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Abstract. The largest eigenvalue in absolute value of a symmetric matrix is greater than or
equal to the absolute value of every entry of the matrix. We introduce a conjecture that the largest
eigenvalue in absolute value of any symmetric tensor is greater than or equal to the absolute value of
every entry of the tensor. We provide partial analytical results including multiple rigorous bounds
on certain tensor entries, and multiple sharpness results including 3-tensors. Moreover, we introduce
a framework for computer assisted proofs of these inequalities. Using this framework, we show that
the inequality holds for 3-tensors up to two significant figures and for certain entries of higher order
tensors up to numerical precision.
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1. Introduction. For a symmetric α-tensor T with largest eigenvalue in abso-
lute value λmaxabs, we seek inequalities of the form

λmaxabs ≥ c|Ti1,...,iα |.(1.1)

In particular, we are interested in finding the largest c for which this inequality holds
for all α-tensors.

In the case of symmetric matrices (i.e. 2-tensors), the inequality (1.1) holds

for c = 1 since if T ∈ Rd2 is symmetric, it has an orthogonal eigendecomposition,
T = U>ΛU , so by the Cauchy-Schwarz inequality,

|Tij | = |〈ui, λjuj〉| ≤ ||ui|| ||λjuj || = |λj | ≤ λmaxabs(1.2)

where uj is an eigenvector of T and λj is the associated eigenvalue for 1 ≤ j ≤ d, and
the identity matrix shows that c = 1 is the best possible constant for matrices.

Naturally, this method of proof cannot be generalized to arbitrary tensors due
to the lack of a similar rank-1 eigendecomposition [5]. In section 3, we provide an
alternative derivation of the fact that c = 1 for matrices which can be generalized to
tensors. This brings us to make the following conjecture for all symmetric tensors.

Conjecture 1.1. For all symmetric α-order tensors T with largest eigenvalue
in absolute value λmaxabs, then

λmaxabs ≥ |Ti1,...,iα |.(1.3)

This conjecture would be extremely useful to a particular theorem for finding
approximate tensor CANDECOMP/PARAFAC (CP) decompositions that appears in
[1]. For the definition of CP decomposition, see section 2. Below we rewrite this
theorem to rely on this conjecture.
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Theorem 1.2. Let T be a α-order symmetric tensor with size d, i.e. T ∈ Rdα .
Consider the process of finding an approximate CP decomposition of T by starting
from T0 = T and setting T`+1 = T` − λ`v

⊗α
` where λ` is the largest eigenvalue in

absolute value of T` and v` is the associated eigenvector. Assuming the conjecture

λ` ≥ |(T`)i1...iα |, we have ‖T`‖F → 0 and for r =

√
1− 1

dα
∈ (0, 1)

‖T`+1‖F
‖T`‖F

≤ r and T =

p∑
`=1

λ`v
⊗α
` +O(rL)

for all L ∈ N.

For completeness, the proof of Theorem 1.2 can be found in Appendix A. A weaker
version of Theorem 1.2 was first shown for symmetric 3-tensors and 4-tensors using
the weaker inequalities

λmaxabs ≥
2

3 + 4
√

2 +
√

3
|Tijk| and λmaxabs ≥

6

323
|Tijk`|,

respectively in [1]. If Conjecture 1.1 holds, the theoretical convergence rate for find-
ing the approximate CP decomposition of a symmetric tensor would be significantly
improved as shown in Fig. 1.

In this paper we develop a computer assisted technique of developing rigorous
bounds of the form (1.1). Through extensive computations we obtain (1.1) with
c = 1.02 for 3-tensors, and we obtain c even closer to 1 for many entries of higher
order tensors. We also introduce some analytical results that show that c = 1 is the
best possible coefficient for many tensors.
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Fig. 1: With d = 2 we demonstrate the convergence rate of the approximate CP
decomposition of a random symmetric 3-tensor (a,b) and 4-tensor (c,d). The norm
of the residual (a,c)(blue) decays to numerical zero linearly and the upper bound
assuming Conjecture 1.1 (red) is much stronger than the best previous upper bound
(yellow) [1]. The ratio of successive Frobenius norms (b,d)(blue) is always less than
the derived upper bounds, r (red and yellow) until the residual norms reach numerical
zero.

In Section 2, we review some tensor facts and notation that are necessary for
finding tensor eigenvalues and eigenvectors. In Section 3, we present an alternative
proof of the inequality (1.2) without using the Cauchy-Schwarz inequality in order
to motivate our approach for general tensors. In Section 4, we present a general
method of deriving inequalities of the form (1.1) for tensors. Then, in Section 5, we
apply the method introduced in Section 4, to validate Conjecture 1.1 for special cases
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using computer assisted proofs. Finally, In Section 6, we prove the sharpness of our
conjecture particularly for 3-tensors and 4-tensors.

2. Tensor Notation. In this section we introduce necessary definitions and
notation that will be needed below.

Definition 2.1 (α-order tensor). For positive integers d and α, a tensor T be-
longing to Rdα is called a α-order tensor or simply a α-tensor.

For example, a d×1 vector is a 1-tensor and a d×d matrix is a 2-tensor. For tensors of
order α ≥ 3, we need a different type of multiplication for tensors. For the purposes of
this paper, we will only need to know about tensor-vector multiplication, but further
discussion on tensor-matrix multiplication can be found in [5].

