same set. The coefficients in these linear combinations depend only on |u∧ v| and
|v|.
Definition 1.1. A function of two variables u and v on T is biradial if it only depends
on |u|, |v|, and |u − v| or, equivalently, on |u|, |v|, and |u ∧ v|, since |u| + |v| =
|u− v|+ 2|u ∧ v|.

Thus, biradial functions are invariant under all automorphisms that fix e. We
shall prove that both biharmonic Green functions ΓS and ΓC are biradial.

2. Flat Simply-supported biharmonic Green function

We first deal with the question of uniqueness.

Theorem 2.1. The flat simply-supported biharmonic Green function is unique.

Proof. The difference of two such Green functions gives in the u variable a function
f(u) that is flat biharmonic on T with the property that f(u) and ∆

E
f(u) both

tend to 0 at every boundary point of T . It is easily proved using the Maximum
Principle that a function harmonic on T which tends to 0 at every boundary point
of T is necessarily identically 0. The result then follows by applying this fact first
to the harmonic function ∆

E
f and then to f . �

In the following theorem we give two formulas for the flat simply-supported
biharmonic Green function.

Theorem 2.2. The flat simply-supported biharmonic Green function is given by

ΓS(u, v) =
(

q

q − 1

)2

q−2|v| ∑
w∈T

q−2|w|q−|u−w|q−|v−w|, (2.1)

and also by

ΓS(u, v) =
xS(u ∧ v, v)

q|u−u∧v| +
yS(u ∧ v, v)
q3|u−u∧v| , (2.2)

where

xS(u ∧ v, v) =
q
(
q−3|v|−|u∧v|[(q2 + 1)2 + |u ∧ v|(q4 − 1)]− q2q−5|v|+|u∧v|

)
(q − 1)2(q3 − 1)

(2.3)

and

yS(u ∧ v, v) = − q3

(q − 1)2(q3 − 1)
q−3|v|−|u∧v|. (2.4)
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Proof. Let v be a fixed vertex throughout this proof. Since q−2|w| is summable over
T , it follows from the Dominated Convergence Theorem that the right-hand side of
(2.1) goes to 0 as u goes to the boundary. Furthermore, using (1.7) the application
of ∆

E
to the right-hand side in the u variable yields −q/(q−1)q−2|v|q−|u−v|, which

also goes to 0 as u goes to the boundary, while ∆2
E

applied to the right-hand side
yields the characteristic function of v. Then (2.1) follows from this, (1.12), and
Theorem 2.1.

To prove (2.2), consider {u ∈ T : |u ∧ v| = m} for each m from 0 to |v|. It
follows from (2.1) that u 
→ ΓS(u, v) is radial on this set. Thus (2.2) follows from
Proposition 1.1 and Remark 1.1, though the functions xS and yS are still to be
determined.

We show below that we are able to sum the expression in (2.1) in closed form
in the special case that u = u ∧ v (i.e. when u lies on the geodesic [e, v]) and also
in the special case that u is not a point on this geodesic but is a neighbor of such
a point. Let Γ1 denote ΓS(u, v) in this first case, and let Γ2 denote ΓS(u, v) in the
second case. Plugging these into (2.2) yields

Γ1 = xS(u ∧ v, v) + yS(u ∧ v, v),

Γ2 =
xS(u ∧ v, v)

q
+

yS(u ∧ v, v)
q3

from which we deduce

xS(u ∧ v, v) =
q3Γ2 − Γ1

q2 − 1
, yS(u ∧ v, v) =

q2(Γ1 − qΓ2)
q2 − 1

. (2.5)

We now calculate Γ1 and Γ2. Let us denote |v| by n and |u ∧ v| by m. A
simple combinatorial argument gives Γ1 and Γ2 in the following non-closed form:

Γ1 =
(

q

q − 1

)2

q−2n

[ ∞∑
k=0

q−2kq−(n+k)q−(m+k)qk +
∞∑

k=0

q−2(n+k)q−kq−(n−m+k)qk

+
m∑

j=1

(
q−2jq−(n−j)q−(m−j) +

∞∑
k=1

q−2(j+k)q−(n−j+k)q−(m−j+k)(q − 1)qk−1

)

