
1.7 The Heine-Borel Covering Theorem; open sets, compact sets

This section gives another application of the interval halving method, this time to a particularly
famous theorem of analysis, the Heine − Borel Covering Theorem .
It also introduces two very important kinds of sets, namely open sets and compact sets .
The Heine-Borel theorem says that closed bounded intervals [a, b] are examples of compact sets.
The concept of open set is what is needed in order to define convergence and to formulate the idea of
continuity.
One can formulate the definition of open set in other settings where various notions of convergence are
needed:

- For example, it is formulated in Rn in order to study multivariable calculus.
- In a branch of mathematics known as “functional analysis” where we study sets of functions, we’re

interested in convergence of sequences of functions, so one requires a notion of open set in that setting.
The compact sets are typically infinite, but they have a property in common with finite sets with very
far-reaching applications.
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Notation
Let x ∈ R and let r > 0. The notation Ir (x) refers to the open interval centered at x of radius r ,
that is

Ir (x) := {y ∈ R : |y − x | < r} = {y ∈ R : −r < y − x < r} = (x − r , x + r).

Exercise.
Consider the set U = {x ∈ R : 7 < x < 16}.
a) Sketch this set on a number line.
b) Identify this set using the “I” notation of the above definition.
c) Now identify I7(1.3) using set-builder notation and then using interval notation. Sketch it on a number

line.

2 / 19



Definition
Let O be a subset of R. We call O an open set if for each x in O there exists an open interval
centered at x which is contained in O. Thus O is open provided

(∀x ∈ O)(∃r > 0)[Ir (x) ⊆ O].

Note that the r in the above definition will usually depend on the given x .

Exercise.
Let a, b ∈ R such that a < b.
a) Prove that {4} is not an open set.
b) Prove that the closed interval [a, b] is not open.
c) Prove that the open interval (a, b) is an open set.

A similar argument as the one used in the exercise shows that half open intervals like (−∞, b) and
(a,∞) are also open sets.
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Definition: Indexed families of sets and their union
Let A be any nonempty set (the “indexing set”) and for α ∈ A, say we have a set Uα which is
a subset of R. We call

U = {Uα : α ∈ A}

a family of sets indexed by A.
The union of all of the sets in the indexed family U is defined by⋃

α∈A
Uα := {x ∈ R : (∃α ∈ A)[x ∈ Uα]}.

Note that a typical element of U is an entire subset of R,
whereas a typical element of the union of the elements of U is a real number (since the union is a
subset of R),
so U and the union of the elements of U are very different kinds of objects.
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Exercise.
Define the following collection of sets:

U1 = {1, 3}, U2 = {1/2, 7, 0}, U3 = {9, 10, 11}, U4 = {1, 7, 10, 15}.

Let’s view this as an indexed collection of sets U . In the following, make sure to use correct set notation
(in this case, listing notation).
a) Identify the indexing set A.
b) Identify the family of sets which we’ve called U .
c) Identify

⋃
i∈A

Ui .

d) Identify an element in U , any element will do.
e) Identify any element in

⋃
i∈A

Ui .
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Definition of cover
Let S be a subset of R and let U = {Uα : α ∈ A} be an indexed family of sets. We say that the
family of sets is a cover of S (or that the family covers S) provided

S ⊆
⋃

α∈A
Uα.

Exercise.
Look again at the family U1 = {1, 3}, U2 = {1/2, 7, 0}, U3 = {9, 10, 11}, U4 = {1, 7, 10, 15} of the
previous exercise.
a) Describe what are all the sets S which are covered by this family {U1,U2,U3,U4}.
b) Write down a few different sets S which are covered by this family of sets.
c) Write down a subset of R which is not covered by this family of sets.

d) Write down a subset S of R which is covered by {U1,U2,U3,U4}, but which is also covered by
{U1,U2,U3}.
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In part (d) of the previous exercise, we refer to {U1,U2,U3} as being a subcover of the cover
{U1,U2,U3,U4} because it is a subset of the original cover {U1,U2,U3,U4} and it is also a cover of
the set S written down in that exercise.

Definition
Let S be a subset of R and let U = {Uα : α ∈ A} be an indexed family of sets which is a cover of S.
Let B ⊆ A, i.e. B is a subset of the indexing set A. If it is the case that U = {Uα : α ∈ B} is also a
cover of S, then we say that U = {Uα : α ∈ B} is a subcover of the cover U = {Uα : α ∈ A}.

Exercise.
a) Write down a specific cover of S = R consisting of finitely many open intervals.
b) Write down a specific cover of R consisting of countably many open intervals such that this cover does

not have a subcover consisting of finitely many intervals.
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Definition
Let S be a subset of R and let U = {Uα : α ∈ A} be an indexed family of sets which is a cover of
S. We call it an open cover provided all of the sets Uα which make up the cover are open sets.

So the covers in the previous exercise were open covers (since they consisted of open intervals, and as
we showed earlier, open intervals are open sets).
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In this section, we are particularly interested in
- open covers of sets
- the number of elements in the indexing set of that open cover

Definition
For an open cover {Uα : α ∈ A} of a set S ⊆ R, let’s call it
- a finite open cover of S if A is a finite set;
- a countable open cover of S if A is a countable set;
- an uncountable open cover of S if A is an uncountable set.