To motivate tensor-vector multiplication, recall that for a d × d matrix A and a
d × 1 vector v, the matrix-vector multiplication Av is given by (Av)i =

∑d
j=1Aijvj .

For a d× d× d symmetric 3-tensor T we can similarly define,

(T ×1 v)ik =

d∑
j=1

Tjikvj

which is a matrix. Then naturally,

((T ×1 v)×1 v)k =

d∑
i=1

d∑
j=1

Tjikvjvi

is a vector. This leads to the general definition.

Definition 2.2 (n-mode product of a tensor). The n-mode product of a α-
order tensor T ∈ Rdα with a vector v ∈ Rd, denoted by T ×n v, is defined elementwise
as

(T ×n v)i1,...,in−1,in+1,...,iα =

d∑
j=1

Ti1,...,in−1,j,in+1,...,iαvj .

Note that T ×n v ∈ Rdα−1

, so the order of the resulting tensor is decreased by one.
Normally, the choice of index in the tensor-vector multiplication is important, but the
results of this paper are restricted to symmetric tensors.

Definition 2.3 (Symmetric Tensor). A tensor T ∈ Rdα is symmetric, if the
tensor is invariant to permutations of the indices, i.e.

Ti1···iα = Tp(i1···iα)

for any permutation p.

When a tensor is symmetric, the n-mode product is independent of the mode, i.e.
T ×n v = T ×m v for any 1 ≤ n,m ≤ k. Using this fact, we can have a definition
of symmetric tensor eigenvectors and eigenvalues in which we only need one n-mode
product. In this case, we choose n = 1.

Definition 2.4 (Tensor Eigenvectors and Eigenvalues). Let T ∈ Rdα be a tensor
then v ∈ Rd is an eigenvector and λ ∈ R is the corresponding eigenvalue of T if

(((T ×2 v)×3 v) · · · ×α v) = λv.
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For a symmetric tensor, the eigenvector-eigenvalue equation is equivalent to

(((T ×1 v)×1 v) · · · ×1 v)︸ ︷︷ ︸
α−1 times

= λv

since the choice of n-mode product does not affect the definition of a tensor eigenvec-
tor. Notice that the tensor eigenvector equation is a degree α − 1 polynomial in the
components of the eigenvector, namely,

d∑
i1,...,iα−1=1

Ti1,...,iα−1,ivi1 · · · viα−1
= λvi

so finding eigenvectors and eigenvalues analytically is challenging.

3. Matrix Eigenvalue Inequality. Recall the result we showed in the intro-
duction that proved Conjecture 1.1 for symmetric matrices in inequality (1.2). How-
ever, notice that (1.2) relied on the Cauchy-Schwarz inequality, which is unique to
matrix-vector products. In addition, the proof in (1.2) relies on symmetric matrices
having eigendecompositions, and there is no corresponding decomposition of higher
order symmetric tensors using tensor eigenvectors [5]. Matrices have a close connec-
tion to inner products that higher order tensors do not have, so we need another way
of proving this inequality that will generalize to higher order tensors. Thus in this
section, we re-prove this basic result for matrices to motivate our approach to tensors.

For a symmetric d× d matrix A the greatest and least eigenvalue can be defined
by the following optimization problems over all possible unit vectors v ∈ Rd

λmax = max
||v||=1

v>Av = max
||v||=1

d∑
i,j=1

Aijvivj and λmin = min
||v||=1

d∑
i,j=1

Aijvivj .

Let us fix s = 1, . . . d and let (es)i = δis, where δis =

{
0 if i 6= s

1 if i = s
is the Kronecker

delta. Then ‖vs‖ = 1 so∑
i,j

Aij(es)i(es)j =
∑
i,j

Aijδisδjs = Ass.

Hence

λmin ≤ Ass ≤ λmax

and thus

|λmin| ≥ −λmin ≥ −Ass.

Therefore the largest eigenvalue in absolute value, λmaxabs, is greater than Ass and
−Ass so

λmaxabs = max
i
|λi| = max{|λmax|, |λmin|} ≥ |Ass|.

Next, fix distinct s, t ∈ {1, . . . , d} and let (ws,t)i = (δis + δit)/
√

2. Then ‖(ws,t)‖ = 1
and so ∑

Aijvivj =
1

2

∑
Aij(δis + δit)(δjs + δjt) =

1

2
(Ass + 2Ast +Att.)
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Thus

λmax ≥
Ass + 2Ast +Att

2
(3.1)

and similarly

λmin ≤
Ass + 2Ast +Att

2
(3.2)

therefore

λmax ≥
Ass + 2Ast +Att

2
≥ λmin

Finally, using (ws,t)i = (δis − δit)/
√

2 we have

λmax ≥
Ass − 2Ast +Att

2
(3.3)

Subtracting (3.2) from (3.1) results in the inequality

λmax − λmin ≥ 2Ast

and since

2λmaxabs = λmaxabs + λmaxabs ≥ λmax − λmin

we get λmaxabs ≥ Ast. Likewise, subtracting (3.2) from (3.3) gives us

λmax − λmin ≥ −2Ast

hence λmaxabs ≥ −Ast so together that gives

λmaxabs ≥ |Ast|.

If we consider the identity matrix, its only eigenvalue is 1, and its only nonzero entry
is 1, meaning this inequality is sharp. Now we have seen a way to prove this inequality
that does not rely on the Cauchy-Schwarz inequality. It just relies on this maximum
property of eigenvalues. We can now generalize this derivation to tensors of order
greater than 2.

