- This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine - Borel Covering Theorem.
- It also introduces two very important kinds of sets, namely open sets and compact sets.
- The Heine-Borel theorem says that closed bounded intervals $[a, b]$ are examples of compact sets.
- The concept of open set is what is needed in order to define convergence and to formulate the idea of continuity.
- One can formulate the definition of open set in other settings where various notions of convergence are needed:
- For example, it is formulated in \mathbb{R}^{n} in order to study multivariable calculus.
- In a branch of mathematics known as "functional analysis" where we study sets of functions, we're interested in convergence of sequences of functions, so one requires a notion of open set in that setting.
- The compact sets are typically infinite, but they have a property in common with finite sets with very far-reaching applications.

Notation

Let $x \in \mathbb{R}$ and let $r>0$. The notation $I_{r}(x)$ refers to the open interval centered at x of radius r, that is

$$
I_{r}(x):=\{y \in \mathbb{R}:|y-x|<r\}=\{y \in \mathbb{R}:-r<y-x<r\}=(x-r, x+r) .
$$

Exercise.

Consider the set $U=\{x \in \mathbb{R}: 7<x<16\}$.
a) Sketch this set on a number line.
b) Identify this set using the " I " notation of the above definition.
c) Now identify $I_{7}(1.3)$ using set-builder notation and then using interval notation. Sketch it on a number line.

Definition

Let O be a subset of \mathbb{R}. We call O an open set if for each x in O there exists an open interval centered at x which is contained in O. Thus O is open provided

$$
(\forall x \in O)(\exists r>0)\left[I_{r}(x) \subseteq O\right] .
$$

- Note that the r in the above definition will usually depend on the given x.

Exercise.

Let $a, b \in \mathbb{R}$ such that $a<b$.
a) Prove that $\{4\}$ is not an open set.
b) Prove that the closed interval $[a, b]$ is not open.
c) Prove that the open interval (a, b) is an open set.

- A similar argument as the one used in the exercise shows that half open intervals like $(-\infty, b)$ and (a, ∞) are also open sets.

Definition: Indexed families of sets and their union

- Let A be any nonempty set (the "indexing set") and for $\alpha \in A$, say we have a set U_{α} which is a subset of \mathbb{R}. We call

$$
\mathscr{U}=\left\{U_{\alpha}: \alpha \in A\right\}
$$

a family of sets indexed by A.

- The union of all of the sets in the indexed family \mathscr{U} is defined by

$$
\bigcup_{\alpha \in A} U_{\alpha}:=\left\{x \in \mathbb{R}:(\exists \alpha \in A)\left[x \in U_{\alpha}\right]\right\} .
$$

- Note that a typical element of \mathscr{U} is an entire subset of \mathbb{R},
- whereas a typical element of the union of the elements of \mathscr{U} is a real number (since the union is a subset of \mathbb{R}),
- so \mathscr{U} and the union of the elements of \mathscr{U} are very different kinds of objects.

Exercise.

Define the following collection of sets:

$$
U_{1}=\{1,3\}, U_{2}=\{1 / 2,7,0\}, U_{3}=\{9,10,11\}, U_{4}=\{1,7,10,15\}
$$

Let's view this as an indexed collection of sets \mathscr{U}. In the following, make sure to use correct set notation (in this case, listing notation).
a) Identify the indexing set A.
b) Identify the family of sets which we've called \mathscr{U}.
c) Identify $\bigcup_{i \in A} U_{i}$.
d) Identify an element in \mathscr{U}, any element will do.
e) Identify any element in $\bigcup_{i \in A} U_{i}$.

Definition of cover

Let S be a subset of \mathbb{R} and let $\mathscr{U}=\left\{U_{\alpha}: \alpha \in A\right\}$ be an indexed family of sets. We say that the family of sets is a cover of S (or that the family covers S) provided

$$
S \subseteq \bigcup_{\alpha \in A} U_{\alpha}
$$

Exercise.