+
n−1∑

j=m+1

(
q−2jq−(n−j)q−(j−m) +

∞∑
k=1

q−2(j+k)q−(n−j+k)q−(j−m+k)(q − 1)qk−1

)]

and
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Γ2 =
(

q

q − 1

)2

q−2n

[ ∞∑
k=0

q−2kq−(n+k)q−(m+k+1)qk +
∞∑

k=0

q−2(n+k)q−kq−(n−m+k+1)qk

+
m−1∑
j=1

(
q−2jq−(n−j)q−(m+1−j) +

∞∑
k=1

q−2(j+k)q−(n−j+k)q−(m−j+k+1)(q − 1)qk−1

)

+
n−1∑

j=m+1

(
q−2jq−(n−j)q−(j−m+1) +

∞∑
k=1

q−2(j+k)q−(n−j+k)q−(j−m+k+1)(q − 1)qk−1

)

+ q−2mq−(n−m)q−1 +
∞∑

k=0

q−2(m+1+k)q−(n−m+1+k)q−kqk

+
∞∑

k=1

q−2(m+k)q−(n−m+k)q−(k+1)(q − 2)qk−1

]
.

A calculation gives

Γ1 =
q

(q − 1)2(q3 − 1)
[
q−3n−m(q4 + q2 + 1 + m(q4 − 1))− q−5n+mq2

]
and

Γ2 =
1

(q − 1)2(q3 − 1)
[
q−3n−m(q4 + 2q2 + m(q4 − 1))− q−5n+mq2] .

Plugging these into (2.5) and replacing n by |v| and m by |u ∧ v| gives (2.3) and
(2.4). �

3. Flat Biharmonic Martin kernel

We introduce the following function which will be useful for constructing examples
of functions that are flat biharmonic on T .

Definition 3.1. The (flat) biharmonic Martin kernel is defined on T × ∂T by

B(u, ω) =
q

q − 1

∑
w∈T

K
H

(w, ω)
q|u−w| q2|w| =

q

q − 1

∑
w∈T

q2|w∧ω|−|w|

q|u−w| q2|w| . (3.1)

If µ is a finite Borel measure on ∂T , then the (flat) biharmonic Martin integral of
µ, Bµ(u), is given by

Bµ(u) =
∫

∂T

B(u, ω) dµ(ω).

Theorem 3.1. Let µ be a finite Borel measure on ∂T such that q−|u|K
H

µ(u) is
bounded on T . Then Bµ is a hyperbolic Green potential that is flat biharmonic on
T , and satisfies

∆
H

(Bµ)(u) = −K
H

µ(u)
q2|u| and ∆

E
(Bµ)(u) = −K

H
µ(u). (3.2)

In particular

∆
H

(B(u, ω)) = −q2|u∧ω|

q3|u| . (3.3)
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Furthermore
lim
u→ω

Bµ(u) = 0 for every ω ∈ ∂T . (3.4)

Proof. By Fubini’s Theorem the formula for Bµ can also be written as

Bµ(u) =
q

q − 1

∑
w∈T

K
H

µ(w)
q|u−w| q2|w| . (3.5)

Since q−2|w| is summable over T , it follows that Bµ(u) is a Green potential in case
K

H
µ(w) is bounded by a multiple of q|w|. The formulas in (3.2) then follow from

(1.7). Formula (3.3) follows as a special case since B(u, ω) can be obtained from
Bµ(u) by taking µ to be the point mass at ω.

Since K
H

µ(w) is bounded above by a constant multiple of q|w|, it follows from
(3.5) that Bµ(u) is bounded above by a constant multiple of

∑
w∈T q−|w−u|q−|w|,

so in order to prove (3.4) it suffices to show that this sum goes to 0 as |u| goes to
∞. Denoting n by |u|, m by |u ∧ w| and k by |w − w ∧ u| we see that the sum is
given by

∞∑
k=0

1
qn+kqk

qk +
n∑

m=1

[
1

qn−mqm
+

∞∑
k=1

1
qn−m+kqm+k

(q − 1)qk−1

]

+
∞∑

m=n+1

[
1

qm−nqm
+

∞∑
k=1

1
qm−n+kqm+k

(q − 1)qk−1

]
.

An analysis of each term in this sum shows that it is dominated by a multiple
of nq−n. This is confirmed by the fact that this sum equals q−n

(
n(q2−1)+q2+1

q(q−1)

)
.

Thus, letting n →∞ we obtain (3.4). �
In the next theorem we obtain a formula for B(u, ω) in closed form.