4. α-Tensor Eigenvalue Inequality. In this section, we will explore the var-
ious cases of Conjecture 1.1. First, we introduce a new notation for entries of the
tensor T ∈ Rdα with repeated indices. We will denote the entry where we have only
one index that is repeated, i.e. Ts...s, by Tsα for some fixed s ∈ {1, . . . , d}. Then
in the case we have two distinct indices with different numbers of repeats we fix dis-
tinct s, t ∈ {1, . . . , d} and denote the entry as Tsitj with i terms that are s, j terms
that are t, and i + j = α. For example, we would denote the entry Ts...st by Tsα−1t

or the entry Ts...stt by Tsα−2t2 . When we have three distinct indices we fix distinct
s, t, u ∈ {1, . . . , d} and denote the entry as Tsitjuk with s being repeated i times, t
repeated j times, u repeated k times, and i+j+k = α. More generally, we could have
the entry of T with ` distinct indices be T

s
i1
1 s

i2
2 ...s

i`
`

where s1, s2, . . . , s` ∈ {1, . . . , d}
are all distinct and i1 + i2 + · · · + i` = α. Note that this is well-defined since T is
symmetric and independent of the order of the indices.
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4.1. Identical indices. We begin by discussing the case where all indices of T
are the same. The maximum eigenvalue, λmax, and minimum eigenvalue, λmin, are
defined by the equations

λmax = max
||v||=1

∑
i1,...,iα

Ti1i2...iαvi1vi2 · · · viα(4.1)

λmin = min
||v||=1

∑
i1,...,iα

Ti1i2...iαvi1vi2 · · · viα(4.2)

respectively where v ∈ Rd is any unit vector. Take (es)i = δis. Then ‖es‖ = 1 so

max
‖v‖=1

∑
i1,...,iα

Ti1i2...iαvi1vi2 · · · viα ≥
∑

i1,...,iα

Ti1i2...iα(es)i1(es)i2 · · · (es)iα = Tsα

min
‖v‖=1

∑
i1,...,iα

Ti1i2...iαvi1vi2 · · · viα ≤
∑

i1,...,iα

Ti1i2...iα(es)i1(es)i2 · · · (es)iα = Tsα .

Thus
λmax ≥ Tsα ≥ λmin.

The latter inequality tells us that

|λmin| ≥ −λmin ≥ −Tsα .

Therefore, if we call λmaxabs the greatest absolute value over all eigenvalues,

λmaxabs ≥ |Tsα |.

Thus the inequality (1.1) holds with c = 1 for all diagonal entries of a tensor. In the
next two sections we derive inequalities for certain types of non-diagonal entries.

4.2. Two distinct indices. Next, we consider the inequality for entries of the
form, Tsα−1t, meaning that instead of all the indices being identical (diagonal entries),
there are two distinct indices. We can derive an inequality by considering any unit
vector of the form

(ws,t)i =
aδis + bδit√
a2 + b2

.

From the definition of the largest tensor eigenvalue, λmax, we have

λmax ≥
∑

i1,...,iα

Ti1...iα(ws,t)i1 ...(ws,t)iα

=

(
1√

a2 + b2

)α(
a0bα

(
α

0

)
Ts..s + a1bα−1

(
α

1

)
Ts...st + a2bα−2

(
α

2

)
Ts...stt + · · ·

· · ·+ aα−1b1
(

α

α− 1

)
Tst...t + aαb0

(
α

α

)
Tt...t

)
=

(
1√

a2 + b2

)α α∑
i=0

aibα−i
(
α

i

)
Tsα−iti

and similarly we also have,

λmin ≤
(

1√
a2 + b2

)α α∑
i=0

aibα−i
(
α

i

)
Tsα−iti
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where λmin is the smallest (most negative) eigenvalue. Now for any positive constant
c > 0 we have

cλmax ≥ c
(

1√
a2 + b2

)α α∑
i=0

aibα−i
(
α

i

)
Tsα−iti

and for any negative constant c < 0 we have

cλmin ≥ c
(

1√
a2 + b2

)α α∑
i=0

aibα−i
(
α

i

)
Tsα−iti .

Thus, defining λmaxabs = max{|λmax|, |λmin|} we have λmaxabs ≥ |λmax| and λmaxabs ≥
|λmin|, so for any c (positive or negative) we have,

|c|λmaxabs ≥ |c||λmax| ≥ cλmax

|c|λmaxabs ≥ |c||λmin| ≥ cλmin

which implies that

|c|λmaxabs ≥ c
(

1√
a2 + b2

)α α∑
i=0

aibα−i
(
α

i

)
Tsα−iti

so we no longer have to restrict to positive c.
We now consider α+ 1 distinct vectors,

(w0
s,t)i =

a0δis + b0δit√
a20 + b20

, (w1
s,t)i =

a1δis + b1δit√
a21 + b21

, · · · , (wαs,t)i =
aαδis + bαδit√

a20 + b20
,

which yields the following system of inequalities,

|c0|λmaxabs ≥ c0

(
1√

a20 + b20

)α α∑
i=0

ai0b
α−i
0

(
α

i

)
Tsα−iti

|c1|λmaxabs ≥ c1

(
1√

a21 + b21

)α α∑
i=0

ai1b
α−i
1

(
α

i

)
Tsα−iti

...