Exercise.
Write down specific open covers of R of the following types:
a) A finite open cover
b) A countable open cover that does not have a finite subcover
c) A countable open cover that does have a finite subcover
d) An uncountable open cover
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Theorem. Let {Uα : α ∈ A} be a nonempty family of open sets (where the indexing set A can have
any cardinality whatsoever) . Then

⋃
α∈A

Uα is an open set.

Exercise.
Prove the above theorem.
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Theorem. A nonempty subset U of R is open if and only if it is a union of a family of nonempty
open intervals.

Exercise.
Prove the above theorem.
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Let’s review the definition of open cover of a set and finite subcover of an open cover of a set:

Open cover of a set

Let S be any subset of R. An open cover of S is a family of sets Uα indexed by some set A such
that the following hold:

(i) Uα is open for each α ∈ A;
(ii) S ⊆

⋃
α∈A

Uα.

Finite subcover of an open cover of a set

Let S be any subset of R and let {Uα : α ∈ A} be an open cover of S. We say that this open cover
has a finite subcover if there exists a set B such that the following two things hold:

B is a finite subset of A;
{Uα : α ∈ B} is a cover of S.

Exercise.
From an “economics” point of view, explain in words what is the benefit of a given open cover
{Uα : α ∈ A} of a set S having a finite subcover?
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How do open covers of sets typically arise?
Let S be any set.
For each x ∈ S, let Ux be any open set which contains x .
Then {Ux : x ∈ S} is an open cover of S which is indexed by the points of S.

Why might it be desirable for an open cover of a set to have a finite subcover?
In the above method of producing open covers, each Ux might arise in an attempt to describe some
phenomenon associated with that x value, for example in describing the behavior of some function
near x .
The family of sets in the open cover is making lots of local statements about the behavior of that
function.
But say we would like to make a single global statement about the behavior of the function.
Then it would be desirable that the above open cover has a finite subcover,
i.e. that there exists a finite subset {α1, α2, . . . , αN} of A such that S is covered by the associated sets
Uα1 ,Uα2 , . . . ,UαN , which means that

S ⊆ Uα1 ∪ Uα2 ∪ · · · ∪ UαN .

We might be able to use this finite family of sets to make a global statement about the given function.
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Exercise.
Let S be a nonempty set with the property that every cover of S has a finite subcover.
a) Does the set {1, 2, 3, . . . , 1000} have this property?
b) Does the set [0, 1] have this property?
c) What kind of set must S be if it has the above property?
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In the above exercise, if we modify the condition so that we allow only open covers, we arrive at the
definition of a compact set:

Definition
A subset S of R is called compact provided every open cover of S has a finite subcover. This means
that for any open cover {Uα : α ∈ A} of S, there exists a finite subset {α1, α2, . . . , αN} of A such
that S ⊆ Uα1 ∪ Uα2 ∪ · · · ∪ UαN .

For any set S, we can always get a cover of S by simply taking {{x} : x ∈ S}.
But this is not an open cover of S, because singleton sets are not open subsets of R.
In the definition of compactness, we’re “fattening” up the sets in this particular cover of S by insisting
that they be open sets.
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Exercise.
a) Prove that {1, 2, 3} is compact.
b) Prove that R is not compact.
c) Prove that (0, 1) is not compact.

A similar argument as in (a) above shows that any finite set is compact.
After doing the above exercise, you might wonder if there exist any infinite subsets of R which are
compact.
The point of the Heine-Borel theorem is that it shows that there are lots of infinite sets which are
compact.
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Theorem (Heine-Borel). Let a, b ∈ R with a < b. Then the closed bounded interval [a, b] is
a compact set.

So the theorem says that any open cover of [a, b] must have a finite subcover.
Even though the statement is very elegant and simply stated, the proof of it is nontrivial (i.e. does not
follow easily from the definitions of compact and closed interval).
It is another nice application of the interval halving method.
If I describe the main ideas of the proof, you might be able to come up with it yourself.
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Comments on the proof
We have to give ourselves an open cover {Uα : α ∈ A} of [a, b], and we must deduce that there is a
finite subcover, i.e. finitely many of the sets in the open cover already cover [a, b].
The proof is by contradiction. We assume no finite subcover exists, and we deduce a contradiction.
We use the method of interval halving. If I1 := [a, b], consider the left half and the right half of I1. At
least one of those two intervals also doesn’t have a finite subcover of the original cover. Let I2 be
either the left or right half, choosing it so that it doesn’t have a finite subcover taken from the original
open cover.
Continuing in this way (using induction), we get an infinite decreasing sequence of intervals In none of
which has a finite subcover of the original open cover.
Apply the Nested Intervals Theorem to obtain an x in the intersection of all of these intervals In.
That x must be in at least one of the sets Uα, since they cover [a, b].
Use that fact that Uα is open to show that one of the intervals In is entirely contained in Uα (if n is
chosen large enough). Do you see why this is the contradiction we were looking for?
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Theorem (Heine-Borel). Let a, b ∈ R with a < b. Then the closed bounded interval [a, b] is
a compact set.

Exercise.
Write the proof of the Heine-Borel theorem.
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