3.1 and 3.2 The Riemann Integral and Some of its Properties

e We develop things differently from our text, combining the material from sections 3.1
and 3.2.

Definition: Partition of [a, b] and associated terminology

(i) By a partition P of the interval [a, b] we mean a finite set of points P = {xo, X1, ..., Xy} such
thata=xp <x1 <X < --- < X, = b.

(i) The above partition divides [a, b] into n intervals [; := [x;_1,x;], i = 1,2,...,n. Let's refer to
each of these intervals as “the intervals of the partition”. We denote the length of the ith such
subinterval by A,‘, that is A,‘ =X — Xj—1-

(iii) (Norm of a partition) For the above partition, we define the norm ||P|| of it to be the length of
the longest of the partitioning subintervals, that is

IP|| :== max{A; :i=1,...,n}.

(iv) (Refinement of a partition) Let P, P’ be any two partitions of [a, b]. We say that P’ is a
refinement of P if P C P’.

(v) (Common refinement of two partitions) Let P’, P” be two partitions of [a, b]. The common
refinement of P’ and P” is the partition P’ U P”.
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Upper and Lower sums

Definition: Upper and Lower Sums

Let f : [a, b] — R, and assume that f is bounded. Let P = {xg,x1,...,x,} be a partition of [a, b].
@ For each i, let M; :=sup {f(x) : xi_1 < x < x;} and m; := inf{f(x) : xi—1 < x < x;}.
o Corresponding to this partition, define the upper sum U(f, P) and the lower sum L(f, P) by

n n
U(f,P) = ZM,- A, L(f,P):= Zm,- A;.
i=1 i=1
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Theorem (Refinement Theorem)

Let P be a partition of [a, b] and let P’ be any refinement of P. Let f : [a, b] — R be a bounded

function. Then
L(f,P) < L(f,P") < U(f,P") < U(f, P).

Consequently,
|U(f, P") — L(f, P")| < |U(f, P) — L(f, P)|.

.

Hints on the proof:
@ Do you see that L(f, P") < U(f, P’") is obvious?
e Do you see that L(—f,P) = —U(f, P) and U(—f,P) = —L(f,P)?
@ Do you see how the previous bullet allows us to reduce the proof to showing that U(f, P") < U(f, P)?

Exercise.
Write the proof of the theorem. J
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Upper and Lower Integrals

~

Definition: Upper and Lower Integrals

Let f : [a, b] — R be a bounded function. Define the upper integral ftbf(x) dx and the lower integral
fabf(x) dx by

f(x) dx :=inf {U(f, P) : P a partition of [a, b]}

f(x) dx := sup{L(f, P) : P a partition of [a, b]}

T |

Exercise.
; T 12 12
a) Let f(x) = > !fx <4 Calculate / f(x) dx and / f(x) dx.
7 if x Z 4 4 J4
: T 12 12
b) Let f(x) = 1 !fx €Q Calculate / f(x) dx and / f(x) dx.
0 if x ¢ Q 4 J4
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Theorem (Basic properties of upper and lower integrals)

(i) Both the upper and lower integrals exist as real numbers.

b b
(i) We always have / f(x) dx < / f(x) dx

b b
) e < / A6d) e < W, 1) and =

(i) For any partition P of [a, b], we have L(f, P) < /

a

b b
consequently / f(x) dx —/ f(x) dx < U(f,P) — L(f,P).

\

Exericse.
Write the proof of the theorem.
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Definition of the Riemann Integral

Definition

o Let f : [a, b] — R be bounded. We say that f is Riemann integrable on [a, b] if

/abf(x) dx = /Lbf(x) dx.

o If f is Riemann integrable, then I2 f(x) dx denotes the common value of
J2f(x) dx and [2f(x) dx.
o The set of all Riemann integrable functions on [a, b] is denoted by Z|a, b].
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o A useful criterion that f € Z|a, b] is given by the following theorem:

Theorem (Partition Characterization of Integrability)

Let f : [a,b] — R be bounded. Then f is Riemann integrable on [a, b] if and only if for all ¢ > 0
there exists a partition P of [a, b] such that U(f, P) — L(f,P) < e.

Idea of the proof:

@ = follows from the Refinement Theorem and the definitions of sup and inf.
o <« follows from part (iii) of the theorem on the previous slide.

Exercise.
Write the proof of the theorem.
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Properties of the integral

r

Theorem (Linearity of the integral)

Let f,g € Z[a, b]. Then we have each of the following.

b b b
() f+g € Z[a, b] and/ (69) 4 6] dx:/ F(x) dx+/ g(x) d.
b b
(i) —f € Z|a, b] and/ —f(x) dx:f/ f(x) dx.

b b
(iii) For any real a, we have o f € #]a, b] and / a f(x) dx = a/ f(x) dx.

\.

