
2.5 The Banach Space C [a, b]

In this section we pursue a few of the ideas stated on the last slide of section 2.4.
This means to take some of the ideas we’ve considered so far for real numbers and try
to develop similar ideas in other settings, namely in “function spaces”.
The first thing we developed for real numbers is the idea of a sequence, so we consider
that first.
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Sequences of functions
Let D be any subset of R.
Suppose for each n ∈ N we have a real-valued function fn with fn : D → R. (Note: The term
“function” will always mean real-valued function.)
We refer to {fn}∞

n=1 as a sequence of functions on D.

Exercise.
Consider the sequence of functions fn : [0, 1]→ R, fn(x) = xn.

(i) Sketch the graph of a few terms of the sequence.
(ii) What is the apparent behavior of the sequence as you can see from the graph? Does it

appear to go to some specific function?
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Various kinds of convergence of sequences of functions
Let {fn} be a sequence of functions with domain D, and let f be a function with
domain D.
We want to discuss convergence of the sequence fn to f . But there are many possible
and different ways of such convergence, so writing fn → f has no meaning by itself. We
need to explain what kind of convergence it is.
In this section we introduce and study two kinds of convergence, namely

pointwise convergence
uniform convergence.

So rather than write “fn → f ” (which has no meaning by itself), we might instead say
“the sequence fn converges pointwise to f ”, or we might say “the sequence fn converges
uniformly to f ”. These two types of convergence are not at all the same.
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Pointwise and uniform convergence of a sequence of functions

Pointwise Convergence of a sequence of functions
With D, fn and f as on previous slide, we say that the sequence fn converges pointwise to f if for each
x ∈ D, we have fn(x)→ f (x). In symbols:

(∀x ∈ D)[fn(x)→ f (x)].

In more detail, this means the following holds:

(∀x ∈ D)(∀ε > 0)(∃N ∈ N)(∀n ∈ N)[n ≥ N =⇒ |fn(x)− f (x)| < ε].

We also refer to f as the pointwise limit of the sequence fn.

Exercise.
Consider the sequence of functions fn : [0, 1]→ R, fn(x) = xn.

(i) Does the sequence converge pointwise? If so, to what function f (x)?
(ii) What can you say about the continuity of the members of the sequence fn and the continuity of f ?
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If each of the members of a sequence of functions have some desirable property and we know that the
sequence fn converges in some way to f , it would be nice if we could then deduce that f also has that
property.
For example, is it true in general that the pointwise limit of a sequence of continuous functions is
continuous?
Pointwise convergence is such a weak type of convergence that it often doesn’t tell us much about the
properties of the limit function.
We’ll see that uniform convergence of a sequence allows us to say more about the limit function.
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Pointwise and uniform convergence of a sequence of functions

Definition
Let {fn}, f all be functions with domain D. We say that fn converges uniformly to f if the following
is true:

‖fn − f ‖∞ → 0.

Equivalently, if the following is true:

(∀ε > 0)(∃N ∈ N)(∀x ∈ D)(∀n ∈ N)[n ≥ N =⇒ |fn(x)− f (x)| < ε]

So in the above definition, the same N works simultaneously for all x ∈ D.
Pointwise convergence merely says that for any ε > 0, if you first give me the x ∈ D,
then there exists N , or maybe we should call it Nx to emphasize that it depends on the
specific x , such that for all x ∈ D, |fn(x)− f (x)| < ε for all n ≥ Nx .
So if a sequence fn converges pointwise to f but not uniformly, it means that for a
given ε and each x , we can find the Nx with the appropriate property, but it is
impossible to find a single N that works for all x , so it must be that

sup{Nx : x ∈ D} =∞.
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Exercise
Draw graphs which illustrate the idea of the definition of uniform convergence of a sequence fn to a
function f .
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Pointwise and uniform convergence of a sequence of functions

Exercise
Consider the sequence fn : [0, 1/2]→ R, fn(x) = xn.

(i) What is the pointwise limit of the sequence?
(ii) For each n, calculate ‖fn‖∞.

(iii) Explain how you know that the sequence converges uniformly.
(iv) If you change the domain from [0, 1/2] to [0, 1), prove that the convergence of the

sequence is not uniform.
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Logical connection between pointwise and uniform convergence

Theorem If a sequence fn converges uniformly on D to a function f , then it also
converges pointwise. However, the converse is false in general, that is, there exists a
domain D and a sequence of functions which is pointwise convergent but not uniformly
convergent on D.

Exercise.
Prove the above theorem.
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Say {fn} is a sequence converging in some way to a function f .
If we know that all of the fn’s are continuous, pointwise converge doesn’t tell us that f is necessarily
continuous. The next theorem tells us that if the convergence is uniform, then f must be continuous.

Theorem Let fn a sequence of functions with domain D, and suppose that the sequence
converges uniformly to a function f . If each fn is continuous, then f is continuous.

Simply put, it says that the uniform limit of continuous functions is continuous.
The proof is a nice application of the triangle inequality.
Start by giving yourself ε > 0. Use the uniform convergence convergence to produce fN which is
uniformly within ε/3 of f .
Use the continuity of fN and the triangle inequality to prove that f is continuous.

