
4.6 Taylor’s Theorem

Let a ∈ R, and let f be a real-valued function with domain an open interval containing
a.
This section concerns the approximation of f (x) by means of polynomials.
The aim is to study the behavior of f (x) for x close to x = a, so it’s natural to express
any such polynomial in powers of x − a rather than in x :

p(x) = c0 + c1(x − a) + c2(x − a)2 + · · ·+ cn(x − a)n.

Note that p(a) = c0, so the lowest order coefficient is uniquely determined by the
function value at a.

Problem
Can we recover all the coefficients of p(x) using certain function values evaluated at a?
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Determination of the coefficients of a polynomial

p′(x) = c1+2c2(x−a)+3c3(x−a)2+4c4(x−a)3+· · ·+kck(x−a)k−1+· · ·+n(x−a)n−1.
Evaluating at a gives p′(a) = c1.

Differentiating again, we get

p′′(x) = 2c2+3·2(x−a)+4·3(x−a)2+· · ·+k ·(k−1)(x−a)k−2+· · ·+n·(n−1)(x−a)n−2,

so evaluating at x = a gives p′′(a) = 2c2 .
Let’s differentiate once again in order to see the general pattern:
p′′′(x) = 3 · 2c3 + 4 · 3 · 2(x − a) + · · ·+ k · (k − 1) · (k − 2)(x − a)k−3 + · · ·+ n · (n − 1) · (n − 2)(x − a)n−3,

so putting x = a gives p′′′(a) = 3 · 2c3 .

In general, for any k from 1 to n we get that p(k)(a) = k!ck , where the superscript
denotes derivative of that order, so

ck = p(k)(a)
k!
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Taylor polynomials associated with a function

So we’ve shown that for the polynomial p(x) = c0 + c1(x − a) + c2(x − a)2 + · · ·+ cn(x − a)n, the
coefficients are determined by the formula

ck = p(k)(a)
k! , k = 0, . . . , n.

Note that for k = 0 in the above formula, p(0)(a) is defined to be p(a).
Back now to the given function f . We would expect that we can say more about f (x) if we know more
of the derivatives of f at x = a.
So if we wish to approximate f by a polynomial of degree n, it is natural to associate to f the
polynomial whose value at x = a and derivatives at x = a up to order n agree with the corresponding
values associated with f . This suggests the following definition.
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Definition (Taylor polynomials)
Fix n ∈ N. If f has derivatives up to and including order n, we associate to it the polynomial Pn(x) defined
by

Pn(x) :=
n∑

k=0

f (k)(a)
k! (x − a)k = f (a) + f ′(a)(x − a) + f ′′(a)

2! + · · ·+ f (n)(a)
n! (x − a)n.

We call Pn the n-th order Taylor polynomial of f .

Note that Pn is the unique polynomial of degree n whose value at a and derivatives at a up to order n
agree with the corresponding values associated with f , i.e. Pn(a) = f (a) and P(k)

n (a) = f (k)(a) for
k = 1, . . . , n.
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Measuring the error

Definition: Taylor remainder
Fix n ∈ N. If f has derivatives up to and including order n, we define the n-th Taylor remainder
Rn(x) by

Rn(x) := f (x)− Pn(x).

The point is that we usually don’t know f (x) exactly, but we can calculate Pn(x)
exactly. If we then decide to approximate f (x) by Pn(x), Rn(x) measures the error we
make in doing this.
So we view Pn(x) as being a good estimate of f (x) if Rn(x) is close to 0.
Typically we cannot know Rn(x) exactly, so the next best thing is to get an upper
bound on |Rn(x)|. In that way we know at worst how far P(n(x) can be from f (x).
Taylor’s Theorem below gives a formula for Rn(x) which allows us to get an upper
bound for |Rn(x)| provided we know an upper bound on the absolute value of the
(n + 1)−th order derivative of f at x = a.
So the more derivatives of f at “a” we can control, the better we understand the
connection between f (x) and the various Taylor polynomials at x .
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Taylor’s Theorem

Theorem (Taylor’s Theorem)

Let f : (a− r , a + r)→ R, where a ∈ R and r > 0. Fix n ∈ N∪{0}. Suppose for all x ∈ (a− r , a + r)

that f has derivatives at x of order up to and including n + 1. Let Pn(x) :=
n∑

k=0
f (k)(a) (x − a)k

k!
denote the n-th order Taylor polynomial of f , and let Rn(x) := f (x)− Pn(x) denote the n-th Taylor
remainder. Then for each x ∈ (a − r , a + r) there exists µ strictly between a and x such that

Rn(x) = f (n+1)(µ) (x − a)n+1

(n + 1)! .