Theorem 3.2. For u ∈ T , ω ∈ ∂T , we have

B(u, ω) =
q−|u|

(q − 1)(q3 − 1)

[
(q2 + 1)2 + (q4 − 1)|u ∧ ω| − q2 q−2|u−u∧ω|

]
. (3.6)

If µ is a finite Borel measure on ∂T , then

Bµ(u) =
∫

∂T

q−|u|

(q − 1)(q3 − 1)
·
[
(q2 + 1)2 + (q4 − 1)|u ∧ ω| − q2 q−2|u−u∧ω|

]
dµ(ω). (3.7)

Proof. Fix ω = [e = ω0, ω1, . . . , ωn, . . . ) ∈ ∂T . Let us parametrize the vertices u of
T by (n, k), where n = |u∧ω| and k = |u−u∧ω|. Fix n ≥ 0 and restrict attention
to those vertices u such that u∧ω = ωn. On this set of vertices B(u, ω) is a radial
function of u. Thus, by (3.3), it is determined by the recurrence relation

q

q + 1
xk+1 +

1
q + 1

xk−1 − xk = −q2nq−3(n+k) (3.8)

and the initial conditions

x0 = B(ωn, ω), x1 = B(ω+
n , ω), (3.9)

where ω+
n is any child of ωn such that ω+

n ∧ ω = ωn.
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Let us first consider the case where n > 0, i.e. u ∧ ω �= e. A straightforward
combinatorial argument gives x0 as

x0 =
q

q − 1

[ ∞∑
j=n

(
q2j

qj−n q3j
+

∞∑
k=1

q2j

qj−n+k q3(j+k)
(q − 1)qk−1

)

+
n−1∑
j=1

(
q2j

qn−j q3j
+

∞∑
k=1

q2j

qn−j+k q3(j+k)
(q − 1)qk−1

)
+

1
qn

+
∞∑

k=1

qk

qn+k q3k

]
.

(3.10)

The sum reduces to

x0 =
[
q4 + q2 + 1 + n(q4 − 1)

(q − 1)(q3 − 1)

]
q−n.

We could write down for x1 a similar but more complicated expression than the
one for x0 and sum it in a similar way, but we have a simpler way to get x1. We
solve the recurrence relation in (3.8) using the value of x0 just obtained with x1

left in symbolic form. The result is

xk =
{
x1(q2 − q3 − q5 + q6) + (nq1−n − 2q3−n − (n + 1)q5−n)

q−k
[
x1(−q2 + q3 + q5 − q6)− q1−n + q6−n(n + 1)− q2−n(n− 1) + 2q4−n

]
+ q−3k

[
q3−n − q4−n

] } /
[
q(q − 1)2(q3 − 1)

]
.

But we know from (3.4) that xk → 0 as k →∞, so letting k →∞ we obtain

x1(q2 − q3 − q5 + q6) + (nq1−n − 2q3−n − (n + 1)q5−n) = 0.

Solving this for x1 and simplifying gives

x1 =
[
q2(q2 + 2) + n(q4 − 1)

q(q3 − 1)(q − 1)

]
q−n.

Plugging this back into the formula for xk, we get

xk =
q−n−k

(q − 1)(q3 − 1)

[
(q2 + 1)2 + n(q4 − 1)− q2q−2k

]
in case n > 0. (3.11)

Consider now the case that n = 0, i.e. u ∧ ω = e. We use the same method
as above to calculate xk. The formula for x0 is obtained as before using the last
sum in (3.1). It turns out to be the same as in (3.10) with n replaced by 0, except
the first sum in (3.10) is taken over all j ≥ 1 (instead of j ≥ 0) and the sum from
j = 1 to n− 1 is empty and so is taken to be 0. The sum is

x0 =
q2 − q + 1
(q − 1)2

.

Solving the equivalence relation for xk, letting k →∞, equating to 0 and solving
for x1 gives

x1 =
q(q2 + 2)

(q − 1)(q3 − 1)
.



Vol. 6 (2009) Biharmonic Green Functions on Homogeneous Trees 261

Plugging this value back into the recurrence relation and solving gives

xk =
q−k

(q − 1)(q3 − 1)
[(q2 + 1)2 − q2q−2k] for n = 0. (3.12)

We see that this agrees with formula (3.11) when n = 0.
Recalling that |u∧ω| = n, |u−u∧ω| = k and |u| = n+k, we obtain formula

(3.6). �

The formula in the theorem makes it easy to calculate the normal derivative
of Bµ(u) in the following useful special case.

Corollary 3.1. Let µ be as in Theorem 3.2. Suppose ω ∈ ∂T has the property that
for all ω′ in the support of µ, ω ∧ ω′ is the same vertex v. Then

∂nBµ(ω) =
(q2 + 1)2 + (q4 − 1) |v|

(q − 1)(q3 − 1)
‖µ‖,

where ‖µ‖ is the total mass of µ.

