
Chapter 2. Continuous Functions
2.1 Limits of Functions

Intuitively a function is continuous provided you can draw its graph without lifting your pencil.
But what to do if we have a function whose graph cannot be drawn? How to decide if it is continuous?

For example, how to decide continuity of each the following functions?

1 Define f : R→ R by f (x) =
{

1 if x is rational
0 if x is irrational

.

2 Each positive rational number can be written uniquely in the form m/n, where m and n have no
factors in common. For the following function, we agree to write each positive rational in this way.

Define g : (0, 1)→ R by g(x) =

0 if x irrational
1
n if x rational of the form m

n

3 Define h : R→ R by h(x) =
∞∑

n=1

cos (12nx)
2n

These functions all exist, yet there is no way we can draw any of their graphs.
So how can we decide whether or not they are continuous?
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Or how to answer questions like the following?
1 Does there exist f : R→ R that is continuous at every irrational number and discontinuous at every

rational number?

2 Does there exist f : R→ R that is continuous at every rational number and discontinuous at every
irrational number?

These examples make the case that we need a precise definition of continuity.
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The right way to define continuity is to make use of limits, so we begin by defining what we mean by

lim
x→a

f (x) = L.

In section 2.2 we will discuss the connection of limits and continuity.
You might expect the definition of “ lim

x→a
f (x) = L” to be

(∀ε > 0)(∃δ > 0)(∀x ∈ R)[0 < |x − a| < δ =⇒ |f (x)− L| < ε].

But the definition must have something to do with the domain of f , and even though we may not
consider here domains other than intervals, we’d like to have the flexibility to define limits of functions
with more complicated domains than just intervals.
In addition we’d like to be able to take limits at points which can be approached by points of the
domain of f .
For this reason we introduce the idea of a cluster point of a set.
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Definition
Let D be a nonempty subset of R and let a ∈ R. We say that “a” is a cluster point of D provided
the following is true:

(∀δ > 0)(∃x ∈ D r {a})[0 < |x − a| < δ].

Equivalently, “a” is a cluster point of D provided there exists a sequence xn in D r {a} such that
xn → a.

Before we look at some examples, do the following exercise.

Exercise
Say xn is a sequence of real numbers converging to the real number L. Suppose that a, b are numbers such
that a ≤ xn ≤ b for all n. Prove (using only the definition of convergence) that a ≤ L ≤ b.
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Definition
Let D be a nonempty subset of R and let a ∈ R. We say that “a” is a cluster point of D provided
the following is true:

(∀δ > 0)(∃x ∈ D r {a})[0 < |x − a| < δ].

Equivalently, “a” is a cluster point of D provided there exists a sequence xn in D r {a} such that
xn → a.

Exercise
Find all the cluster points of the following sets. Prove you are correct.
1. A = {0, 1, 2, 3, 4, 5}
2. B = (0, 10)

3. C =
{

0, 1
2 ,

2
3 ,

3
4 , . . .

}
.

4. Can you generalize the result in the previous part?
5. Z
6. Q.
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Definition
Let f be a real-valued function with domain denoted by Df . Let a ∈ R be a cluster point of Df . Let L be a
real number. Then we define lim

x→a
f (x) = L by

(∀ε > 0)(∃δ > 0)(∀x ∈ Df )[0 < |x − a| < δ =⇒ |f (x)− L| < ε].

Since we know quite a bit about sequences, it would be convenient to characterize the definition of
limit in terms of convergence of certain sequences.

Theorem. Let f be a real-valued function on some domain Df ⊆ R, let a ∈ R be a cluster point of
Df , and let L ∈ R. Then the following are equivalent:

(i) lim
x→a

f (x) = L;

(ii) For every sequence xk in Df r {a}, if xk → a, then f (xk)→ L.

Comments on the proof
=⇒: This is done with a direct proof using the working definitions of lim

x→a
f (x) = L and convergence of

sequences. But be sure you are clear on what you are assuming to be true and what you are trying to
prove.
⇐=: Our textbook proves this direction by the method of contradiction. But I think it’s just as easy to do
it using contraposition, i.e. assuming that (i) is false, see if you can prove that (ii) is false.
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Theorem. Let f be a real-valued function on some domain Df ⊆ R, let a ∈ R be a cluster point of
Df , and let L ∈ R. Then the following are equivalent:

(i) lim
x→a

f (x) = L;

(ii) For every sequence xk in Df r {a}, if xk → a, then f (xk)→ L.

Exercise.
Write the proof of the above theorem.
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The sequential characterization of limits makes it easy to prove the following result.

Theorem. Let f , g be two real-valued functions with domains Df ,Dg . Let a ∈ R be a cluster point
of Df ∩Dg . Suppose that L and M are numbers such that lim

x→a
f (x) = L and lim

x→a
g(x) = M. Then

(i) lim
x→a

f (x) + g(x) = L + M,

(ii) lim
x→a

f (x) · g(x) = L ·M

(iii) lim
x→a

f (x)/g(x) = L/M provided M 6= 0 and a is a cluster point of Df /g .

Exercise.
Write the proof of the above theorem.
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One-sided Limits and limits at ∞

Definition
Let f be a real-valued function with domain Df , and let L be a real number.

(i) (Left-sided limit) Suppose that a ∈ R is a cluster point of Df ∩ (−∞, a). We write that
lim

x→a−
f (x) = L provided for every sequence xn in Df ∩ (−∞, a), if xn → a then f (xn)→ L.

(ii) We have a similar definition for right-sided limits.
(iii) (Finite limit at ∞) Suppose that Df is not bounded above. We write that lim

x→∞
f (x) = L

provided for every sequence xn in Df , if xn →∞ then f (xn)→ L.
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One-sided Limits and limits at ∞

Theorem (Monotone Sequence Characterization of Limits)

Let f be a real-valued function with domain Df , and let L be a real number.
(i) Let a ∈ R be a cluster point of Df ∩ (−∞, a). Suppose that for every increasing sequence xn

in Df ∩ (−∞, a), if xn → a− then f (xn)→ L. Then lim
x→a−

f (x) = L.

(ii) Let a ∈ R be a cluster point of Df ∩ (a,∞).Suppose that for every decreasing sequence xn in
Df , if xn → a+ then f (xn)→ L. Then lim

x→a+
f (x) = L.

In order to prove this we will make use of the following theorem, which perhaps seems obvious to you.

Theorem (Monotone Subsequence Theorem)

Every sequence of numbers has a monotone subsequence.

Exercise.
Write the proof of the Monotone Subsequence Theorem and then use it to write the proof of the Monotone
Sequence Characterization of Limits theorem.
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