- The Extreme Value Theorem deals with the question of when we can be sure that for a given function f,
(1) the values $f(x)$ don't get too big or too small,
(2) and f takes on both its absolute maximum value and absolute minimum value.
- We'll see that it gives another important application of the idea of compactness.

Definition

A real-valued function f is called bounded if the following holds:

$$
(\exists m, M \in \mathbb{R})\left(\forall x \in D_{f}\right)[m \leq f(x) \leq M]
$$

If in the above definition we only require the existence of M then we say f is upper bounded; and if we only require the existence of m then say that f is lower bounded.

Exercise

Phrase boundedness using the terms supremum and infimum, that is, try to complete the sentences
" f is upper bounded if and only if"
" f is lower bounded if and only if"
" f is bounded if and only if"
using the words supremum and infimum somehow.

Exercise

Give some examples (in pictures) of functions which illustrates various things:
a) A function can be continuous but not bounded.
b) A function can be continuous, but might not take on its supremum value, or not take on its infimum value.
c) A function can be continuous, and does take on both its supremum value and its infimum value.
d) A function can be discontinuous, but bounded.
e) A function can be discontinuous on a closed bounded interval, and not take on its supremum or its infimum value.

- You might notice that the above negative examples involving continuous functions all have domains which are not closed bounded intervals. This suggests that compactness has something to do with it.
- So a function can be continuous and bounded, yet if $M=\sup \left\{f(x): x \in D_{f}\right\}$ and $m=\inf \left\{f(x): x \in D_{f}\right\}$, there may be no x value in $[a, b]$ such that $f(x)=M$ or $f(x)=m$.

Definition

Let f be a real-valued function with some domain D_{f}. Let $M=\sup \left\{f(x): x \in D_{f}\right\}$ and $m=$ $\inf \left\{f(x): x \in D_{f}\right\}$. If there exists $x \in D_{f}$ such that $f(x)=M$, we say that f has a maximum value, and if there exists $x \in D_{f}$ such that $f(x)=m$, we say that f has a minimum value.

- The Extreme Value Theorem gives two conditions (i.e. hypotheses in the theorem) which together guarantee that a given function has both a maximum and minimum value. The conditions involve
(i) a continuity assumption on f
(ii) a compactness assumption on D_{f}.
- The examples on the previous slide illustrate that both of these conditions are needed in order to get a theorem.

Theorem (Extreme Value Theorem)

Let f be a real-valued continuous function with domain a closed bounded interval $[a, b]$. Then f is bounded, and f has both a maximum and minimum value on $[a, b]$.

- This theorem is one of the most important of the subject.
- The proof will make use of the Heine-Borel theorem, the Bolzano-Weierstrass theorem, and the sequential characterization of continuity.
- First observe that if we were able to prove the partial result that any such f must be upper bounded and it has a maximum value, then we could deduce from this that any such f must be lower bounded and have a minimum value.
- The proof of this partial result splits separately into two parts:

1. Proving f is upper bounded;
2. Proving f has a maximum value.

1. How to prove f is upper bounded?

- This uses the fact that f isn't merely continuous, but even uniformly continuous.
- We write down what the uniform continuity of f says when you take $\varepsilon=1$ in the definition of uniform continuity. The resulting δ which we get from this is an important tool which we make use of in the next step.
- We put an open interval of radius δ about each point of $[a, b]$. This family of open intervals gives an open cover of $[a, b]$ from which we can extract a finite subcover.
- We use the centers of the intervals in the finite subcover to reduce the proof of upper boundedness of f to checking the biggest value of $f(x)$ as x varies over those finitely many centers.

2. How to prove f has a maximum value?

- From the first part of the proof, we know that $\sup \{f(x)$: $a \leq x \leq b\}<\infty$.
- By definition of supremum, we can find a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $[a, b]$ such that $f\left(x_{n}\right)$ converges to $\sup \{f(x)$: $a \leq x \leq b\}$.
- If we knew that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converged to a point x in $[a, b]$, we could deduce from the continuity of f that $f\left(x_{n}\right)$ converges to $f(x)$, and so we would be done.
- However, $\left\{x_{n}\right\}_{n=1}^{\infty}$ need not converge, but we can deduce that a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ of it converges to a point x of $[a, b]$, and that is just as good.

Theorem (Extreme Value Theorem)

Let f be a real-valued continuous function with domain a closed bounded interval $[a, b]$. Then f is bounded, and f has both a maximum and minimum value on $[a, b]$.

Exercise.

Write the proof of the Extreme Value Theorem.

Exercise

Prove that $f(x)=x^{2}-x+1+\cos x$ has a minimum value on \mathbb{R}.
Hints:
(i) Begin by completing the square.
(ii) You can't immediately make use of the EVT because \mathbb{R} isn't a closed bounded interval. However, you can reduce the problem to a problem on a closed bounded interval using the expression for $f(x)$ in (i).