|cα|λmaxabs ≥ cα

(
1√

a2α + b2α

)α α∑
i=0

aiαb
α−i
α

(
α

i

)
Tsα−iti

Adding all the above inequalities note that the left hand sides add to

(|c0|+ |c1|+ · · ·+ |cα|)λmaxabs = λmaxabs||~c||1

where ~c =
(
c0 c1 · · · cα

)>
, and the 1-norm is defined as ||~c||1 =

∑α
i=0 |ci|. Sim-

ilarly, adding the right-hand-sides of all the above inequalities results in the matrix-
vector product


c0
c1
...
cα


>


(
α
0

) bα0
(a20+b

2
0)
α/2

(
α
1

) a0b
α−1
0

(a20+b
2
0)
α/2 · · ·

(
α
α

) aα0
(a20+b

2
0)
α/2(

α
0

) bα1
(a21+b

2
1)
α/2

(
α
1

) a1b
α−1
1

(a21+b
2
1)
α/2 · · ·

(
α
α

) aα1
(a21+b

2
1)
α/2

...
...

. . .
...(

α
0

) bαα
(a2α+b

2
α)
α/2

(
α
1

) aαb
α−1
α

(a2α+b
2
α)
α/2 · · ·

(
α
α

) aαα
(a2α+b

2
α)
α/2




Tsα

Tsα−1t

...
Ttα

(4.3)
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For simplicity we set bi = 1 for i = 0, ..., α so that we have the matrix-vector inequality,

||~c||1λmaxabs ≥ ~c>A~T

where ~Ti = Tsα−i+1ti−1 for j = 1, ..., α+ 1 and

A =



(
α
0

)
1

(a20+1)α/2

(
α
1

)
a0

(a20+1)α/2
· · ·

(
α
α

) aα0
(a20+1)α/2(

α
0

) aα1
(a21+1)α/2

(
α
1

)
a1

(a21+1)α/2
· · ·

(
α
α

) aα1
(a21+1)α/2

...
...

. . .
...(

α
0

)
1

(a2α+1)α/2

(
α
1

)
aα

(a2α+1)α/2
· · ·

(
α
α

) aαα
(a2α+1)α/2

 .(4.4)

We note that the matrix A is closely connected to the Vandermonde matrix and we
have the following immediate result.

Theorem 4.1. Assuming that a0, ..., aα are distinct, the matrix A as defined in
(4.4) is invertible and its inverse matrix is described by

(A−1)ij =

(−1)i+j(a2j + 1)α/2
∑

0≤i1<···<iα+1−i≤α+1

ai1ai2 · · · aij−1aij+1 · · · aα+1−i

(
α
i

) α+1∏
`<j

(aj − a`)
.

We include the proof of Theorem 4.1 in Appendix B. Now that we know the
matrix A is invertible we have the following eigenvalue inequality which is of the form
1.1 as desired.

Theorem 4.2. Let a0, a1, ..., aα be distinct and let A be as defined in (4.4), then
for any i ∈ {0, ..., α} we have

(4.5) λmaxabs ≥
|Tsα−iti |
||~e>i+1A

−1||1

Proof. By (4.3), we have ‖~c‖1λmaxabs ≥ ~c>A~T and since A is invertible we can
choose ~c = A−>~ei+1 (where ~ei+1 is the standard unit vector) so that

~c>A = ~e>i+1.

and (4.3) becomes,

||~e>i+1A
−1||1λmaxabs ≥ ~e>i+1

~T = ~Ti+1 = Tsα−iti

and similarly for ~c = −A−>~ei+1 we have,

||~e>i+1A
−1||1λmaxabs ≥ −~e>i+1

~T = −~Ti+1 = −Tsα−iti

and together these inequalities yield the result.

Theorem 4.2 gives us a method of finding bounds on the best possible coefficient
c in equation (1.1). Define

copt = min
T

{
λmaxabs(T )

|Ti1,...,iα |

}
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where λmaxabs(T ) is the largest eigenvalue of T in absolute value. Then for any choice
of a0, ..., aα we have

copt ≥
1

||e>i+1A
−1||1

.

Conjecture 1.1 claims that equation (1.1) holds with c = 1. In section 5 we use numer-
ical optimization methods to find the values of a0, ..., aα that minimize ||e>i+1A

−1||1
in order to verify Conjecture 1.1 on several examples.

4.3. Three distinct indices. Next we consider the case of entries of T that
have three different indices, Tsitjuα−i−j . To obtain similar bounds we consider test
vectors that have up to three nonzero entries and can be written in the form,

(ws,t,u)i =
aδis + bδit + dδiu√

a2 + b2 + d2

and substituting this vector in (4.1) we have

λmax ≥
∑

i1,...,iα

Ti1...iα(ws,t,u)i1 ...(ws,t,u)iα

=

(
1√

a2 + b2 + d2

)α α∑
i=0

α−i∑
j=0

aibjdα−i−j
(

α

i, j, α− i− j

)
Tsitjuα−i−j

≥ λmin

We can see that the total number of possible permutations of the numbers i, j, α−i−j
is given by

m = (α+ 1) + α+ · · ·+ 2 + 1 =
(α+ 1)(α+ 2)

2
.

