Theorem (Heine-Borel) Closed bounded intervals are compact.

Tract. We ague by contradiction. Suppose a, b) is a closed and bounded interval which is not compact. Then there exists a family of sets U= {U, xeA}

0 [a,b] ⊆ UU,; Dforall LEA, U, is on green net; For any finite subset Bof A, [a,b] is not a subset of Ud.

We now inductively construct a requerce of intervals $\{I_n\}_n = \{[a_n, b_n]\}_n$ with the following properties:

O I,= [a,b];

O For each n, In is either the left or the right half of I_n ;

For each n, In is not a subset of UUs for any finite subset B of A.

Baris step Choose [= [a, b]. Then by assumption, property 3 holds for n=1.

Inductive Step	Letne Name a	uppore we have	[,, [_
ratisfying 0, Q, and			
of In. If both of		-	
of the sets in U	then so wow	ld In be covered	by
finitely many of			
hypotheris, this de	or not happe	n. So we defin	<u>. </u>
T =	Lefthalf of In	if the left half of be covered by many elemen	annol e livitele
-n+1)	many elemen	to of U
	right half of In	otherwise	
· ·			

This completes the proof of the induction.

By the Nested Intervals Theorem, there exists a unique $x \in \mathbb{R}$ such that

$$\bigcap_{n=1}^{\infty} \prod_{n=1}^{\infty} = \{x\}.$$

In particular, $x \in [a,b]$, so since U covers [a,b], there exists $\lambda_0 \in A$ such that $x \in U_{\lambda_0}$.

Since U_{∞} is open, there exists $r > 0$ such that $I_{r}(x) \subseteq U_{\infty}$.
Since by-an-o, we can choose no such that by-andr.
$\perp_{\Lambda_o} = \perp_{\Gamma} (X).$
Jo ree why, let $w \in I_n$. Since also $x \in I_n$, then $ w-x < b_n - a_n < r$,
as WET (x) This moures the claim.
Thus $I_n \subseteq I_r(x) \subseteq U_\infty$, and so a single set of U contains I_n . This contradite property $\mathfrak D$ of I_{n_0} , and so we are done.