Proof. Let k0 ∈ N be such that for all integers k greater than k0, ωk ∧ ω′ = v for
all ω′ in the support of µ. By formula (3.7), we obtain

∂nBµ(ω) = lim
k→∞

(q2 + 1)2 + (q4 − 1)|v| − q2 q−2|ωk−v|

(q − 1)(q3 − 1)
‖µ‖,

yielding the result. �

Fix a vertex v. Let |v| = n and [e, v] = [v0, v1, . . . , vn] the geodesic from the
root to v. For each nonnegative integer j, define intervals Ij and sectors Sj by

Ij =

{
Ivj if 0 ≤ j ≤ n

∅ if j > n
and Sj =

{
Svj if 0 ≤ j ≤ n

∅ if j > n
(3.13)

For each m = 0, . . . , n, let µm denote unit Lebesgue measure with support in
Im − Im+1.

The following result follows from (3.7), symmetry, and Corollary 3.1.

Corollary 3.2. Fix a vertex v. Using the above notation, the function Bµm is radial
on Sj − Sj+1 and ∂nBµm is constant on Ij − Ij+1 for each j = 0, . . . , |v|.

4. Normal derivative of biharmonic Martin integrals of Lebesgue
measure on an interval

In this section, we fix a vertex v of length n and calculate the (n+1) values of
∂nBµm guaranteed by Corollary 3.2.

By Corollary 3.1, the values of ∂nBµm on Ij − Ij+1 in case j �= m can be
easily determined, while the case j = m is more difficult to treat. In order to
handle this case, we first calculate K

H
µm.
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Theorem 4.1. For u ∈ T define the integers j and k by j = |u∧v|, let k = |u−u∧v|.
Then K

H
µm(u) is given by

K
H

µm(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
q+1

q − 1
q1+k

)
qm if m = j = 0 or m = j = n,(

q+1−2q−k

q−1

)
qm if 0 < m = j < n,

q2m−j−k if 0 ≤ m < j ≤ n,

qj−k if 0 ≤ j < m ≤ n.

Proof. Since KH µm is harmonic on T and radial on each of the sets Sj−Sj+1, it is
a linear combination of 1 and q−k there. Thus its value is determined by the values
KH µm(vj) and KH µm(v+

j ), j = 0, . . . , n, where v+
j is any child of vj in Sj − Sj+1.

Using formula (1.8), we obtain the following.

For m = 0 = j < n, K
H

µm(vj) = 1, K
H

µm(v+
j ) = 1+q

q − 1
q2 .

For m = 0 < j ≤ n, K
H

µm(vj) = q−j , K
H

µm(v+
j ) = q−j−1.

For 0 ≤ j < m < n, K
H

µm(vj) = qj , K
H

µm(v+
j ) = qj−1.

For 0 < j = m < n, K
H

µm(vj) = qm, K
H

µm(v+
j ) = qm−1

(
q−2
q−1

)
+ qm+1

q−1 =

(q + 2)qm−1.
For 0 < m < j ≤ n, K

H
µm(vj) = q2m−j , K

H
µm(v+

j ) = q2m−(j+1).

For 0 ≤ j < m = n, K
H

µm(vj) = qj , K
H

µm(v+
j ) = qj−1.

For 0 < m = n = j, K
H

µm(vj) = qm, K
H

µm(v+
j ) = qm−1

(
q−1

q

)
+ qm+1

(
1
q

)
=(

q2+q−1
q2

)
qm.

Extending each of these harmonically and combining some of the cases yields
the result. �

We now return to the calculation of ∂nBµm.

Theorem 4.2. Let v ∈ T with |v| = n. For m, j ∈ {0, . . . , n} let µm be unit Lebesgue
measure with support in Im − Im+1 and let ω be a boundary point of T such that
|ω ∧ v| = j. Then

∂nBµm(ω) =
q2 + 1

(q − 1)(q3 − 1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q2 + q + 2 if m = j = 0,

q2 + 1 + (q2 − 1)j if j < m

q2 + 1 + (q2 − 1)m if m < j,
q3+2q−1

q−1
+ (q2 − 1)m if 0 < m = j < n,

q2 + q + 2 + (q2 − 1)n if m = j = n.

(4.1)

Proof. Of the five equalities in the theorem the second and third follow easily
from Corollary 3.1. So assume for the rest of the proof that m = j. We consider
separately the three cases 0 < m < n, m = n and m = 0.

