
4.4 Uniform Convergence of Sequences of Functions and the Derivative

Say we have a sequence fn(x) of functions defined on some interval, [a, b]. Let’s say they converge in
some sense to a function f (x). We’d like to be able to deduce that f has certain properties provided
we know that every one of fn has such a property. For example, we’ve shown:

Theorem
(i) If fn converges uniformly to f and each fn is continuous, then f is continuous.
(ii) If fn converges uniformly to f on [a, b] and each fn ∈ R[a, b], then f ∈ R[a, b] and furthermore

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f (x) dx .
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We’d like a similar theorem for derivatives. We might conjecture a result such as the following:
Let I = (a, b) be an open interval. If fn converges uniformly to f on I and each fn is
differentiable on I, then f is differentiable on I and f ′

n converges uniformly to f ′.

Unfortunately this is not a theorem. The following exercise provides a
counterexample.

Exercise.

Consider the sequence of functions fn(x) := sin nx
n with domain [0, 1].

a) Calculate ‖fn‖∞. Use it to deduce that fn → 0 uniformly.
b) Calculate fn

′(x) = cos nx . How do you know this sequence does not converge uniformly to 0?
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Nevertheless there is a positive theorem of this sort, but we need to assume uniform convergence of f ′
n ,

not fn.

Theorem
Let fn be a sequence of functions with domain a bounded open interval I. Assume each of the
following:

(i) Each fn is differentiable on I and f ′
n is continuous;

(ii) f ′
n converges uniformly on I to some function g ;

(iii) There exists a ∈ I such that the sequence of numbers fn(a) converges to a real number.
Then fn converges uniformly on I to some function f , and f ′(x) = g(x) for all x ∈ (a, b).

The theorem is a bit awkward, but it does give a way to say that if fn converges in some way to f ,
then f ′

n converges in some way to f ′.
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Theorem
Let fn be a sequence of functions with domain a bounded open interval I. Assume each of the
following:

(i) Each fn is differentiable on I and f ′
n is continuous;

(ii) f ′
n converges uniformly on I to some function g ;

(iii) There exists a ∈ I such that the sequence of numbers fn(a) converges to a real number.
Then fn converges uniformly on I to some function f , and f ′(x) = g(x) for all x ∈ (a, b).

Comments
Integration tends to make nice functions even nicer. So since differentiation can be viewed as the
inverse procedure of integration (by the First Fundamental Theorem of Calculus), this suggests that
differentiation turns function that are nice into functions that are not as nice. For example the
function f (x) =

√
x is uniformly continuous on (0, 1) (even on (0,∞)) but the derivative

f ′(x) = 1
2
√

x
is not even bounded on (0, 1). The above theorem is another justification that

differentiation doesn’t necessarily preserve nice properties of functions.
The theorem is still true if the hypothesis that f ′

n be continuous be removed. It is this form of the
result that is proved in Walter Rudin’s classic book “Principles of Mathematical Analysis”. However
the assumption that f ′

n be continuous makes for a simpler proof, and it allows us to make use of the
first Fundamental Theorem of Calculus.
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Theorem
Let fn be a sequence of functions with domain a bounded open interval I. Assume each of the
following:

(i) Each fn is differentiable on I and f ′
n is continuous;

(ii) f ′
n converges uniformly on I to some function g ;

(iii) There exists a ∈ I such that the sequence of numbers fn(a) converges to a real number.
Then fn converges uniformly on I to some function f , and f ′(x) = g(x) for all x ∈ (a, b).

Recall that the uniform limit of continuous functions is continuous, so the function g in the theorem is
continuous. The trick is to now apply the first Fundamental Theorem of Calculus with integrand g
and use that integral to define f . It’s then a matter of showing that this choice of f works.

Exercise.
Write the proof.
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An application of the theorem: A new example of a Banach space
Definition
Let [a, b] be a closed bounded interval, and let C1[a, b] denote the set of functions f : [a, b]→ R such that
f is differentiable and f ′ is continuous. For f ∈ C1[a, b], define ‖f ‖ by

‖f ‖ := ‖f ‖∞ + ‖f ′‖∞.

Theorem
(i) C1[a, b] is a vector space of functions and the quantity ‖ · ‖ is a norm on C1[a, b].

(ii) C1[a, b] is complete relative to this norm. Consequently C1[a, b] with this norm is a Banach
space.

Hints on the proof:
For (i), after recalling the definition of norm it should be clear what to do.
In the proof of (ii), we get to use the fact that C [a, b] is a Banach space relative to the sup norm, i.e.
if gn is Cauchy relative to ‖ · ‖∞, then there exists g ∈ C [a, b] such that gn converges uniformly to g .
This is something we proved in Chapter 2. Try to prove (ii) by applying this idea to both fn and f ′

n and
then applying the previous theorem.

Exercise.
Write the proof.
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