Theorem (Basic Properties of Differentiability)

Let f, g be functions with common domain D, let x_0 be a cluster point of D. Let c be a fixed real number. Suppose that f and g are differentiable at x_0 .

c) (Product Rule) Then the product $f \cdot g$ is differentiable at x_0 and

 $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0).$

Exercise.

Write the proof using the linear transformation characterization of differentiability.

Theorem (Basic Properties of Differentiability)

Let f, g be functions with common domain D, let x_0 be a cluster point of D. Let c be a fixed real number. Suppose that f and g are differentiable at x_0 .

d) (Reciprocal Rule) If in addition $g(x_0) \neq 0$, then 1/g is differentiable at x_0 and

$$(1/g)'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}.$$

Exercise.

4 Homework

Write the proof using the linear transformation characterization of differentiability.

Theorem (Basic Properties of Differentiability)

Let f, g be functions with common domain D, let x_0 be a cluster point of D. Let c be a fixed real number. Suppose that f and g are differentiable at x_0 .

e) (Quotient Rule) If in addition $g(x_0) \neq 0$, then f/g is differentiable at x_0 and

$$(f/g)'(x_0) = \frac{f'(x_0)g(_0) - g'(x_0)f(x_0)}{(g(x_0))^2}.$$

Exercise.

Write the proof using the linear transformation characterization of differentiability.

This result follows by combining the product rule with the reciprocal rule: $)' = (f \cdot f)' = f' \cdot f_{q} / f + f \cdot (f)' + f' \cdot f_{q} / f + f \cdot (f)' + f' \cdot f' + f' \cdot (f - f') + f' \cdot (f -$

Some uses of the linear transformation characterization of differentiability

We continue with applications of the Linear Characterization of Differentiability Theorem by proving the following theorem.

Theorem (Chain Rule)

Let g be a function with domain D_g and f a function whose domain is contained in the range of g. Let x_0 be a cluster point of D_g and $g(x_0)$ a cluster point of D_f . If g is differentiable at x_0 and f is differentiable at $g(x_0)$, then the composition $f \circ g$ is differentiable at x_0 and

 $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$

Exercise.

Write the proof.

Theorem (Chain Rule) Let g be a function with domain Ig and I a function whose domain Dy is contained in the range of g. Let X. be a cluster point of Dg and g(X.) a cluster point of Dy. If g is differentiable at Xo and is differentiable at g (Xo), then fog is differentiable at Xo and $(\circ g)'(x_{o}) = f'(g(x_{o}))g'(x_{o}).$ Proof Since F is differentiable at g (xi), there exists a function Es such that $\widehat{O} \qquad f\left(g(x_{o})+\widetilde{h}\right)=f\left(g(x_{o})\right)+f'\left(g(x_{o})\right)\widetilde{h}+\xi_{f}\left(\widetilde{h}\right)\widetilde{h},$ where Ef(h) + 0 as h + 0. Since g is differentiable at Xo, there exists a function Eg such that (xo+h)= g(xo)+g'(xo)h+ Ez(h).h, where Eg(h) - O as h - O. Let h= g'(xo)h+Ey(h)h. Note that h→0 as h→0. Using first 2 and then D, we get $(f \circ g)(x_{o}+h) - (f \circ g)(x_{o}) = f(g(x_{o}+h)) - f(g(x_{o}))$ $= f (g(x_{0}) + g'(x_{0})h + \xi_{g}(h)h) - f(g(x_{0}))$ = $f(g(x_0)) + f'(g(x_0))\tilde{h} + \varepsilon_f(\tilde{h})\tilde{h} - f(g(x_0))$ = $f'(g(x_0))(g'(x_0)h+\epsilon_g(h)h)+\epsilon_g(\bar{h})(g'(x_0)h+\epsilon_g(h)h)$

 $= f'(g(k_{o}))g'(x_{o})h + h \left[f'(g(k_{o})) \mathcal{E}_{g}(h) + \mathcal{E}_{f}(h)g'(x_{o}) + \mathcal{E}_{f}(h) \mathcal{E}_{g}(h) \right] + \mathcal{E}_{f}(h) \mathcal{E}_{g}(h) \left] .$ The result follows from the fact that the circled quantity goes to 0 as h > 0.