Consider first the case 0 < m < n. The function Bµm(u) restricted to Sm −
Sm+1 is radial with respect to the distance from u to u∧ vm. Denote this distance
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by k and the value of the function by xk. By (3.2) we have

∆
H

(Bµm)(u) = −KHµm(u)
q2|u| .

Thus by Theorem 4.1 we deduce

q

q + 1
xk+1 +

1
q + 1

xk−1 − xk = −
(

q + 1− 2q−k

q − 1

)
q−m−2k, (4.2)

so the values of xk are determined by this recurrence relation and the values

x0 = Bµm(vm) and x1 = Bµm(v+
m)

where v+
m is defined as in the proof of Theorem 4.1. These are each calculated

easily using (3.7). We get

x0 =
q−m

(q − 1)(q3 − 1)
[
(q2 + 1)2 + (q4 − 1)m− q2

]
and

x1 =
q−(m+1)

(q − 1)(q3 − 1)
[
(q2 + q + 3)q2 + (q4 − 1)m

]
.

Solving recurrence relation (4.2) with these values of x0 and x1 gives

xk =
q−(m+k)

(q − 1)2(q3 − 1)
[
(q2 + 1)(q3 + 2q − 1) + (q2 + 1)(q + 1)(q − 1)2m+

−q−kq(q + 1)(q2 + q + 1) + 2q−2kq2
]

Then, for 0 < m < n and ω ∈ Im − Im+1, multiplying by q|u| = qm+k and letting
k →∞ yields

∂nBµm(ω) =
(q2 + 1)[q3 + 2q − 1 + m(q + 1)(q − 1)2]

(q3 − 1)(q − 1)2
,

in agreement with the formula to be proved.
Consider next the case m = n. Using notation as above and a similar tech-

nique, we obtain that the sequence {xk} satisfies the recurrence relation

q

q + 1
xk+1 +

1
q + 1

xk−1 − xk = −
(

q + 1
q

− 1
q1+k

)
q−n−2k,

and the initial conditions

x0 = Bµn(vn) =
q−n

(q − 1)(q3 − 1)
[
(q2 + 1)2 + (q4 − 1)n− q2

]
,

x1 =
q−n−1

(q − 1)(q3 − 1)
[
n(q4 − 1) + q(q3 + q2 + 2q − 1)

]
.
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The solution of the recurrence relation is given by

xk = q−(n+k)

[
n(q4 − 1)

(q − 1)(q3 − 1)
+

(q2 + q + 2)(q2 + 1)
(q − 1)(q3 − 1)

−q−k (q + 1)
(q − 1)2

+ q−2k q

(q − 1)(q3 − 1)

]
and multiplying by qn+k and letting k →∞ gives for ω ∈ In − In+1

∂nBµn(ω) =
(q2 + 1)[q2 + q + 2 + n(q2 − 1)]

(q − 1)(q3 − 1)
.

For the case of m = 0, the results for each of x0, x1, xk and ∂nBµ0(ω) are
the same as the case of m = n with n replaced by 0. �

5. Existence of the flat clamped biharmonic Green function

In this section our aim is to prove the existence of ΓC(u, v), the flat clamped
biharmonic Green function. We will accomplish this by exploiting the simply-
supported Green function ΓS and reducing the problem to proving that a certain
matrix needed for the construction is non-singular. We need some preliminary
results.

Recall that a Toeplitz matrix is a matrix with constant diagonal entries from
left to right. Given a, b ∈ R, we shall call symmetric Toeplitz matrix with parame-
ters a and b the Toeplitz matrix whose entries on the main diagonal are equal to
a, whose entries adjacent to the main diagonal are equal to b, and all other entries
are 0.

Lemma 5.1. Let a, b ∈ R and let Tn be the determinant of the symmetric Toeplitz
matrix of order n with parameters a and b. Then T0 = 1 and

Tn = aTn−1 − b2Tn−2, for all n ∈ N, n ≥ 2.

Proof. Expanding Tn across the first row we obtain

Tn = aTn−1 − b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b b 0 · · · 0

0 a b
. . . 0

... b
. . . . . . 0

...
...

. . . . . . b
0 0 · · · b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
= aTn−1 − b2Tn−2.

�

Lemma 5.2. Let Tn be the determinant of the symmetric Toeplitz matrix An of
order n with parameters a and b. Let

Bn =
[
An−1 vT

v a + c

]
,
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where v = [0 · · · 0 b], c is a constant, and the superscript T denotes the transpose
operator. Then det(Bn) = Tn + cTn−1, for all n ≥ 2.