Now, just as we did in the two distinct indices case, we can construct an m×m matrix.
Combining the above inequalities with multipliers c0, ..., cm, we have the system of
equations,

|c0|λmaxabs ≥ c0

(
1√

a20 + b20 + d20

)α α∑
i=0

α−i∑
j=0

ai0b
j
0d
α−i−j
0

(
α

i, j, α− i− j

)
Tsitjuα−i−j

|c1|λmaxabs ≥ c1

(
1√

a21 + b21 + d21

)α α∑
i=0

α−i∑
j=0

ai1b
j
1d
α−i−j
1

(
α

i, j, α− i− j

)
Tsitjuα−i−j

...

|cm|λmaxabs ≥ cm

(
1√

a2m + b2m + d2m

)α α∑
i=0

α−i∑
j=0

aimb
j
md

α−i−j
m

(
α

i, j, α− i− j

)
Tsitjuα−i−j

Adding the above inequalities, the left hand sides sums to

(|c0|+ |c1|+ · · ·+ |cm|)λmaxabs = ||~c||1λmaxabs.
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Expressing the sum of the right hand sides as a matrix yields,

~c>



(
α

α,0,0

) aα0
(a20+b

2
0+d

2
0)
α/2

(
α

α−1,1,0

) aα−1
0 b0

(a20+b
2
0+d

2
0)
α/2 · · ·

(
α

0,0,α

) dα0
(a20+b

2
0+d

2
0)
α/2(

α
α,0,0

) aα1
(a21+b

2
1+d

2
1)
α/2

(
α

α−1,1,0

) aα−1
1 b1

(a21+b
2
1+d

2
1)
α/2 · · ·

(
α

0,0,α

) dα1
(a21+b

2
1+d

2
1)
α/2

...
...

. . .
...(

α
α,0,0

) aαm
(a2m+b2m+d2m)α/2

(
α

α−1,1,0

) aα−1
m bm

(a2m+b2m+d2m)α/2
· · ·

(
α

0,0,α

) dαm
(a2m+b2m+d2m)α/2





Tsα

Tsα−1t

...
Tstα−1

Ttα

Tsα−1u

...
Tuα



(4.6)

To clarify the ordering, consider the entry Tsα−i−jtiuj , when i = j = 0 we get
the first entry Tsα and then keeping i = 0 we continue with j = 0, 1, 2, ..., α for a
total of α + 1 entries with i = 0. Next we move to i = 1 and j goes from 0 to α − 1
for a total of α entries with i = 1. Then when i = 2, j goes from 0 to α − 2 for a
total of α − 1 entries with i = 2. So each block with a fixed i value has α − i + 1
entries. Thus in order to get to the block of entries that have subscript ti we must
pass (α + 1) + (α) + (α − 1) + · · · + (α − i + 2) entries corresponding to all entries
having subscript t` where ` < i. Once we reach the block of entries having ti, in order
to reach the entry Tsα−i−jtiuj we simply go an additional j entries further down the
list. Thus the index of Tsα−i−jtiuj is given by,

Iα(i, j) = (α+ 1) + (α) + (α− 1) + · · ·+ (α− i+ 2) + j

=

i−1∑
`=0

α+ 1− `

= i(α+ 1)− (i− 1)i

2

and we define a vector T̃Iα(i,j)
= Tsα−i−jtiuj and we define the matrix,

(4.7)

Ã =



(
α

α,0,0

) aα0
(a20+b

2
0+d

2
0)
α/2

(
α

α−1,1,0
) aα−1

0 b0
(a20+b

2
0+d

2
0)
α/2 · · ·

(
α

0,0,α

) dα0
(a20+b

2
0+d

2
0)
α/2(

α
α,0,0

) aα1
(a21+b

2
1+d

2
1)
α/2

(
α

α−1,1,0
) aα−1

1 b1
(a21+b

2
1+d

2
1)
α/2 · · ·

(
α

0,0,α

) dα1
(a21+b

2
1+d

2
1)
α/2

...
...

. . .
...(

α
α,0,0

) aαm
(a2m+b2m+d2m)α/2

(
α

α−1,1,0
) aα−1

m bm
(a2m+b2m+d2m)α/2

· · ·
(

α
0,0,α

) dαm
(a2m+b2m+d2m)α/2


which leads to the following result.

Theorem 4.3. For any ai, bi and di for any i ∈ {0, ..., α}, let Ã be as stated in
(4.7), then assuming Ã is invertible we have

(4.8) λmaxabs ≥
|Tsα−i−jtiuj |
||e>IαÃ−1||1

The proof of Theorem 4.3 is identical to that of Theorem 4.2.
Theorem 4.3 yields a method of finding lower bounds for the coefficient c in equa-

tion (1.1). Similarly to the previous section, any choice of a0, ..., aα, b0, ..., bα, d0, ..., dα
will yield a rigorous lower bound,

c ≥ 1

||e>IαÃ−1||1
.
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5. Computer Assisted Proofs. Now we will validate our conjecture for various
special cases with computer assisted proofs using the inequalities we proved in section
4 [Theorem 4.2]. Let T be a α-order symmetric tensor with size d. We will consider
the case where we have two distinct indices where we denote an entry of T as Tsitj
with s, t ∈ {1, . . . , d}, i is the number of s terms, j is the number of t terms, and
i+ j = α.