Application of the EVT

Corollary of the Extreme Value Theorem

Let f be a real-valued continuous function with domain a closed bounded interval $[a, b]$. Then the range of f is a closed bounded interval.

Exercise.

Write the proof of this corollary.

Definition

Let $a<b$ be real numbers. We denote by $C[a, b]$ the set of real-valued continuous functions with domain $[a, b]$.

- We are going to recognize some additional structures on $C[a, b]$ that it has in common with \mathbb{R}.
- We see that it has a "vector space" structure (which means we can do arithmetic with it), but we will see on the next few slides that it also has a structure which allows us to talk about convergence in the way we did so with \mathbb{R}.
- The idea of using these two different kinds of structures (vector space and topological) to study an object is what one does in the subject of functional analysis.

Definition

Let f be any real-valued function on some domain D. We define the "sup-norm" of f by

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in D\} .
$$

Note: Our textbook refers to the sup-norm of f instead as $\|f\|_{\text {sup }}$. One sees both notations used, but $\|f\|_{\infty}$ is more common (and easier to type!).

- Note that $\|f\|_{\infty}<\infty$ if and only if f is bounded.

Theorem Let f, g be bounded functions on $[a, b]$, and let α be a real number. Then
(1) $\|f\|_{\infty}=0$ if and only if $f(x)=0$ for all $x \in[a, b]$.
(2) $\|\alpha f\|_{\infty}=|\alpha|\|f\|_{\infty}$.
(0) (triangle inequality) $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.

Theorem Let f, g be bounded functions on $[a, b]$, and let α be a real number. Then
(1) $\|f\|_{\infty}=0$ if and only if $f(x)=0$ for all $x \in[a, b]$.
(2) $\|\alpha f\|_{\infty}=|\alpha|\|f\|_{\infty}$.
(3) (triangle inequality) $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.

- (1) and (2) follow quite easily from the definition of supremum.
- For (3), try to show that the right side is an upper bound of the set of values $\{|f(x)+g(x)|: x \in[a, b]\}$.

Exercise.

Write the proof of the theorem.

- The set of bounded real-valued functions on a fixed interval $[a, b]$ forms what is called a vector space. This means that if f, g are any two such functions, then $f+g$ is such a function, αf is such a function for any real number α, and furthermore basic rules of arithmetic hold (these rules are described on page 59 of the text, we won't list them here).
- Similarly if we look instead at the continuous real-valued functions on $[a, b]$, these also form a vector space. Do you see why? What property of continuity is needed here?
- The three properties described on the previous slide are worth abstracting and giving a name. We do that next.

Definition

Let V be a real vector space. Let $\|\cdot\|$ denote a real-valued function on V whose value at $v \in V$ is written as $\|v\|$. We say that $\|\cdot\|$ is a norm if the following three properties hold:
(i) (Positive Definite) $(\forall v \in V)(\|v\| \geq 0$ and $(\forall v \in V)[\|v\|=0 \Leftrightarrow v=0]$
(ii) $(\forall \alpha \in \mathbb{R})(\forall v \in V)[\|\alpha v\|=|\alpha|\|v\|]$
(iii) (Triangle Inequality) $(\forall v, w \in V)[\|v+w\| \leq\|v\|+\|w\|]$

If there is a norm $\|\cdot\|$ on V, we refer to $(V,\|\cdot\|)$ as a real normed space.

Exercise

Write down three different real normed spaces which we've studied.

- So \mathbb{R} and $C[a, b]$ share the property that they both form real normed spaces.
- There are many other examples of real normed spaces you will see in future.
- One of the themes of the subject of analysis is to formulate and prove things about general normed spaces which one has already studied for the real numbers.
- One can hope to be able to do this because in several of the proofs we have already studied with \mathbb{R}, it isn't always the special properties of \mathbb{R} that we use, but instead just the three norm properties (think of our use of the triangle inequality) and these also hold in any normed space.
- For example in $C[a, b]$,
- It is a normed space, so we know how to measure the distance between elements of $C[a, b]$.
- We can talk about sequences $\left\{f_{n}\right\}_{n=1}^{\infty}$.
- We can formulate convergence of sequences.
- We can formulate the idea of Cauchy sequences.
- We can formulate what it would mean to say $C[a, b]$ is complete, and ask if it is true.
- We can formulate what is an open subset of $C[a, b]$.
- We can formulate what would be a dense subset of $C[a, b]$ and if so, are there some natural dense subsets of $C[a, b]$ (analogous to \mathbb{Q} being dense in \mathbb{R})?
- Even better, are there any countable dense subsets of $C[a, b]$?
- We can formulate the idea of compactness in $C[a, b]$.

