
1.4 Algebraic Combinations of Sequences

Given that we have convergence of some sequences, we study here what we can prove about the
convergence of various algebraic combinations of those sequences.

Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then

(i) c xn → c L, where c is any constant;
(ii) xn + yn → L + M;
(iii) xn yn → L M;

(iv) If L 6= 0, then xn 6= 0 for sufficiently large n, and 1
xn
→ 1

L ;

(v) If M 6= 0, then xn
yn
→ L

M .

We will prove all of these as exercises.
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Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then

(i) c xn → c L, where c is any constant.

Comments on proof of (i)
Given that we can make |xn − L| small for large n, we must show that we can make |c xn − c L| small.
So for a given ε > 0, how small must we make |xn − L| in order that |c xn − c L| < ε?

Exercise.
Write the proof of (i).
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Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then

(ii) xn + yn → L + M;

Comments on proof of (ii)
We must show that if we can make |xn − L| small for all sufficiently large n, and we can make |yn −M|
small for sufficiently large n, then we can make |(xn + yn)− (L + M)| suitably small for all sufficiently
large n.
Given that we can make |xn − L| smaller than a given positive real number for sufficiently large n,and
we can make |yn −M| smaller than a given positive real number for sufficiently large n, how big should
n be so that we are sure that both |xn − L| and |yn −M| are smaller than a given positive number ε?
If we can force |xn − L| and |yn −M| both to be small for sufficiently large n, how can we be sure that
|(xn + yn)− (L + M)| is also small? What tool should we use?

Exercise.
Write the proof of (ii).
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Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then the

following hold:
(iii) xn yn → L M;

Comments on proof of (iii)
We must show that if we can make |xn − L| small for all sufficiently large n, and we can make |yn −M|
small for sufficiently large n, then we can make |xn yn − L M| suitably small for all sufficiently large n.
The trick is to add and subtract the right thing so that after simplifying we get a sum of terms each of
which we can force to be suitably small for all large enough n.
Try adding and subtracting ynL under the absolute value bars. This gives
|xn yn − L M| = |xnyn − ynL + ynL− LM| = |yn(xn − L) + L(yn −M)|.
Now apply the triangle inequality to get |xn yn − L M| ≤ |yn| |xn − L|+ |L| |yn −M|.
How do you know that you can force the term |yn| |xn − L| to be suitably small? What property of the
convergent sequence yn should you make use of to do it?

Exercise.
Write the proof of (iii).
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Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then

(iv) If L 6= 0, then xn 6= 0 for sufficiently large n, and 1
xn
→ 1

L ;

Comments on proof of (iv)
We first need to ensure that knowing L 6= 0 is enough to deduce xn 6= 0 for all n after a while.
So this means proving that |xn| is bounded away from 0 for all n after a while.
Since L 6= 0 and the terms of xn get close to L for all n sufficiently large, it must be possible to prove
xn 6= 0 for n large. But how to prove it?
Try to do it using the reverse triangle inequality.
Next must show that if we can make |xn − L| small for all sufficiently large n, then we can make
|1/xn − 1/L| suitably small for all sufficiently large n.

Rewriting we get |1/xn − 1/L| =
∣∣∣∣xn − L

xn L

∣∣∣∣.
Use the facts that |xn| is bounded away from 0 and that we can make |xn − L| as small as we wish to

show that for all sufficiently large n we can make
∣∣∣∣xn − L

xn L

∣∣∣∣ suitably small for all n after a while.

Exercise.
Write the proof of (iv).
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Theorem.
Let {xn}∞

n=1 and {yn}∞
n=1 be sequences, L and M real numbers, for which xn → L and yn → M. Then

(v) If M 6= 0, then xn
yn
→ L

M .

Comments on proof of (v)
This part of the theorem is the most complex one of the theorem.
However, do you see that now that we have proved the other parts of the theorem we can prove part
(v) very easily?

Exercise.
Write the proof of (v).
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Exercise
Let{xn}∞

n=1, {yn}∞
n=1 be two sequences such that xn → 0, but we specify nothing more

about the sequence yn.
a) It is not necessarily true that xn yn → 0. Intuitively why don’t you believe that in general

xn yn has to converge to 0?
b) Give a few specific counterexamples to illustrate what can go wrong.
c) What additional property could you assign to the sequence yn so that one can prove that

xn yn → 0? Try to make your property as weak a condition on yn as you can.
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Exercise
Let {xn}∞

n=1, {yn}∞
n=1 be two sequences such that xn → 0 and yn is bounded.

a) Write a direct proof that xn yn → 0.
b) Now write a simpler proof that xn yn → 0 that makes use of the squeeze theorem.
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A useful result is

Theorem. If xn → L and yn → M where L and M are real numbers, and if in addition xn < yn for all n,
then L ≤ M.
A special case of this is when yn = 0 for all n:

if xn → L for some real number L and xn < 0 for all n, then L ≤ 0.

We proved this last result earlier in the course.

Exercise
Write a proof of the theorem which makes use of the above result. Make your proof as simple as possible,
but show all relevant details.
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