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
α = 3 1 1
α = 4 1 1 1
α = 5 1 1 1
α = 6 1 1 1 0.9794
α = 7 1 1 1 0.9891
α = 8 0.9980 0.9960 0.9891 0.7252 0.6414
α = 9 0.9625 0.9970 0.9285 0.5896 0.7704
α = 10 0.8460 0.8547 0.9579 0.6219 0.5851 0.3095
α = 11 0.8058 0.8628 0.7386 0.9625 0.3979 0.1771
α = 12 0.7547 0.4103 0.7474 0.3754 0.2181 0.2981 0.1016

(a)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
α = 3 1 1
α = 4 1 1 1
α = 5 1 1 1
α = 6 1 1 1 1
α = 7 1 1 1 1
α = 8 1 1 1 0.9881 0.9950
α = 9 0.9980 1 1 0.9911 0.9862
α = 10 0.9930 0.9980 0.9930 0.9747 0.9662 0.7924
α = 11 0.9980 0.9775 0.9921 0.6579 0.9009 0.7067
α = 12 0.9911 0.9434 0.8993 0.7305 0.6859 0.5456 0.4337

(b)

Fig. 2: (a) num=50, maxiter=1000 (b) num=500, maxiter=2000
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Fig. 3: (a) By running 6× 105 initial conditions we were able to show that copt is at
least 0.9793 for the 3-tensor (α = 3) in the Tu3 entry. (b) Similarly running 18× 105

initial conditions obtains a lower bound of 0.9891 for the 3-tensor in the Tu2t entry.

6. Sharpness. Now we wish to show the sharpness of our conjecture, i.e. demon-
strate that the inequality (1.3) is optimal. We first show that without loss of generality
we only need to show sharpness for 2α tensors.

Lemma 6.1. If there is an example of a symmetric tensor T ∈ R2α such that the
inequality is shown to be sharp, then the inequality is also sharp for Rnα .

Proof. Suppose there is a symmetric tensor T ∈ R2α that demonstrates sharpness
of the conjecture. We can extend this to the nα case where entries with indices that
consist of ones and twos are the same as the 2α case and all other entries 0. This
yields the following equations:

λu1 = (T ×2 u×3 u)1 =

n∑
j,k=1

T1jk`ujuku`

λu2 = (T ×2 u×3 u)2 =

n∑
j,k=1

T2jk`ujuku`

λu3 = (T ×2 u×3 u)3 =

n∑
j,k=1

T3jk`ujuku` = 0

λu4 = (T ×2 u×3 u)4 =

n∑
j,k=1

T4jk`ujuku` = 0

...

λun = (T ×2 u×3 u)3 =

n∑
j,k=1

Tnjk`ujuku` = 0

1 = u11 + u22 + ...+ u2n

Obviously u3 = u4 = ... = un = 0 and thus u21 + u22 = 1. Hence we have the
same equations as in the 2α case. Therefore, we have proved the inequality for any
symmetric α-tensor.

We first consider the case of 3-tensors. By the eigenvalue equation, for some 3-
tensor T ∈ Rd3 and eigenvector ~u ∈ Rd of length 1 with associated eigenvalue λ we
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have

(6.1) T ×2 u×3 u = λu

with the component-wise definition

(T ×2 u×3 u)i =

d∑
j,k=1

Tijkujuk.

By Lemma 6.1, we only need to consider tensors that are in R23 . Consider the 2×2×2
symmetric tensor T with entries T111 = 0, T211 = 1, T221 = 0, T222 = −1 so

T =

T111 T121

T211 T221

][
T112 T122

T212 T222

][
=

0 1
1 0

][
1 0
0 −1

][

and eigenvector of length 1 ~u =

(
u1
u2

)
. By plugging these values into the eigenvalue

equation and taking the first component of both sides of (6.1) we have the following
equality

λu1 = (T×2u×3u)1 =

2∑
j,k=1

T1jkujuk = T111u
2
1+T112u1u2+T121u2u1+T122u

2
2 = 2u1u2

Now, taking the second component we have

λu2 = (T ×2 u×3 u)2 =

2∑
j,k=1

T2jkujuk = T211u
2
1 + T212u1u2 + T221u2u1 + T222u

2
2

= u21 − u22

Therefore, we have the system of equations

λu1 = 2u1u2(6.2)

λu2 = u21 − u22(6.3)

u21 + u22 = 1(6.4)

Rearranging (6.2) gives λ = 2u2. Plugging this value of λ into (6.3) then gives
u21 = 3u22. Plugging this into (6.4) and solving the equation yields λ = ±1.

Therefore, since λmaxabs = 1 and is greater than or equal to the absolute value of
each entry in the tensor, this proves that in the inequality λmaxabs ≥ c ·Tstu, c cannot
have a value greater than 1, proving the sharpness of our inequality for the 3-tensor.

We next consider the case of 4-tensors. By Lemma 6.1, we only need to consider
tensors that are in R24 . Note that by the eigenvalue equation, for some T ∈ Rd4 and
eigenvector ~u ∈ Rd of length 1 with associated eigenvalue λ we have

(6.5) T ×2 u×3 u×4 u = λu
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with the component-wise definition

(T ×2 u×3 ×4u)i =

d∑
j,k,`=1

Tijkujuku`.

Now, consider the 2 × 2 × 2 × 2 symmetric tensor T with entries T1111 = T2222 = 3,
T1122 = 1, and T1112 = T1222 = 0 . We then take the first component of both sides of
(6.5) to get the following equality

λu1 = (T ×2 u×3 u×4 u)1

=

2∑
j,k=1

T1jk`ujuku`

= T1111u
3
1 + (T1211 + T1121 + T1112)u21u2 + (T1221 + T1212 + T1122)u1u

2
2 + T1222u

3
2

= 3u31 + 3u1u
2
2

= 3(u31 + u1u
2
2).

