Theorem
Let A be a nonempty set with an upper bound. Then the least upper bound of A exists.

Exercise.
Use the method of interval halving and the completeness axiom to prove the above theorem.
-

ibex is ta keys choosing inters ale [an, bn? such chat Can not an uNder sound of A oud (-in) B_{4} is an upper bound of A. qnp, \quad (in $b_{i}-a_{n} \rightarrow 0$.
then 9 and sn converged to the sore. number t and the hone is that ti
the lost unpen bound of l

But $\mathrm{Bu}_{4} \rightarrow x$ jo fa see $\mathrm{bal}_{4}<9$ contradict tiny bu sn upper found

- in the smalleat of all uprer Gounds If not $f x^{\prime}$ s.e. $x^{\prime}<x$ and x^{\prime} on usper bound of A. But $a_{n} \rightarrow x$

But $x^{\prime}<a \in A$ contradiés x^{\prime} an unper bound of A.

Theorem Every nonempty, upper bounded subset of \mathbb{R} has a least upper bound.

Proof Let A be a nonempty, upper bounded subset of \mathbb{R}. Since A is upper bounded, there exists $M \in \mathbb{Z}$ we th that

$$
x \leq M \text { for all } x \in A \text {. }
$$

We now inductively define a sequence of intervals $\left\{I_{n}\right\}=$ $\left\{\left[a_{n}, b_{n}\right]\right\}$, mech that for all n,
(i) I_{n+1} is either the left half or the right half of I_{n};
and (ii) a_{n} is not an upper bound of A and b_{n} is an upper bound of A.
For the baisistep, let x_{0} be any element of A. Choose $a_{1}=x_{0}-1$ and $b_{1}=M$. Then a_{1} and b_{1} satisfy (i) above.

For the inductive step, let $n \geqslant 1$ and mppose we have selected a_{n} and b_{n}. Let y be the midpoint $\frac{a_{n}+b_{n}}{2}$ of $\left[a_{n}, b_{n}\right]$. Then either y is an upper bound of A or it is not an upper bound of A. If y is an upper bound of A, choose $a_{n+1}=a_{n}$ and $b_{n+1}=y$; if y is not an upper bound of A, choose $a_{n+1}=y$ and $b_{n+1}=b_{n}$. This completes the proof of the induction.

By construction, for each n,
(*) $\quad b_{n}-a_{n}=\left|I_{n}\right|=\frac{1}{2^{n-1}} \cdot\left|I_{1}\right|$.

Also, by construction, $\left\{a_{n}\right\}_{n}$ is an increasing sequence and $\left\{b_{n}\right\}_{n}$ is a decreasing sequence. We have that M is an upper bound of $\left\{a_{n}\right\}_{n}$ and any element of A is a lower bound of $\left\{b_{n}\right\}_{n}$. Thus both $\left\{a_{n}\right\}_{n}$ and $\left\{b_{n}\right\}_{n}$ are convergent sequences.

By $*, b_{n}-a_{n} \rightarrow 0$, wo from this we can deduce that $\left\{a_{n}\right\}_{1}$ and $\left\{b_{n}\right\}_{1}$ both converge to the same number, L. We prove nest that L is the least upper bound of A.

Jo do this we must show the following two thins:
(i) L is an upper bound of A,
(ii) isles than any other upper upper bound of A.
For (1), if L were not an upper bound $f A$, then there exists $x \in A$ much that $L<x$. Since $b_{n} \rightarrow L$, it follows there exists $n_{x} \in \mathbb{N}_{\text {much }}$ that $b_{n_{k}}<x$. Since $x \in A$, this contradicts that $b_{n_{x}}$ is an upper bound of A. Thus (i) is true.

For (ii), if there exists an upper bound L ' of A such that $L^{\prime}<L$, then since $a_{n} \rightarrow L$, we can deduce there exists $n_{L^{\prime}} \in \mathbb{N}$ such that $a_{n_{1},}>L^{\prime}$. Since $a_{N_{1}}$, is not an upper bound of A, there enistox $\in A$ witt $a_{N_{N}}<x$, , L L' $<x$. This contradicts that L ivan upper bound of A. J'hus (ii) is true, and noweare dore.

Consequences of the completeness axiom

Theorem

For any nonempty lower bounded set A, the greatest lower bound of A exists.

Exercise.

Prove the above theorem. But:

- Don't do it by going back to first principles, but rather by making use of the previous theorem.
- The idea is that if we define $-A$ to be $\{x \in \mathbb{R}:-x \in A\}$, then show that

$$
g|b(A)=-| u b(-A)
$$

Exercise

(i) $\sup \{-1,-13,5,7,9,2\}=$?
(ii) $\inf \{-1,-13,5,7,9,2\}=$?
(iii) $\sup [6,19.5]=$?
(iv) $\inf (\{x \in \mathbb{R}: x<10\})=$?
(v) $\sup (\{1-1 / n: n \in \mathbb{N}\})$
(vi) Let A be a nonempty subset of \mathbb{R}. Is it necessarily true that $\sup (A) \in A$? Give examples to illustrate.
(2) 9

Exercise.
(4) $\lambda<$ sup (A) : menus λ not an upper bound, So $(\dot{子} a \in A)(\lambda<a)$.

Exercise.
Let A be a nonempty set. Answer the following questions using nothing more than the definitions of supremum and infimum.
a) Suppose λ is a number such that $\lambda<\sup (A)$. What can you deduce about the set A ?
b) Suppose λ is a number such that $\lambda>\sup (A)$. What can you deduce about the set A ?
c) Suppose λ is a number such that $\lambda<\inf (A)$. What can you deduce about the set A ?
d) Suppose λ is a number such that $\lambda>\inf (A)$. What can you deduce about the set A ?