Proof. For n ≥ 2, by expanding the determinant of Bn across the bottom row and
using Lemma 5.1, we obtain

det(Bn) = (a + c)Tn−1 − b2Tn−2 = Tn + cTn−1.

�

Lemma 5.3. For each n ∈ N, let Dn+1 be the symmetric matrix of order n + 1
defined by ⎡

⎢⎢⎣
(q2 + q + 2)(q − 1) −(q + 1)(q − 1) 0 0
−(q + 1)(q − 1) q2(q + 1) w 0

0 wT An−2 vT

0 0 v q2(q + 1)

⎤
⎥⎥⎦

where w = [−q(q + 1) 0 · · · 0 ], v = [ 0 · · · 0 − q(q + 1) ], and An−2 is the
symmetric Toeplitz matrix of order n − 2 with parameters (q + 1)(q2 + 1) and
−q(q + 1). Then Dn+1 is non-singular.

Proof. Observe that

det(Dn+1) = (q − 1)(q + 1)n det(En+1), (5.1)

where

En+1 =

⎡
⎢⎢⎣
q2 + q + 2 −(q + 1) 0 0
−(q − 1) q2 w′ 0

0 w′T A′n−2 v′T

0 0 v′ q2

⎤
⎥⎥⎦

with w′ = [−q 0 · · · 0 ], v′ = [ 0 · · · 0 − q ], and A′n−2 is the symmetric Toeplitz
matrix of order n−2 with parameters q2 +1 and −q. By a straightforward calcula-
tion and the use of Lemma 5.2 with a = q2+1, b = −q, c = −1, and Tn = det(A′n),
we obtain

det(En+1) = (q2 + q + 2)[q2(Tn−1 − Tn−2)− q2(Tn−2 − Tn−3)]

− (q2 − 1)(Tn−1 − Tn−2)

= (q2 + q + 2)q2(Tn−1 − 2Tn−2 + Tn−3)− (q2 − 1)(Tn−1 − Tn−2).
(5.2)

By Lemma 5.1, Tn satisfies the second order linear recurrence relation

Tn+1 = (q2 + 1)Tn − q2Tn−1

for n ≥ 2, with the initial conditions T1 = q2+1 and T2 = (q2+1)2−q2. The roots of
the characteristic equation r2−(q2+1)r+q2 = 0 are 1 and q2, so Tn = α+βq2n for
n ≥ 1. From the initial conditions, we obtain α = − 1

q2−1 and β = q2

q2−1 . We deduce
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Tn = 1
q2−1 (q2(n+1) − 1) for n ≥ 1. Thus, Tn−1 − 2Tn−2 + Tn−3 = (q2 − 1)q2(n−2),

and Tn−1 − Tn−2 = q2(n−1). Hence using (5.2), we obtain

det(En+1) = (q2 + q + 2)(q2 − 1)q2(n−1) − (q2 − 1)q2(n−1) = (q2 − 1)(q2 + q + 1)q2(n−1).

From (5.1), we conclude det(Dn+1) = (q−1)2(q+1)n+1(q2+q+1)q2(n−1). Therefore
Dn+1 is non-singular for all n ∈ N. �

We are now ready to prove the existence of ΓC .

Theorem 5.1. There exists a function ΓC on T × T satisfying the conditions of
(1.13). In addition, for each fixed vertex v, ΓC(u, v) is radial on each set Sj−Sj+1

(notation as in (3.13)) and can be written in the form

ΓC(u, v) =
xC(u ∧ v, v)
q2|u−u∧v| +

yC(u ∧ v, v)
q3|u−u∧v| , (5.3)

for appropriate functions xC and yC .

Proof. We proceed by showing that there exists a function Φ(u, v) which, for each
fixed v, is of the form Bµ(u) for some measure µ which is a linear combination of
unit Lebesgue measures with supports on Ij − Ij+1, j = 0, . . . |v|, and for every
ω ∈ ∂T ,

∂nΦ(ω, v) = ∂nΓS(ω, v).
Then by Theorem 3.1, if ΓC is defined by

ΓC(u, v) = ΓS(u, v)− Φ(u, v), (5.4)

it will have the properties in (1.13).
Fix a vertex v and let n = |v|. For each ω ∈ ∂T , by formulas (1.11) and (2.2),

and recalling from (1.12) that ΓS(ω, v) = 0, we obtain
∂nΓS(ω, v) = lim

m→∞ qm(ΓS(ωm, v)− ΓS(ω, v))

= lim
m→∞ qm

[
xS(ωm ∧ v, v)
q|ωm−ωm∧v)

+
yS(ωm ∧ v, v)
q3|ωm−ωm∧v)

]
= q|ω∧v| xS(ω ∧ v, v).