Now, taking the second component we have

λu2 = (T ×2 u×3 u×4 u)2

=

2∑
j,k=1

T2jk`ujuku`

= T2111u
3
1 + (T2211 + T2112 + T2121)u21u2 + (T2212 + T2221 + T2122)u1u

2
2 + T2222u

3
2

= 3u21u2 + 3u32

= 3(u21u2 + u32).

Therefore, we have the system of equations

λu1 = 3(u31 + u1u
2
2)(6.6)

λu2 = 3(u21u2 + u32)(6.7)

u21 + u22 = 1(6.8)

Rearranging (6.8) as u22 = 1−u21 and plugging this into (6.6) gives us λu1 = 3u1 hence
λ = 3. Then we rearrange (6.8) as u21 = 1 − u22 and plug this into (6.7) to give us
λu2 = 3u2 thus once again λ = 3. Therefore λmaxabs = 3 and satisfies the conjecture

λmaxabs ≥ |Tijk`|

since the largest entry in T is also 3, proving the sharpness of the conjecture for the
4-tensor.

7. Conclusions and Future Directions. The conjecture we proposed would
be invaluable in finding approximate CP decompositions for symmetric tensors as it
would provide us an improved convergence rate. We were able to numerically find
the optimal c in the inequality (1.1) to be approximately 1 which we demonstrate
through rigorous computer assisted proofs. Of course, since our computations were
only accurate up to numerical precision, in most cases we did not get c = 1 exactly.
However, the fact that we were often able to get results that approached 1 was very
promising. In every situation we looked at, we were always able to get as close
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to c = 1 as we wanted by increasing run times. In addition, due to our analytical
proofs in the previous section, we were able to show that the conjecture is true for all
symmetric tensors up to order 4.

Another direction would be to further explore the sharpness of our conjecture
for symmetric tensors of order α ≥ 5. We were able to prove sharpness by solving
a system of quadratic equations but once we attempted to construct an appropriate
example tensor for α = 5, the polynomials become higher order and and more complex.
Perhaps symbolic algebra methods could be applied to solve these systems.

Appendix A. Proof of Theorem 1.2.
The notion of the rank-1 matrix can be generalized to tensors as follows.

Definition A.1 (Rank-1 Tensor). Let T ∈ Rdα then T is called a rank-1 tensor
if there exists a v ∈ Rd such that

v⊗α = T.

Now for non rank-1 tensors, one may seek to decompose such tensors as a sum of
rank-1 tensors.

Definition A.2 (CP Decomposition). The vectors v1, ..., vp form a CP de-
composition of α-tensor T if,

T =

p∑
`=1

v⊗α`

where v⊗α` for ` = 1, . . . , p are rank-1 tensors and the minimum value of p for which
such a decomposition exists is called the rank of the tensor T .

Note that this notion of rank agrees with the classical notion of matrix rank in
the case of 2-tensors but many of the properties of matrix rank do not generalize to
higher order tensors [5, 2, 3, 7, 4].

We define the Frobenius norm generalized to tensors in the following way.

Definition A.3 (Tensor Frobenius Norm [5]). The Frobenius norm of a ten-
sor T ∈ Rdα is the square root of the sum of the squares of all its elements:

‖T‖F =

√√√√ d∑
i1=1

· · ·
d∑

iα=1

Ti1,...,iα
2.

The following lemma introduces a particularly simple formula involving the tensor
Frobenius norm and vectors.

Lemma A.4. Let v ∈ Rd and α be a positive integer. Then, the tensor Frobenius
norm of the αth-order tensor product is the same as the Euclidean norm of v raised
to the α, i.e.

‖v⊗α‖F = ‖v‖α.
Proof. By the definition of the tensor Frobenius norm,

‖v⊗α‖2F =

d∑
i1=1

· · ·
d∑

iα=1

[(v⊗α)i1,...,iα ]2

and since (v⊗α)i1...iα = vi1vi2 · · · viα , we have ‖v⊗α‖2F =
∑d
i1=1 · · ·

∑d
iα=1 v

2
i1
· · · v2iα ,

so

‖v⊗α‖2F =

d∑
i1=1

v2i1

d∑
i2=1

v2i2 · · ·
d∑

iα=1

v2iα = ‖v‖2‖v‖2 · · · ‖v‖2︸ ︷︷ ︸
α times
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by definition of ‖v‖ so
‖v⊗α‖F = ‖v‖α.

Finally, we present the following lemma which demonstrates that an eigenvalue-
eigenvector pair provides a rank-1 approximation of a tensor in the Frobenius norm.

Lemma A.5. Let T be an α-order symmetric tensor with dimension d, i.e. T ∈
Rdα , and v ∈ Rd be a unit length eigenvector of T with eigenvalue λ 6= 0. Then

‖T − λv⊗α‖2F = ‖T‖2F − λ2

and ‖T‖F ≥ λ.
Proof. We first wish to show that ‖T − λv⊗α‖2F = ‖T‖2F − λ2.

