
4.1 Derivatives and Differentials

Definition
Let f be a real-valued function with domain Df . Let x0 be a cluster point of Df . We define
the number f ′(x0) to be

f ′(x0) := lim
h→0

f (x0 + h)− f (x0)
h

provided the limit exists. If it does exist, we say that f is differentiable at x0, and we call
f ′(x0) the derivative of f at x0.

Note that in the above definition, we only consider h for which x0 + h ∈ Df since
otherwise f (x0 + h) is not defined. This is always to be assumed; we won’t mention it
again.
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In Math 316, one of the hard things you will study is how to understand differentiability
of functions f : Rn → Rm (“vector-valued functions of several variables”).
The definition of the derivative we’ve given above does not generalize to higher
dimensions, so we ought to look for a definition that does generalize.
The first thing we try to do is to formulate differentiability without any division; in
some of the proofs (for example in proving the chain rule) it’s hard to avoid dividing by
0 if we keep the definition of f ′(x0) given above.
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A new formulation of differentiability

To do this, let
ε := f (x0 + h)− f (x0)

h − f ′(x0),

assuming that f ′(x0) exists.
Evidently ε is a function of h, and ε(h) has the property that ε(h) goes to 0 as h goes
to 0.
This can be rewritten as

f (x0 + h)− f (x0) = f ′(x0)h + εh, where ε→ 0 as h→ 0.

Now suppose conversely that f satisfies the following:

There exists a real number m and function ε of h such that
f (x0 + h)− f (x) = mh + εh, where ε→ 0 as h→ 0.

Then we conjecture that the number m is unique, and it must be f ′(x0).
We summarize this in the following theorem.
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A new formulation of differentiability

Theorem (Linear Transformation Characterization of Differentiability)
Let f be a real-valued function with domain Df . Let x0 be a cluster point of Df .

1 If f is differentiable at x0, then there exists a function ε of h such that f (x0 + h)− f (x0) can
be written in the form

f (x0 + h)− f (x0) = f ′(x0)h + εh

where ε→ 0 as h→ 0.
2 If there exists a real number m such that f (x0 + h)− f (x0) can be written in the form

f (x0 + h)− f (x0) = mh + εh

where ε is a function of h such that ε→ 0 as h→ 0, then f is differentiable at x0 and
m = f ′(x0).

Exercise.
Write the proof of this theorem.
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Some uses of the linear transformation characterization of differentiability

We make use of this new way of looking at differentiability to prove the following theorem.

Theorem (Basic Properties of Differentiability)
Let f , g be functions with common domain D, let x0 be a cluster point of D. Let c be a fixed real
number. Suppose that f and g are differentiable at x0.
a) (Differentiability implies continuity) Then f and g are continuous at x0.
b) (Linearity) Then f + g and c f are both differentiable at x0, and we have the formulas

(f + g)′(x0) = f ′(x0) + g ′(x0)
(cf )′(x0) = cf ′(x0).

c) (Product Rule) Then the product f · g is differentiable at x0 and

(f · g)′(x0) = f ′(x0)g(x0) + g ′(x0)f (x0).

d) (Reciprocal Rule) If in addition g(x0) 6= 0, then 1/g is differentiable at x0 and

(1/g)′(x0) = − g ′(x0)
(g(x0))2 .

e) (Quotient Rule) If in addition g(x0) 6= 0, then f /g is differentiable at x0 and

(f /g)′(x0) = f ′(x0)g(0)− g ′(x0)f (x0)
(g(x0))2 .
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Some uses of the linear transformation characterization of differentiability

We continue with applications of the Linear Characterization of Differentiability Theorem by proving the
following theorem.

Theorem (Chain Rule)
Let g be a function with domain Dg and f a function whose domain is contained in the range of g .
Let x0 be a cluster point of Dg and g(x0) a cluster point of Df . If g is differentiable at x0 and f is
differentiable at g(x0), then the composition f ◦ g is differentiable at x0 and

(f ◦ g)′(x0) = f ′(g(x0))g ′(x0).

Exercise.
Write the proof.
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Why the name “Linear Transformation Characterization of Differentiability”?

Definition of Linear Transformation
A function T : Rn → Rm is called a linear transformation provided the following two things are true:

(i) T (~x + ~y) = T (~x) + T (~y) for all ~x and ~y in Rn;
(ii) T (c ~x) = c T (~x) for all ~x ∈ Rn and c ∈ R.

Exercise
Show that the linear transformations T : R→ R are precisely the functions of the form T (x) = mx for
some constant m.
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Recall that we’ve shown f is differentiable at x0 if and only if there exists a number m such that
f (x0 + h)− f (x0) can be written as f (x0 + h)− f (x0) = mh + εh, where ε is a function of h such that
ε→ 0 as h→ 0.
Thus f is differentiable at x0 if and only if there exists a linear transformation T : R→ R such that
such that f (x0 + h)− f (x0) can be written as f (x0 + h)− f (x0) = T (h) + εh, where ε is a function of
h such that ε→ 0 as h→ 0.
The linear transformation T is unique, and instead of calling it T , it is commonly written as dfx0 and
called the differential of f at x0.
Thus the differential dfx0 is viewed as a linear transformation from R to R whose value at h is
dfx0 (h) = f ′(x0)h, just as in your basic calculus classes.
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Why the name “Linear Transformation Characterization of Differentiability?”

So to recap, f is differentiable at x0 if and only if there exists a linear transformation dfx0 from R to R
such that

f (x0 + h)− f (x0) = dfx0 (h) + ε(h)h,

where ε is a function of h such that ε(h)→ 0 as h→ 0.
We can rewrite this by defining ε̃(h) := ε(h)/h. With this notation, f is differentiable at x0 if and only
if there exists a linear transformation dfx0 from R to R such that

f (x0 + h)− f (x0) = dfx0 (h) + ε̃(h),

where ε̃ is a function of h such that ε̃(h)/h→ 0 (equivalently, |ε̃(h)|/|h| → 0 as h→ 0).
This definition generalizes to functions f : Rn → Rm.

In this more general setting, h is a vector in Rn, and ε̃ : Rn → Rm such that ‖ε̃(h)‖
‖h‖ → 0 as ‖h‖ → 0.

The norm in the numerator of ‖ε̃(h)‖
‖h‖ is in Rm and the norm in the denominator is in Rn.

It is a theorem that the linear functions from Rn to Rm are given by multiplication by an m× n matrix
of real numbers (as suggested by the exercise on slide 12).
The differential dfx0 is a linear transformation from Rn to Rm for which the associated matrix turns
out to be the so-called Jacobian matrix consisting of all of the partial derivatives of the various
components of f . You will study this in detail in Math 316. The above suggests that linear algebra is
an important tool in studying multivariable calculus.
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