Thus, in order to prove the existence of such a function Φ(u, v) it suffices for us to
prove that for each (|v| + 1)-tuple of real numbers (r0, r1, . . . , r|v|) there exists a
flat biharmonic function on T written as a biharmonic Martin integral of a finite
linear combination of unit Lebesgue measures on Ij − Ij+1, j = 0, . . . , |v|, such
that for each j ∈ {0, . . . , |v|} and ω ∈ ∂T with |ω ∧ v| = j, its normal derivative
equals rj .

Consider the following matrix M which contains a fixed multiple of all of the
values of the normal derivative of Bµm, namely

Mm,j =
(q − 1)(q3 − 1)

q2 + 1
∂nBµm(ω), where |ω ∧ v| = j. (5.5)

This defines an (n + 1) × (n + 1)-matrix in which the indices m and j run from
0 to n. In order to show the existence of the above function Φ it suffices to show
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that M is nonsingular. Referring to (4.1) we note that M is a symmetric matrix
with the property that in each column all of the entries below the diagonal are the
same.

Let us perform the following sequence of row and column operations on M
(where we call the rows R0, R1, . . . , Rn and the columns C0, C1, . . . , Cn):

Rn → Rn −Rn−1, Rn−1 → Rn−1 −Rn−2, . . . , R1 → R1 −R0,

Cn → Cn −Cn−1, Cn−1 → Cn−1 − Cn−2, . . . , C1 → C1 − C0.

Multiply each of the elements of the resulting matrix by q − 1. We then obtain a
symmetric matrix whose nonzero entries all lie in the main diagonal and in the
two diagonals adjacent to it. Moreover, the main diagonal entries are

(q2 + q + 2)(q − 1), (q + 1)q2, (q + 1)(q2 + 1)︸ ︷︷ ︸, (q + 1)q2

n− 2 copies

and the entries in the adjacent diagonals are

−(q2 − 1), −q(q + 1)︸ ︷︷ ︸ .

n− 1 copies

Observe that this is precisely the non-singular matrix Dn+1 of Lemma 5.3. This
completes the proof of the existence of a function ΓC(u, v) satisfying (1.13).

The radiality assertion follows from (5.4), Theorem 2.2 and Corollary 3.2,
and formula (5.3) then follows from Proposition 1.1. �

6. Uniqueness of the flat clamped biharmonic Green function

In this section, we show that the flat clamped biharmonic Green function is unique.
The proof, motivated by the proof in [14, Section 1.6] of the analogous result on
the unit disk in the complex plane, makes use of a Green formula together with
the existence (established in Section 5) of at least one clamped biharmonic Green
function having a slightly stronger property than is evident from the definition
(namely formula (5.3)). Let us denote by ΓC the function defined in Theorem 5.1.

Given a function g on T and a non-negative integer N , define

MNg(u) = max
|u−w|≤N

|g(w)|.

For functions g, h on T and for an integer k, when we write h = qk|u|O(g), we
mean that for some positive constants C and N we have

|h(u)| ≤ Cqk|u|MNg(u),

for every u ∈ T .
In the proof we shall make use of both kinds of normal derivative defined in

(1.9) and (1.11).

Lemma 6.1. For any function g on T , ∂g
∂n = O(g) and ∆

E
g(u) = q2|u|O(g(u)).
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Proof. We have |g(u) − g(u−)| ≤ |g(u)| + |g(u−)| ≤ 2M1g(u). Since ∆
H

g(u) =∑
v∼u(g(v) − g(u))/(q + 1), it follows that |∆

H
g(u)| ≤ 2M1g(u) so |∆

E
g(u)| ≤

q2|u|M1g(u). �

The proof of the next lemma follows from the fact that there are less than
2qn vertices of length n and the compactness of T ∪ ∂T with respect to the flat
metric.

Lemma 6.2. If h is a function on T such that limu→∂T q|u|h(u) = 0 then

lim
N→∞

∑
|u|=N

h(u) = 0.

Lemma 6.3. Let w be a fixed vertex. Then
1. ΓC(u, w) = O(q−2|u|),
2. ∆

E
ΓC(u, w) = O(1),

for all v ∈ T .

