$\left\{E_{n}\right\}_{1}$ a sequence of functions,

$$
f_{1}: O \rightarrow \mathbb{R} \text {, where } D \leq \mathbb{R} \text {. }
$$

(1) We say $\left\{\right.$ faln $_{\text {convergen poinfwile if }}$ for each $x \in D$,
\{frh $(x)\}$ correrpen fo some real nureber.
let call $\lim _{n \rightarrow \infty} f_{n}(x)$ the number $f(t)$. Then $f: D \rightarrow \mathbb{R}$. We soy $\left\{f_{n}\right\}_{a}$ corverges pointarise to f.
(2) Infinity narm

If $9: 0 \rightarrow \mathbb{R}$ if g^{\prime} is a
bourded functialy we associte the nurber 11 "M, te fined I'y

$$
\|g\|_{\infty}=\operatorname{sep}\{|g(x)|: x \in D\} .
$$

(3) we soy $\left\{f_{4}\right\}$ converpes unifaraly yo f if

$$
\left\|f_{4}-f\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty \text {. }
$$

Illa of a Norm
2 evacuples of nomes
(1) $x \in \mathbb{R}$
(2) $11 F / /$

We next formulate convergence and Cauchy sequences in any normed space:
Definition
Let $(V,\|\cdot\|)$ be a real normed space. Let v_{n} be a sequence in V, and let $v \in V$.
(i) We say that the sequence v_{n} converges in norm to v provided $\left\|v_{n}-v\right\| \rightarrow 0$, ie.

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})\left[n \geq N \Longrightarrow\left\|v_{n}-v\right\|<\varepsilon\right] .
$$

(ii) We say that the sequence v_{n} is a Cauchy sequence provided the following is true:

$$
(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall m, n \in \mathbb{N})\left[m, n \geq N \Longrightarrow\left\|v_{m}-v_{n}\right\|<\varepsilon\right]
$$

Theorem In any normed space, if v_{n} converges to v in norm, then v_{n} is a Cauchy sequence.

Exercise.
Write the proof of the above theorem.
Pf $S_{\text {say }} V_{n} \rightarrow V$. To row $\left\{\mathrm{V}_{4}\right\}$ Gauche let $\varepsilon>0$.
Since $u_{n} \rightarrow V$, we can choose $N \in X$ sit for all n $\in \mathbb{X}$, of $f^{\prime} a \geqslant N$ then $\left\|V_{n}-V\right\|_{2}$. Let
$m, n \in \mathbb{N}$. Suppose $m, n \geqslant N$ o Then

$$
\begin{aligned}
W_{M}-V_{q} l & =\left\|V_{m}-V+V-V_{1}\right\| \\
& \leq\left\|V_{M}-V / V+V_{1}-V\right\| \\
& <\frac{\Sigma}{2}+\frac{\Sigma}{2}=\varepsilon_{1}
\end{aligned}
$$

In section 2.4 we saw that $C[a, b]$ with the sup norm is an example of a normed space．We now show that it has the stronger property of being a Banach space．

Theorem Let $[a, b]$ be a closed bounded interval．Let $C[a, b]$ be the normed space of continuous real－valued function on $[a, b]$ ，equipped with the sup norm．Then $C[a, b]$ is a Banach space．

Some hints on the proof：
－We must give ourselves a sequence f_{n} which is Cauchy relative to the sup norm．
－Do you see why it＇s true that for each $x \in[a, b]$ ，we have $f_{n}(x)$ is a Cauchy sequence of real numbers？
－Why does this allow us to associate a new real number which we will call $f(x)$ ？
－Now try to prove that the sequence f_{n} converges in norm to f ．
－How do you know that $f \in C[a, b]$ ？
Exercise．
Write the proof of the above theorem．

－（1）Find if it cocker pomintwise： Fit $x \in[a, 1]$ ．Coth at

$\mid f_{n}$ 奸敌利 $1 \leq \| f_{1}-f_{\text {ar l }} b_{\infty} \rightarrow 0$ os $m a \rightarrow \infty$ ．

\therefore copes．

$$
\text { Try to rhow fa } \rightarrow f \text { urith. }
$$

Theorem $([a, b]$ is complete with respect to the sup norm.

Proof Let $\left\{f_{n}\right\}_{n}$ be a sequence in $[[a, b]$ which is Cauchy with respect to the mp norm. We must show there exists $f \in C[a, b]$ such that $f_{n} \rightarrow f$ in the sup norm.

Let $\varepsilon>0$. Since $\left\{f_{n}\right\}_{n}$ is Cauchy in the mp norm, there exists $N \in \mathbb{N}$ sech that for all $m, n \in \mathbb{N}$, if $m, n \geqslant N$ then $\left\|f_{m}-f_{n}\right\|_{\infty}<\varepsilon$.

Let $x \in[a, b]$. Then for each $m, n \geqslant N$,

$$
\left|f_{m}(x)-f_{n}(x)\right| \leqslant\left\|f_{m}-f_{n}\right\|_{\infty}<\varepsilon
$$

Thus $\left\{f_{n}(x)\right\}_{n}$ is a Cauchy sequence of numbers. B_{y} the Completeness $A_{x i o m}$ of \mathbb{R}, the sequence converges to some red number. Let's call that real number $f(x)$.

Since we can do this for each $x \in[a, b]$, we have defined f as a function from $[a, b]$ to \mathbb{R}. We will be done if eve can prove $f \in C[a, b]$ and $f_{n} \rightarrow f$ in the sup norm.

Let ε and N be as above, and let $m \geqslant n \geq N$. Then
by $*$,

$$
f_{n}(x)-\varepsilon \leqslant f_{m}(x) \leqslant f_{n}(x)+\varepsilon
$$

Letting $m \rightarrow \infty$ and rewriting, we get $\left|f(x)-f_{n}(x)\right| \leq \varepsilon$.

Joking the supremum of this over a $\mu_{x} \in[a, b]$, we get

$$
\left\|f-f_{n}\right\|_{\infty} \leqslant \varepsilon .
$$

This proves $f_{n} \rightarrow f$ uniformly.
Since the uniform limit of continuous functions is continuous, it follows $f \in C[a, b]$.

