- In this section we pursue a few of the ideas stated on the last slide of section 2.4.
- This means to take some of the ideas we've considered so far for real numbers and try to develop similar ideas in other settings, namely in "function spaces".
- The first thing we developed for real numbers is the idea of a sequence, so we consider that first.

Sequences of functions

- Let D be any subset of \mathbb{R}.
- Suppose for each $n \in \mathbb{N}$ we have a real-valued function f_{n} with $f_{n}: D \rightarrow \mathbb{R}$. (Note: The term "function" will always mean real-valued function.)
- We refer to $\left\{f_{n}\right\}_{n=1}^{\infty}$ as a sequence of functions on D.

Exercise.

Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{n}$.
(i) Sketch the graph of a few terms of the sequence.
(ii) What is the apparent behavior of the sequence as you can see from the graph? Does it appear to go to some specific function?

Various kinds of convergence of sequences of functions

- Let $\left\{f_{n}\right\}$ be a sequence of functions with domain D, and let f be a function with domain D.
- We want to discuss convergence of the sequence f_{n} to f. But there are many possible and different ways of such convergence, so writing $f_{n} \rightarrow f$ has no meaning by itself. We need to explain what kind of convergence it is.
- In this section we introduce and study two kinds of convergence, namely
- pointwise convergence
- uniform convergence.
- So rather than write " $f_{n} \rightarrow f$ " (which has no meaning by itself), we might instead say "the sequence f_{n} converges pointwise to f ", or we might say "the sequence f_{n} converges uniformly to f ". These two types of convergence are not at all the same.

Pointwise and uniform convergence of a sequence of functions

Pointwise Convergence of a sequence of functions

With D, f_{n} and f as on previous slide, we say that the sequence f_{n} converges pointwise to f if for each $x \in D$, we have $f_{n}(x) \rightarrow f(x)$. In symbols:

$$
(\forall x \in D)\left[f_{n}(x) \rightarrow f(x)\right] .
$$

In more detail, this means the following holds:

$$
(\forall x \in D)(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})\left[n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon\right] .
$$

We also refer to f as the pointwise limit of the sequence f_{n}.

Exercise.

Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{n}$.
(i) Does the sequence converge pointwise? If so, to what function $f(x)$?
(ii) What can you say about the continuity of the members of the sequence f_{n} and the continuity of f ?

- If each of the members of a sequence of functions have some desirable property and we know that the sequence f_{n} converges in some way to f, it would be nice if we could then deduce that f also has that property.
- For example, is it true in general that the pointwise limit of a sequence of continuous functions is continuous?
- Pointwise convergence is such a weak type of convergence that it often doesn't tell us much about the properties of the limit function.
- We'll see that uniform convergence of a sequence allows us to say more about the limit function.

Definition

Let $\left\{f_{n}\right\}, f$ all be functions with domain D. We say that f_{n} converges uniformly to f if the following is true:

$$
\left\|f_{n}-f\right\|_{\infty} \rightarrow 0
$$

Equivalently, if the following is true:

$$
(\forall \varepsilon>0)(\exists \mathbb{N} \in \mathbb{N})(\forall x \in D)(\forall n \in \mathbb{N})\left[n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon\right]
$$

- So in the above definition, the same N works simultaneously for all $x \in D$.
- Pointwise convergence merely says that for any $\varepsilon>0$, if you first give me the $x \in D$, then there exists N, or maybe we should call it N_{x} to emphasize that it depends on the specific x, such that for all $x \in D,\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $n \geq N_{x}$.
- So if a sequence f_{n} converges pointwise to f but not uniformly, it means that for a given ε and each x, we can find the N_{x} with the appropriate property, but it is impossible to find a single N that works for all x, so it must be that

$$
\sup \left\{N_{x}: x \in D\right\}=\infty
$$

Exercise

Draw graphs which illustrate the idea of the definition of uniform convergence of a sequence f_{n} to a function f.

Exercise

Consider the sequence $f_{n}:[0,1 / 2] \rightarrow \mathbb{R}, f_{n}(x)=x^{n}$.
(i) What is the pointwise limit of the sequence?
(ii) For each n, calculate $\left\|f_{n}\right\|_{\infty}$.
(iii) Explain how you know that the sequence converges uniformly.
(iv) If you change the domain from $[0,1 / 2]$ to $[0,1)$, prove that the convergence of the sequence is not uniform.

Logical connection between pointwise and uniform convergence

Theorem If a sequence f_{n} converges uniformly on D to a function f, then it also converges pointwise. However, the converse is false in general, that is, there exists a domain D and a sequence of functions which is pointwise convergent but not uniformly convergent on D.

Exercise.

Prove the above theorem.

- Say $\left\{f_{n}\right\}$ is a sequence converging in some way to a function f.
- If we know that all of the f_{n} 's are continuous, pointwise converge doesn't tell us that f is necessarily continuous. The next theorem tells us that if the convergence is uniform, then f must be continuous.

Theorem Let f_{n} a sequence of functions with domain D, and suppose that the sequence converges uniformly to a function f. If each f_{n} is continuous, then f is continuous.

- Simply put, it says that the uniform limit of continuous functions is continuous.
- The proof is a nice application of the triangle inequality.
- Start by giving yourself $\varepsilon>0$. Use the uniform convergence convergence to produce f_{N} which is uniformly within $\varepsilon / 3$ of f.
- Use the continuity of f_{N} and the triangle inequality to prove that f is continuous.