Look again at the family $U_{1}=\{1,3\}, U_{2}=\{1 / 2,7,0\}, U_{3}=\{9,10,11\}, U_{4}=\{1,7,10,15\}$ of the previous exercise.
a) Describe what are all the sets S which are covered by this family $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$.
b) Write down a few different sets S which are covered by this family of sets.
c) Write down a subset of \mathbb{R} which is not covered by this family of sets.
d) Write down a subset S of \mathbb{R} which is covered by $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$, but which is also covered by $\left\{U_{1}, U_{2}, U_{3}\right\}$.

- In part (d) of the previous exercise, we refer to $\left\{U_{1}, U_{2}, U_{3}\right\}$ as being a subcover of the cover $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$ because it is a subset of the original cover $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$ and it is also a cover of the set S written down in that exercise.

Definition

Let S be a subset of \mathbb{R} and let $\mathscr{U}=\left\{U_{\alpha}: \alpha \in A\right\}$ be an indexed family of sets which is a cover of S. Let $B \subseteq A$, i.e. B is a subset of the indexing set A. If it is the case that $\mathscr{U}=\left\{U_{\alpha}: \alpha \in B\right\}$ is also a cover of S, then we say that $\mathscr{U}=\left\{U_{\alpha}: \alpha \in B\right\}$ is a subcover of the cover $\mathscr{U}=\left\{U_{\alpha}: \alpha \in A\right\}$.

Exercise.

a) Write down a specific cover of $S=\mathbb{R}$ consisting of finitely many open intervals.
b) Write down a specific cover of \mathbb{R} consisting of countably many open intervals such that this cover does not have a subcover consisting of finitely many intervals.

Definition

Let S be a subset of \mathbb{R} and let $\mathscr{U}=\left\{U_{\alpha}: \alpha \in A\right\}$ be an indexed family of sets which is a cover of S. We call it an open cover provided all of the sets U_{α} which make up the cover are open sets.

- So the covers in the previous exercise were open covers (since they consisted of open intervals, and as we showed earlier, open intervals are open sets).
- In this section, we are particularly interested in
- open covers of sets
- the number of elements in the indexing set of that open cover

Definition

For an open cover $\left\{U_{\alpha}: \alpha \in A\right\}$ of a set $S \subseteq \mathbb{R}$, let's call it

- a finite open cover of S if A is a finite set;
- a countable open cover of S if A is a countable set;
- an uncountable open cover of S if A is an uncountable set.

Exercise.

Write down specific open covers of \mathbb{R} of the following types:
a) A finite open cover
b) A countable open cover that does not have a finite subcover
c) A countable open cover that does have a finite subcover
d) An uncountable open cover

Theorem. Let $\left\{U_{\alpha}: \alpha \in A\right\}$ be a nonempty family of open sets (where the indexing set A can have any cardinality whatsoever). Then $\bigcup_{\alpha \in A} U_{\alpha}$ is an open set.

Exercise.

Prove the above theorem.

Theorem. A nonempty subset U of \mathbb{R} is open if and only if it is a union of a family of nonempty open intervals.

Exercise.

Prove the above theorem.

Let's review the definition of open cover of a set and finite subcover of an open cover a set:

Open cover of a set

Let S be any subset of \mathbb{R}. An open cover of S is a family of sets U_{α} indexed by some set A such that the following hold:
(i) U_{α} is open for each $\alpha \in A$;
(ii) $S \subseteq \bigcup_{\alpha \in A} U_{\alpha}$.

Finite subcover of an open cover of a set

Let S be any subset of \mathbb{R} and let $\left\{U_{\alpha}: \alpha \in A\right\}$ be an open cover of S. We say that this open cover has a finite subcover if there exists a set B such that the following two things hold:

- B is a finite subset of A;
- $\left\{U_{\alpha}: \alpha \in B\right\}$ is a cover of S.

Exercise.

From an "economics" point of view, explain in words what is the benefit of a given open cover $\left\{U_{\alpha}: \alpha \in A\right\}$ of a set S having a finite subcover?

How do open covers of sets typically arise?

- Let S be any set.
- For each $x \in S$, let U_{x} be any open set which contains x.
- Then $\left\{U_{x}: x \in S\right\}$ is an open cover of S which is indexed by the points of S.