Hints:
(i) Show first that for any partition P of [a, b] we have U(f + g, P) < U(f, P) + U(g, P) and
L(f+g,P) > L(f,P)+ L(g, P).
(ii) Recall U(—f,P) = —L(f,P) and L(—f,P) = —U(f, P).
(iii) Easy in case az > 0. The case of a < 0 follows from this and (ii).

Exericise. J

Prove the theorem.




Properties of the integral

Theorem (Gluing theorem)

Let a < b < c. Let f:[a,c] = R. Suppose that f € Z[a, b] and f € Z[b,c]. Then f € Z|a, ]
c b c

and/ f(x) dx:/ f(x) dx—l—/ f(x) dx.
a a b

Exercise.
Write the proof of the gluing theorem. J
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Properties of the integral- Extension of the Gluing Theorem

b
e We've only defined / f(x) dx in case a < b.

b
o But we want to define f(x) dx even if a > b, and furthermore we want the above Gluing Theorem

a
to be true, regardless of the order of the numbers a, b and c. This motivates us to make the following
definition:

Definition

b b a
Let a > b. Then we define / f(x) dx as follows: / f(x) dx := 7/ f(x) dx.
a a b

Exercise.

Assuming we want the gluing theorem to hold regardless of the order of a, b, ¢, why were we forced to
make the above definition?




Theorem

For any three different real numbers a, b, ¢ and any f which is Riemann integrable on any of the
three closed intervals we can form from these three numbers, we have

/: F(x) dx = /ab F(x) dx—l—/bc F(x) dx.

Exercise. J

Make use of the definition on the previous slide (and whatever else is needed) to prove this theorem.

\.
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Examples of Riemann Integrable Functions

@ It's of interest for us to know lots of examples of bounded functions which are Riemann integrable.

@ The following theorem guarantees that the set of Riemann integrable functions includes at least the
set of continuous functions.

Theorem (Integrability of continuous functions)

Let f be continuous on [a, b]. Then f € Z]a, b].

Hints on the proof:

@ The proof follows if we make the right use of

- the uniform continuity of f (how do you know f is uniformly continuous?)
- and the Partition Characterization of Integrability.

Exercise.
Write the proof. J
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Examples of Riemann Integrable Functions

@ Another general class of Riemann integrable functions is given by the next theorem.

Theorem (Integrability of monotone functions)

Let f be a monotone function on [a, b]. Then f € Z]a, b].

Hints on the proof:

@ Monotone functions need not be continuous, so cannot use ideas of continuity.
@ Do you see why it's sufficient to just prove it for f monotone increasing?

@ For any partition of [a, b] and any associated interval [x;_1, x;] of that partition, how much is the
supremum of f(x) as x varies over that interval? How much is the infimum of f(x) as x varies over
that interval?

@ For any such partition, how much is U(f, P) — L(f, P)? (Do you know what is a telescoping sum?)
@ Recall the Partition Characterization of Integrability.

Exercise.
Werite the proof. J




Exercise

a) Write down an example of a function on some interval [a, b] (or just the sketch of a function) which is
Riemann integrable but not continuous. How do you know your example is Riemann integrable?

b) Let f : [a,b] = R be given by f = g — h, where g, h: [a, b] — R are both monotone increasing. Is
Riemann integrable? Why or why not?
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Exercise.

(a) Let f :[a, b] = R be bounded and let ¢ € (a, b). Suppose that f is continuous everywhere on [a, b]
except at the point c. Prove that f is Riemann integrable on [a, b].

(b) What generalization of this result can be proved with a simple modification to the proof in (a).




Exercise.

if
Define f : [0,1] — R defined by f(x) = {(1) !fx ; g .
if x

a) Where is f discontinuous?
b) Explain why ¢ Z]0,1].




Exercise

0 ifx=0
1 2 1 1°
i |fm<XSE

a) Where are the discontinuities of f? So how many discontinuities does f have?
b) Prove that f € #Z]0,1].

Consider the following function f : [0,1] — R defined by f(x) = {

@ The above example shows that a function can have lots of discontinuities and still be Riemann
integrable.

@ An interesting question is to characterize the set of points on which a Riemann integrable function can
be discontinuous.
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Additional Elementary Properties of functions in Z|[a, b]

Theorem

Let f,g : [a,b] — R.

a) Suppose that f € Z[a, b]. If f(x) > 0 for all x € [a, b], then /b f(x) dx > 0.
b) Suppose that f alr;d g arein Z[a, b]. If f(x) < g(x) for all x Ea[a7 b], then

/abf(x) dxg/a g(x) dx.

b b
c) If f € Z[a, b], then |f| € #]a, b] and furthermore / f(x) dx g/ |f(x)| dx. However, the

converse is false; there exists f such that |f| € Z]a, b], but f & Z]a, b].

Exercise.
Werite the proof. J