Exercise.

Write a proof of the theorem.

Exercise

Give a simple proof that the sequence $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{n}$ does not converge uniformly.

Exercise

Consider the sequence $f_{n}:(0, \infty) \rightarrow \mathbb{R}, f_{n}(x)=x^{\frac{1}{n}}$.
a) Prove that this sequence converges pointwise to 1 .
b) Prove that the convergence is not uniform.

Here are a few hints:

- Do you see why we could easily finish the proof of (a) if we knew it for $x>1$? If you let $y_{n}:=x^{1 / n}-1$, you need to show that $y_{n} \rightarrow 0$. See if you can do it by applying the binomial theorem in the right way and making an estimate.
- For (b), show that it is already not uniformly convergent for $x \in(0,1]$. Do it by calculating the supremum of $1-f(x)$ for $x \in(0,1]$.

Exercise

Consider the sequence $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{1+\frac{1}{n}}$. It follows from the previous slide that f_{n} converges pointwise to x. Prove that the convergence of this sequence is uniform.

- We'll do it by actually calculating the supremum $\left\|x-f_{n}(x)\right\|_{\infty}$ and just observing that it goes to 0 as $n \rightarrow \infty$.
- For this we'll make use of some calculus results you learned in Calc I, even though we haven't yet proved them.
- The result is the "second derivative test" for finding absolute max of a function. It says essentially that for f a function with domain an open interval such that
- f has exactly one critical point x (i.e. a unique x such that $f^{\prime}(x)=0$ and
- $f^{\prime \prime}(x)<0$
then x is a point of absolute maximum of f.
- What properties of \mathbb{R} are needed in order to discuss convergence of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ to a number x ?
- We need to be able to calculate $\left|x_{n}-x\right|$ in order to measure how far apart the term x_{n} is from the limiting value x.
- To calculate $x_{n}-x$ we need the "vector space " structure of \mathbb{R}
- and to calculate $\left|x_{n}-x\right|$ we need the "norm" structure of \mathbb{R}.
- So we should be able to formulate the idea of convergence in any normed space.

Recall the definition of a normed space which we introduced in section 2.4:

Definition

Let V be a real vector space. Let $\|\cdot\|$ denote a real-valued function on V whose value at $v \in V$ is written as $\|v\|$. We say that $\|\cdot\|$ is a norm if the following three properties hold:
(i) (Positive Definite) $(\forall v \in V)(\|v\| \geq 0$ and $(\forall v \in V)[\|v\|=0 \Leftrightarrow v=0]$
(ii) $(\forall \alpha \in \mathbb{R})(\forall v \in V)[\|\alpha v\|=|\alpha|\|v\|]$
(iii) (Triangle Inequality) $(\forall v, w \in V)[\|v+w\| \leq\|v\|+\|w\|]$

If there is a norm $\|\cdot\|$ on V, we refer to $(V,\|\cdot\|)$ as a real normed space.

We next formulate convergence and Cauchy sequences in any normed space:

Definition

Let $(V,\|\cdot\|)$ be a real normed space. Let v_{n} be a sequence in V, and let $v \in V$.
(i) We say that the sequence v_{n} converges in norm to v provided $\left\|v_{n}-v\right\| \rightarrow 0$, i.e.

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})\left[n \geq N \Longrightarrow\left\|v_{n}-v\right\|<\varepsilon\right] .
$$

(ii) We say that the sequence v_{n} is a Cauchy sequence provided the following is true:

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall m, n \in \mathbb{N})\left[m, n \geq N \Longrightarrow\left\|v_{m}-v_{n}\right\|<\varepsilon\right] .
$$

Theorem In any normed space, if v_{n} converges to v in norm, then v_{n} is a Cauchy sequence.

Exercise.

Write the proof of the above theorem.

Normed spaces, Banach spaces

- Once again we look at the converse of the above result, which would say that every Cauchy sequence converges. This is false in general; there are lots of normed spaces for which it fails.
- We give a special name to the normed spaces for which it is true.

Definition

We say that a normed space is complete provided every Cauchy sequence is convergent in norm. A complete normed space is referred to as a Banach space.

Exercise.

a) What is an example of a Banach space which we've so far studied in this course?
b) What is an example of a normed space which is not a Banach space?

In section 2.4 we saw that $C[a, b]$ with the sup norm is an example of a normed space. We now show that it has the stronger property of being a Banach space.

Theorem Let $[a, b]$ be a closed bounded interval. Let $C[a, b]$ be the normed space of continuous real-valued function on $[a, b]$, equipped with the sup norm. Then $C[a, b]$ is a Banach space.

Some hints on the proof:

- We must give ourselves a sequence f_{n} which is Cauchy relative to the sup norm.
- Do you see why it's true that for each $x \in[a, b]$, we have $f_{n}(x)$ is a Cauchy sequence of real numbers?
- Why does this allow us to associate a new real number which we will call $f(x)$?
- Now try to prove that the sequence f_{n} converges in norm to f.
- How do you know that $f \in C[a, b]$?

Exercise.

Write the proof of the above theorem.

- Earlier in this section we wrote down an example of a finite dimensional Banach space and a finite dimensional normed space which is not a Banach space.
- We just proved that $C[a, b]$ with the sup norm is a Banach space, and it is an infinite dimensional Banach space.
- Can you think of an example of an infinite dimensional normed space which is not a Banach space?