Proof. The first follows immediately from (5.3). The second follows from the same
formula upon taking the flat Laplacian in the u variable at points a distance at
least 1 from the union of the points of the geodesic joining v to e. �

In [12, Theorem 4.1], we gave a formulation of Green’s theorem on trees,
which we state below for the special case of a homogeneous tree T of degree q + 1
and for a ball centered at e.

Theorem 6.1 ([12]). For N ∈ N, let BN = {u ∈ T : |u| ≤ N}, and let f, g be
functions on T . Then∑

|u|<N

∆H f(u)g(u) + DBN (f, g) =
1

q + 1

∑
|u|=N

∂f

∂n
(u)g(u−),

where DBN denotes the Dirichlet sum defined by

DBN (f, g) =
1

q + 1

∑
u,u−, |u|<N

(f(u)− f(u−))(g(u)− g(u−)).

Using the symmetry of the Dirichlet sum and recalling the relation between
the hyperbolic and the flat Laplacian, we obtain the following result.

Theorem 6.2. (Green’s formula) Given functions f, g on T , and a nonnegative
integer N ,∑

|u|<N

q−2|u|[∆
E

f(u)g(u)−∆
E

g(u)f(u)] =
1

q + 1

∑
|u|=N

[
∂f

∂n
(u)g(u−)− ∂g

∂n
(u)f(u−)

]
.

We are now ready to prove our main result.

Theorem 6.3. The clamped biharmonic Green function is unique.
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Proof. Assume Γ1 and Γ2 are clamped biharmonic Green functions. Fix any vertex
w in T and let f = Γ1(·, w) − Γ2(·, w). We must show that f is identically 0.

The function f is flat biharmonic on T and has the property that both
f(u) → 0 as |u| → ∞, and for every ω in the boundary of T , ∂nf(ω) = 0. By
the compactness of T ∪ ∂T , we deduce that f(u)q|u| → 0 as |u| → ∞.

Letting N ∈ N, n > |w|, and applying Green’s formula to BN and the
functions ∆

E
f and ΓC(·, w), we obtain

−
∑
|u|<N

q−2|u|∆
E

ΓC(u, w)∆
E

f(u)

=
1

q + 1

∑
|u|=N

[
∂∆

E
f

∂n
(u)ΓC(u−, w)− ∂ΓC

∂n
(u, w)∆

E
f(u−)

]
.

(6.1)

We next apply Green’s formula to the functions ∆
E

ΓC(·, w) and f . Since
∆2

E
ΓC(·, w) = δw, we get

q−2|w|f(w)−
∑
|u|<N

q−2|u|∆
E

f(u)∆
E

ΓC(u, w)

=
1

q + 1

∑
|u|=N

[
∂∆

E
ΓC

∂n
(u, w)f(u−)− ∂f

∂n
(u)∆

E
ΓC(u−, w)

]
.

(6.2)

Combining (6.1) and (6.2), we obtain

q−2|w|f(w) =
1

q + 1
(I − II − III + IV ),

where

I =
∑
|u|=N

∂∆
E

ΓC

∂n
(u, w)f(u−)

II =
∑
|u|=N

∂f

∂n
(u)∆

E
ΓC(u−, w)

III =
∑
|u|=N

∂∆
E

f

∂n
(u)ΓC(u−, w)

IV =
∑
|u|=N

∂ΓC

∂n
(u, w)∆

E
f(u−).

To complete the proof, it suffices to show that each of the terms I, II, III, and
IV goes to 0 as N →∞.

By Lemmas 6.3(2) and 6.1,
∂∆

E
ΓC

∂n (·, w) = O(1). Since q|u|f(u)→ 0 as |u| →
∞, using Lemma 6.2, we deduce that I → 0 as N →∞. Similarly, ∂f

∂n = O(f) and
∆

E
ΓC(·, w) = O(1), so that II → 0 as N → ∞. Moreover, by Lemmas 6.1 and
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6.3 (1), we obtain

∂∆
E

f

∂n
(u)ΓC(u−, w) = q2|u|O(f(u))O(q−2|u|) = O(f(u)).

Consequently, since the sum in III has (q + 1)qN−1 terms in it,

III = qN max
|u|=N

|f(u)|O(1) → 0,

as N →∞. Finally,
∂ΓC

∂n
(u, w)∆

E
f(u−) = O(q−2|u|)q2|u−|O(f(u−)) = O(f(u−)),

so, by a similar argument as for III, IV → 0 as N →∞, completing the proof. �
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(no. 2) (1989), 259–290.
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