‖T − λv⊗α‖2F =

d∑
i1=1

· · ·
d∑

iα=1

[(T − λv⊗α)i1,...,iα ]2

=

d∑
i1=1

· · ·
d∑

iα=1

(T 2
i1,...,iα − 2λTi1,...,iαvi1vi2 · · · viα + λ2v2i1v

2
i2 · · · v

2
iα)

= ‖T‖2F − 2λ

d∑
i=1

vi(T ×2 v ×3 v ×4 · · · ×k v)i + λ2‖v⊗α‖F

Since ‖v‖ = 1 and by Lemma A.4, ‖v⊗α‖F = 1, hence

‖T − λv⊗α‖2F = ‖T‖2F − 2λ〈v, λv〉+ λ2 = ‖T‖2F − 2λ2‖v‖22 + λ2 = ‖T‖2F − λ2

Since ‖T − λv⊗α‖F ≥ 0, ‖T‖2F − λ2 ≥ 0 so ‖T‖2F ≥ λ2 and taking square roots,
‖T‖F ≥ |λ|.

Proof. First let λmaxabs be the largest eigenvalue in absolute value of a tensor T
and assume λmaxabs ≥ |Ti1...iα | for all i1, . . . , iα. We will show that there exists a
constant c = 1

dα/2
∈ (0, 1] such that λmaxabs ≥ c‖T‖F . Since λmaxabs ≥ |Ti1...iα |, we

have
λ2maxabs ≥ T 2

i1...iα

which implies that

dαλ2maxabs ≥
∑

i1,...,iα

T 2
i1...iα

so we have dα/2λmaxabs ≥
√∑

i1,...,iα
T 2
i1...iα

and

λmaxabs ≥
1

dα/2
‖T‖F ,(A.1)

where we take c =
1

dα/2
∈ (0, 1), since d ≥ 1. By Lemma A.5 applied to T`, we have

‖T`+1‖F 2
= ‖T` − λ`v⊗α` ‖F

2
= ‖T`‖F 2 − λ`2.

Since λ` is defined to be the largest eigenvalue of T`, (A.1) says that λ` ≥ c‖T`‖F
where c = 1

dα/2
so

‖T`+1‖F 2 ≤ ‖T`‖F 2 − c2‖T`‖F 2

≤ (1− c2)‖T`‖F 2
.
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Thus, setting r =
√

1− c2 ∈ (0, 1) we have ‖T`+1‖F ≤ r‖T`‖F and ‖T`+1‖F ≤
r2‖T`−1‖F and so forth and proceeding inductively we find,

‖T`+1‖F ≤ r`+1‖T0‖F = r`+1‖T‖F .

Since 0 < r < 1, lim
`→∞

r`+1 = 0, so 0 ≤ ‖T`+1‖F ≤ r`+1‖T‖F → 0 implies ‖T`+1‖ → 0

as `→∞. Since this limit is 0, an upper bound on the rate of convergence of ‖T`‖F
is found by considering

‖T`+1‖F
‖T`‖F

≤ r =

√
1− 1

dα
.

∑
1≤i1≤m

ai1 =

m∑
i1=1

ai1 = a1 + a2 + · · ·+ am

∑
1≤i1<i2≤m

ai1ai2 = a1a2 + a1a3 · · ·+ a1am + a2a3 + · · ·+ a2am · · · am−1am

Appendix B. Proof of Theorem 4.1.

Proof. We will first show that A is invertible. We can rewrite A in terms of the
Vandermonde matrix as

1
(a20+1)α/2

1
(a21+1)α/2

. . .
1

(a2α+1)α/2




1 a0 · · · aα0
1 a1 · · · aα1
...

...
. . .

...
1 aα · · · aαα



(
α
0

) (
α
1

)
. . . (

α
α

)


so that

det(A) =

∣∣∣∣∣∣∣∣∣∣

1
(a20+1)α/2

1
(a21+1)α/2

. . .
1

(a2α+1)α/2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 a0 · · · aα0
1 a1 · · · aα1
...

...
. . .

...
1 aα · · · aαα

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

(
α
0

) (
α
1

)
. . . (

α
α

)
∣∣∣∣∣∣∣∣∣

=

α∏
i=0

1

(a2i + 1)α/2

∏
0≤i≤j≤α

(aj − ai)
α∏
i=0

(
α

i

)

=

α∏
i=0

(
α
i

) ∏
0≤i≤j≤α

(aj − ai)

α∏
i=0

(a2i + 1)α/2
.

As long as a0, a1, . . . , aα are all distinct, the determinant will always be nonzero and
thus A is an invertible matrix.

Now we will show how to find the inverse of A by using the following inverse for
the Vandermonde matrix:

(V −1)ij =

(−1)i+j
∑

0≤i1<···<iα+1−i≤α+1

ai1ai2 · · · aij−1
aij+1

· · · aα+1−i

α+1∏
`<j

(aj − a`)
.
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The derivation of this inverse can be found in [6]. Let

B =


1

(a20+1)α/2

. . .
1

(a2α+1)α/2

 and C =


(
α
0

)
. . . (

α
α

)
 .

Then
A−1 = (BV C)−1 = C−1(BV )−1 = C−1V −1B−1

Since B and C are invertibile diagonal matrices,

B−1 =

(a20 + 1)α/2

. . .

(a2α + 1)α/2

 and C−1 =


1

(α0)
. . .

1

(αα)

 .

Therefore

(A−1)ij =

(−1)i+j(a2j + 1)α/2
∑

0≤i1<···<iα+1−i≤α+1

ai1ai2 · · · aij−1
aij+1

· · · aα+1−i

(
α
i

) α+1∏
`<j

(aj − a`)
.
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