Why might it be desirable for an open cover of a set to have a finite subcover?

- In the above method of producing open covers, each U_{x} might arise in an attempt to describe some phenomenon associated with that x value, for example in describing the behavior of some function near x.
- The family of sets in the open cover is making lots of local statements about the behavior of that function.
- But say we would like to make a single global statement about the behavior of the function.
- Then it would be desirable that the above open cover has a finite subcover,
- i.e. that there exists a finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ of A such that S is covered by the associated sets $U_{\alpha_{1}}, U_{\alpha_{2}}, \ldots, U_{\alpha_{N}}$, which means that

$$
S \subseteq U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \cdots \cup U_{\alpha_{N}} .
$$

- We might be able to use this finite family of sets to make a global statement about the given function.

Exercise.

Let S be a nonempty set with the property that every cover of S has a finite subcover.
a) Does the set $\{1,2,3, \ldots, 1000\}$ have this property?
b) Does the set $[0,1]$ have this property?
c) What kind of set must S be if it has the above property?

In the above exercise, if we modify the condition so that we allow only open covers, we arrive at the definition of a compact set:

Definition

A subset S of \mathbb{R} is called compact provided every open cover of S has a finite subcover. This means that for any open cover $\left\{\overline{\left.U_{\alpha}: \alpha \in A\right\}}\right.$ of S, there exists a finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ of A such that $S \subseteq U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \cdots \cup U_{\alpha_{N}}$.

- For any set S, we can always get a cover of S by simply taking $\{\{x\}: x \in S\}$.
- But this is not an open cover of S, because singleton sets are not open subsets of \mathbb{R}.
- In the definition of compactness, we're "fattening" up the sets in this particular cover of S by insisting that they be open sets.

Exercise.

a) Prove that $\{1,2,3\}$ is compact.
b) Prove that \mathbb{R} is not compact.
c) Prove that $(0,1)$ is not compact.

- A similar argument as in (a) above shows that any finite set is compact.
- After doing the above exercise, you might wonder if there exist any infinite subsets of \mathbb{R} which are compact.
- The point of the Heine-Borel theorem is that it shows that there are lots of infinite sets which are compact.

Theorem (Heine-Borel). Let $a, b \in \mathbb{R}$ with $a<b$. Then the closed bounded interval $[a, b]$ is a compact set.

- So the theorem says that any open cover of $[a, b]$ must have a finite subcover.
- Even though the statement is very elegant and simply stated, the proof of it is nontrivial (i.e. does not follow easily from the definitions of compact and closed interval).
- It is another nice application of the interval halving method.
- If I describe the main ideas of the proof, you might be able to come up with it yourself.

Comments on the proof

- We have to give ourselves an open cover $\left\{U_{\alpha}: \alpha \in A\right\}$ of $[a, b]$, and we must deduce that there is a finite subcover, i.e. finitely many of the sets in the open cover already cover $[a, b]$.
- The proof is by contradiction. We assume no finite subcover exists, and we deduce a contradiction.
- We use the method of interval halving. If $I_{1}:=[a, b]$, consider the left half and the right half of I_{1}. At least one of those two intervals also doesn't have a finite subcover of the original cover. Let I_{2} be either the left or right half, choosing it so that it doesn't have a finite subcover taken from the original open cover.
- Continuing in this way (using induction), we get an infinite decreasing sequence of intervals I_{n} none of which has a finite subcover of the original open cover.
- Apply the Nested Intervals Theorem to obtain an x in the intersection of all of these intervals I_{n}.
- That x must be in at least one of the sets U_{α}, since they cover $[a, b]$.
- Use that fact that U_{α} is open to show that one of the intervals I_{n} is entirely contained in U_{α} (if n is chosen large enough). Do you see why this is the contradiction we were looking for?

Theorem (Heine-Borel). Let $a, b \in \mathbb{R}$ with $a<b$. Then the closed bounded interval $[a, b]$ is a compact set.

Exercise.

Write the proof of the Heine-Borel theorem.

