1.4 Algebraic Combinations of Sequences

- Given that we have convergence of some sequences, we study here what we can prove about the convergence of various algebraic combinations of those sequences.

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then
(i) $c x_{n} \rightarrow c L$, where c is any constant;
(ii) $x_{n}+y_{n} \rightarrow L+M$;
(iii) $x_{n} y_{n} \rightarrow L M$;
(iv) If $L \neq 0$, then $x_{n} \neq 0$ for sufficiently large n, and $\frac{1}{x_{n}} \rightarrow \frac{1}{L}$;
(v) If $M \neq 0$, then $\frac{x_{n}}{y_{n}} \rightarrow \frac{L}{M}$.

- We will prove all of these as exercises.

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then (i) $c x_{n} \rightarrow c L$, where c is any constant.

Comments on proof of (i)

- Given that we can make $\left|x_{n}-L\right|$ small for large n, we must show that we can make $\left|c x_{n}-c L\right|$ small.
- So for a given $\varepsilon>0$, how small must we make $\left|x_{n}-L\right|$ in order that $\left|c x_{n}-c L\right|<\varepsilon$?

Exercise.

Write the proof of (i).

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then (ii) $x_{n}+y_{n} \rightarrow L+M$;

Comments on proof of (ii)

- We must show that if we can make $\left|x_{n}-L\right|$ small for all sufficiently large n, and we can make $\left|y_{n}-M\right|$ small for sufficiently large n, then we can make $\left|\left(x_{n}+y_{n}\right)-(L+M)\right|$ suitably small for all sufficiently large n.
- Given that we can make $\left|x_{n}-L\right|$ smaller than a given positive real number for sufficiently large n, and we can make $\left|y_{n}-M\right|$ smaller than a given positive real number for sufficiently large n, how big should n be so that we are sure that both $\left|x_{n}-L\right|$ and $\left|y_{n}-M\right|$ are smaller than a given positive number ε ?
- If we can force $\left|x_{n}-L\right|$ and $\left|y_{n}-M\right|$ both to be small for sufficiently large n, how can we be sure that $\left|\left(x_{n}+y_{n}\right)-(L+M)\right|$ is also small? What tool should we use?

Exercise.

Write the proof of (ii).

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then the following hold:
(iii) $x_{n} y_{n} \rightarrow L M$;

Comments on proof of (iii)

- We must show that if we can make $\left|x_{n}-L\right|$ small for all sufficiently large n, and we can make $\left|y_{n}-M\right|$ small for sufficiently large n, then we can make $\left|x_{n} y_{n}-L M\right|$ suitably small for all sufficiently large n.
- The trick is to add and subtract the right thing so that after simplifying we get a sum of terms each of which we can force to be suitably small for all large enough n.
- Try adding and subtracting $y_{n} L$ under the absolute value bars. This gives $\left|x_{n} y_{n}-L M\right|=\left|x_{n} y_{n}-y_{n} L+y_{n} L-L M\right|=\left|y_{n}\left(x_{n}-L\right)+L\left(y_{n}-M\right)\right|$.
- Now apply the triangle inequality to get $\left|x_{n} y_{n}-L M\right| \leq\left|y_{n}\right|\left|x_{n}-L\right|+|L|\left|y_{n}-M\right|$.
- How do you know that you can force the term $\left|y_{n}\right|\left|x_{n}-L\right|$ to be suitably small? What property of the convergent sequence y_{n} should you make use of to do it?

Exercise.

Write the proof of (iii).

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then
(iv) If $L \neq 0$, then $x_{n} \neq 0$ for sufficiently large n, and $\frac{1}{x_{n}} \rightarrow \frac{1}{L}$;

Comments on proof of (iv)

- We first need to ensure that knowing $L \neq 0$ is enough to deduce $x_{n} \neq 0$ for all n after a while.
- So this means proving that $\left|x_{n}\right|$ is bounded away from 0 for all n after a while.
- Since $L \neq 0$ and the terms of x_{n} get close to L for all n sufficiently large, it must be possible to prove $x_{n} \neq 0$ for n large. But how to prove it?
- Try to do it using the reverse triangle inequality.
- Next must show that if we can make $\left|x_{n}-L\right|$ small for all sufficiently large n, then we can make $\left|1 / x_{n}-1 / L\right|$ suitably small for all sufficiently large n.
- Rewriting we get $\left|1 / x_{n}-1 / L\right|=\left|\frac{x_{n}-L}{x_{n} L}\right|$.
- Use the facts that $\left|x_{n}\right|$ is bounded away from 0 and that we can make $\left|x_{n}-L\right|$ as small as we wish to show that for all sufficiently large n we can make $\left|\frac{x_{n}-L}{x_{n} L}\right|$ suitably small for all n after a while.

Exercise.

Write the proof of (iv).

Theorem.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences, L and M real numbers, for which $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$. Then (v) If $M \neq 0$, then $\frac{x_{n}}{y_{n}} \rightarrow \frac{L}{M}$.

Comments on proof of (v)

- This part of the theorem is the most complex one of the theorem.
- However, do you see that now that we have proved the other parts of the theorem we can prove part (v) very easily?

Exercise.

Write the proof of (v).

Exercise

Let $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ be two sequences such that $x_{n} \rightarrow 0$, but we specify nothing more about the sequence y_{n}.
a) It is not necessarily true that $x_{n} y_{n} \rightarrow 0$. Intuitively why don't you believe that in general $x_{n} y_{n}$ has to converge to 0 ?
b) Give a few specific counterexamples to illustrate what can go wrong.
c) What additional property could you assign to the sequence y_{n} so that one can prove that $x_{n} y_{n} \rightarrow 0$? Try to make your property as weak a condition on y_{n} as you can.

Exercise

Let $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ be two sequences such that $x_{n} \rightarrow 0$ and y_{n} is bounded.
a) Write a direct proof that $x_{n} y_{n} \rightarrow 0$.
b) Now write a simpler proof that $x_{n} y_{n} \rightarrow 0$ that makes use of the squeeze theorem.

- A useful result is

Theorem. If $x_{n} \rightarrow L$ and $y_{n} \rightarrow M$ where L and M are real numbers, and if in addition $x_{n}<y_{n}$ for all n, then $L \leq M$.

- A special case of this is when $y_{n}=0$ for all n :

$$
\text { if } x_{n} \rightarrow L \text { for some real number } L \text { and } x_{n}<0 \text { for all } n \text {, then } L \leq 0
$$

- We proved this last result earlier in the course.

Exercise

Write a proof of the theorem which makes use of the above result. Make your proof as simple as possible, but show all relevant details.

