• In this section we study the following questions:

Let f_n be a sequence of functions all in $\mathscr{R}[a, b]$. Suppose we know that $f_n \to f$ in some specified type of convergence.

(i) Is it necessarily true that the limit function f is in $\mathscr{R}[a, b]$?

(ii) If so, is it true that $\int_a^b f_n(x) \, dx \to \int_a^b f(x) \, dx$ as a sequence of numbers?

• If $f_n \to f$ pointwise:

- We show by example that (i) above need not be true.

- Another example will illustrate that even if (i) holds, (ii) need not hold.

• If $f_n \rightarrow f$ uniformly: We will prove that necessarily (i) and (ii) both hold.

Exercise 1.

We know that \mathbb{Q} is a countable set. Since $\mathbb{Q} \cap [0,1]$ is an infinite subset of \mathbb{Q} , it is also a countable set. Let $\{r_m\}_{m=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [0,1]$. For each $n \in \mathbb{N}$ define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1 & \text{if } x \in \{r_1, r_2, \dots, r_n\} \\ 0 & \text{if } x \notin \{r_1, r_2, \dots, r_n\} \end{cases}$$

- a) To what function f does the sequence $\{f_n\}_{n=1}^{\infty}$ converge pointwise?
- b) Is it true that f is Riemann integrable?
- c) Is it true that each of f_n are Riemann integrable on [0, 1]? If so, how much is $\int_{a}^{1} f_n(x) dx$?
- d) So what does this exercise show?

Pointwise Convergence and the Riemann integral

Exercise 2.

For each $n \in \mathbb{N}$ define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 0 & \text{if } x = 0 \\ n & \text{if } 0 < x \le 1/n \\ 0 & \text{if } 1/n < x \le 1 \end{cases}$$

a) To what function f does the sequence $\{f_n\}_{n=1}^{\infty}$ converge pointwise?

b) Is f Riemann integrable? If so, how much is $\int_0^1 f(x) dx$?

c) Is it true that each of f_n are Riemann integrable on [0, 1]? If so, how much is $\int_0^1 f_n(x) dx$?

d) So what does this exercise show?

Uniform Convergence and the Riemann integral

After the above two negative examples, we give the following positive result.

Theorem

Let f_n be a sequence of functions in $\mathscr{R}[a, b]$. Suppose the sequence converges uniformly on [a, b] to the function f. Then $f \in \mathscr{R}[a, b]$ and $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Idea of the proof:

- Note that there is no assumption of continuity on the f_n 's, we only get to use the weaker hypothesis of Riemann integrability.
- Given an $\varepsilon > 0$ we can find f_N such that $||f_N f||_{\infty} < \varepsilon$. We could hope to be able to use this to make similar statements about f which we could make about f_N .
- We should make use of the Partition Characterization of integrability. First write what this implies about f_N (namely that it implies the existence of a certain partition P of [a, b] with nice properties) and then use the fact that $||f_N f||_{\infty} < \varepsilon$ to see that what this says about U(f, P) and L(f, P).

Exercise.

Write a proof of the theorem.