Exercise.
Write a proof of the theorem.
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Exercise
Give a simple proof that the sequence fn : [0, 1]→ R, fn(x) = xn does not converge
uniformly.
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Exercise
Consider the sequence fn : (0,∞)→ R, fn(x) = x 1

n .
a) Prove that this sequence converges pointwise to 1.
b) Prove that the convergence is not uniform.

Here are a few hints:
Do you see why we could easily finish the proof of (a) if we knew it for x > 1? If you
let yn := x1/n − 1, you need to show that yn → 0. See if you can do it by applying the
binomial theorem in the right way and making an estimate.
For (b), show that it is already not uniformly convergent for x ∈ (0, 1]. Do it by
calculating the supremum of 1− f (x) for x ∈ (0, 1].
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Exercise
Consider the sequence fn : [0, 1]→ R, fn(x) = x1+ 1

n . It follows from the previous slide that
fn converges pointwise to x . Prove that the convergence of this sequence is uniform.

We’ll do it by actually calculating the supremum ‖x − fn(x)‖∞ and just observing that
it goes to 0 as n→∞.
For this we’ll make use of some calculus results you learned in Calc I, even though we
haven’t yet proved them.
The result is the “second derivative test” for finding absolute max of a function. It says
essentially that for f a function with domain an open interval such that

f has exactly one critical point x (i.e. a unique x such that f ′(x) = 0 and
f ′′(x) < 0

then x is a point of absolute maximum of f .
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Normed spaces, Banach spaces

What properties of R are needed in order to discuss convergence of a sequence {xn}∞
n=1 to a number x?

We need to be able to calculate |xn − x | in order to measure how far apart the term xn is from the
limiting value x .
To calculate xn − x we need the “vector space ‘’ structure of R
and to calculate |xn − x | we need the “norm” structure of R.
So we should be able to formulate the idea of convergence in any normed space.

Recall the definition of a normed space which we introduced in section 2.4:

Definition
Let V be a real vector space. Let ‖ · ‖ denote a real-valued function on V whose value at v ∈ V is written
as ‖v‖. We say that ‖ · ‖ is a norm if the following three properties hold:

(i) (Positive Definite) (∀v ∈ V )(‖v‖ ≥ 0 and (∀v ∈ V )[‖v‖ = 0⇔ v = 0]
(ii) (∀α ∈ R)(∀v ∈ V )[‖αv‖ = |α| ‖v‖]
(iii) (Triangle Inequality) (∀v ,w ∈ V )[‖v + w‖ ≤ ‖v‖+ ‖w‖]

If there is a norm ‖ · ‖ on V , we refer to (V , ‖ · ‖) as a real normed space.
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We next formulate convergence and Cauchy sequences in any normed space:

Definition
Let (V , ‖ · ‖) be a real normed space. Let vn be a sequence in V , and let v ∈ V .

(i) We say that the sequence vn converges in norm to v provided ‖vn − v‖ → 0, i.e.

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)[n ≥ N =⇒ ‖vn − v‖ < ε].

(ii) We say that the sequence vn is a Cauchy sequence provided the following is true:

(∀ε > 0)(∃N ∈ N)(∀m, n ∈ N)[m, n ≥ N =⇒ ‖vm − vn‖ < ε].

Theorem In any normed space, if vn converges to v in norm, then vn is a Cauchy
sequence.

Exercise.
Write the proof of the above theorem.
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Normed spaces, Banach spaces

Once again we look at the converse of the above result, which would say that every Cauchy sequence
converges. This is false in general; there are lots of normed spaces for which it fails.
We give a special name to the normed spaces for which it is true.

Definition
We say that a normed space is complete provided every Cauchy sequence is convergent in norm. A
complete normed space is referred to as a Banach space.

Exercise.
a) What is an example of a Banach space which we’ve so far studied in this course?
b) What is an example of a normed space which is not a Banach space?
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In section 2.4 we saw that C [a, b] with the sup norm is an example of a normed space. We now show that
it has the stronger property of being a Banach space.

Theorem Let [a, b] be a closed bounded interval. Let C [a, b] be the normed space of continuous
real-valued function on [a, b], equipped with the sup norm. Then C [a, b] is a Banach space.

Some hints on the proof:
We must give ourselves a sequence fn which is Cauchy relative to the sup norm.
Do you see why it’s true that for each x ∈ [a, b], we have fn(x) is a Cauchy sequence of real numbers?
Why does this allow us to associate a new real number which we will call f (x)?
Now try to prove that the sequence fn converges in norm to f .
How do you know that f ∈ C [a, b]?

Exercise.
Write the proof of the above theorem.
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Something to think about

Earlier in this section we wrote down an example of a finite dimensional Banach space
and a finite dimensional normed space which is not a Banach space.
We just proved that C [a, b] with the sup norm is a Banach space, and it is an infinite
dimensional Banach space.
Can you think of an example of an infinite dimensional normed space which is not a
Banach space?
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