Exercise.
The notational convention is that f (0)(t) := f (t). What does Taylor’s Theorem say in case n = 0? Why do
you already know that the n = 0 case is true?

6 / 10



Taylor’s Theorem

Theorem (Taylor’s Theorem)

Let f : (a− r , a + r)→ R, where a ∈ R and r > 0. Fix n ∈ N∪{0}. Suppose for all x ∈ (a− r , a + r)

that f has derivatives at x of order up to and including n + 1. Let Pn(x) :=
n∑

k=0
f (k)(a) (x − a)k

k!
denote the n-th order Taylor polynomial of f , and let Rn(x) := f (x)− Pn(x) denote the n-th Taylor
remainder. Then for each x ∈ (a − r , a + r) there exists µ strictly between a and x such that

Rn(x) = f (n+1)(µ) (x − a)n+1

(n + 1)! .

Comments on the theorem and its proof:
Recall that the proof of the Mean Value Theorem was obtained by subtracting off a certain straight
line function from f (namely P1) and applying Rolle’s Theorem to the resulting function. The proof of
Taylor’s Theorem uses a similar trick, although that trick is done n times rather than once.
Note a and x are fixed in the proof. It’s natural to define the function

g(t) := f (t)− Pn(t)− K (t − a)n+1

(n + 1)! ,

where K is the number for which g(x) = 0. Then our task is to prove there exists a number µ
between a and x such that K = f (n+1)(µ).
Note that every one of g(a), g ′(a), g ′′(a), . . . , gn(a) is 0. Do you see why? Also g(x) = 0, by
definition of K .
This enables us to apply Rolle’s theorem in turn to each of these functions g (j) each time producing a
new µj which allows us to continue the process. After the n-th time, we get the number µ which we
want and we are done.
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Taylor’s Theorem

Theorem (Taylor’s Theorem)

Let f : (a− r , a + r)→ R, where a ∈ R and r > 0. Fix n ∈ N∪{0}. Suppose for all x ∈ (a− r , a + r)

that f has derivatives at x of order up to and including n + 1. Let Pn(x) :=
n∑

k=0
f (k)(a) (x − a)k

k!
denote the n-th order Taylor polynomial of f , and let Rn(x) := f (x)− Pn(x) denote the n-th Taylor
remainder. Then for each x ∈ (a − r , a + r) there exists µ strictly between a and x such that

Rn(x) = f (n+1)(µ) (x − a)n+1

(n + 1)! .

Exercise.
Use the comments on the previous slide to write the proof. Note that this proof is similar, but more
transparent than the proof given in our text. I got this proof from the famous book of Walter Rudin,
“Principles of Mathematical Analysis”.
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Application of Taylor’s Theorem
For a given specific function f , the Taylor polynomials Pn constitute a sequence of functions.
If we can show that for each fixed x in interval (a− r , a + r) we have lim

n→∞
Pn(x) = f (x), then we have

shown that the sequence of functions Pn converges pointwise to f .
In order to show this pointwise convergence, we would typically use Taylor’s Theorem. Here is an
example.

Exercise.

a) Prove that for any x > 0, lim
n→∞

xn

n! = 0.

b) Find the Taylor polynomials for the function f (x) = ex corresponding to a = 0. Use Taylor’s Theorem
to prove that the Taylor Polynomials converge pointwise to ex for all x ∈ R.
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Pointwise versus uniform convergence

Consider a sequence Pn of Taylor polynomials about x = a corresponding to some
function f .
Taylor’s Theorem can be used to decide whether or not for a given x ∈ R we have that
the sequence Pn(x) converges, so it tells us about pointwise convergence of the
sequence of functions Pn.
But it is desirable to have uniform rather than merely pointwise convergence.
In this direction, the following are shown in Chapter 5:

- There exists r > (possibly r =∞) such that for all x in the open interval (a − r , a + r) the sequence
Pn(x) converges, i.e. Pn converges pointwise on this open interval. We call r the radius of convergence.

- On any closed bounded subinterval of (a − r , a + r) (i.e. on any subinterval of the form [a − s, a + s]
where 0 < s < r) the convergence of the sequence Pn is uniform. We refer to this property as saying that
the sequence Pn converges locally uniformly on (a − r , a + r).

With the local uniform convergence, we can then make use of the theorem in Chapters
Three and Four concerning integration and differentiation of uniformly convergent
sequences of functions, as long as we apply those theorems on the interval [a− s, a + s].
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